Flying qubits in semiconductors

Similar documents
Spin Filtering: how to write and read quantum information on mobile qubits

Lecture 3. Shot noise correlations: The two-particle Aharonv-Bohm effect. Markus Buttiker University of Geneva

Chapter 1. Quantum interference 1.1 Single photon interference

Lecture 8, April 12, 2017

Unconventional electron quantum optics in condensed matter systems

Single Photon Generation & Application

Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots

Three-terminal quantum-dot thermoelectrics

collaboration D. G. Austing (NTT BRL, moved to NRC) Y. Tokura (NTT BRL) Y. Hirayama (NTT BRL, CREST-JST) S. Tarucha (Univ. of Tokyo, NTT BRL,

Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields

Interferometric and noise signatures of Majorana fermion edge states in transport experiments

arxiv: v1 [cond-mat.mes-hall] 29 Jan 2013

QUANTUM ELECTRON OPTICS AND ITS APPLICATIONS. 1. Introduction

Quantum Optics with Propagating Microwaves in Superconducting Circuits. Io-Chun Hoi 許耀銓

Superconducting Qubits Lecture 4

Quantum information processing in semiconductors

Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique

Problem Set: TT Quantum Information

Electron counting with quantum dots

Quantum physics in quantum dots

Réunion erc. Gwendal Fève. Panel PE3 12 mn presentation 12 mn questions

Quantum coherence in quantum dot - Aharonov-Bohm ring hybrid systems

FRACTIONAL CHARGE & FRACTIONAL STATISTICS & HANBURY BROWN & TWISS INTERFEROMETRY WITH ANYONS

Quantum correlations and atomic speckle

AP/P387 Note2 Single- and entangled-photon sources

QUANTUM- CLASSICAL ANALOGIES

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities

QUANTUM INTERFERENCE IN SEMICONDUCTOR RINGS

Detection of Single Photon Emission by Hanbury-Brown Twiss Interferometry

Two-qubit Gate of Combined Single Spin Rotation and Inter-dot Spin Exchange in a Double Quantum Dot

Quantum Dense Coding and Quantum Teleportation

Physics of Low-Dimensional Semiconductor Structures

Physics of Semiconductors

New schemes for manipulating quantum states using a Kerr cell. Istituto Elettrotecnico Nazionale Galileo Ferraris, Str. delle Cacce 91, I Torino

Hong-Ou-Mandel effect with matter waves

Dynamical Casimir effect in superconducting circuits

Single-Particle Interference Can Witness Bipartite Entanglement

SUPPLEMENTARY INFORMATION

Interactions and Charge Fractionalization in an Electronic Hong-Ou-Mandel Interferometer

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Lecture 2: Double quantum dots

A Guide to Experiments in Quantum Optics

Lab 1 Entanglement and Bell s Inequalities

All optical quantum computation by engineering semiconductor. macroatoms. Irene D Amico. Dept. of Physics, University of York

Cooper-pair splitter: towards an efficient source of spin-entangled EPR pairs

Quantum Teleportation with Photons. Bouwmeester, D; Pan, J-W; Mattle, K; et al. "Experimental quantum teleportation". Nature 390, 575 (1997).

Quantum computation and quantum information

Laboratory 3&4: Confocal Microscopy Imaging of Single-Emitter Fluorescence and Hanbury Brown and Twiss setup for Photon Antibunching

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Scanning gate microscopy and individual control of edge-state transmission through a quantum point contact

January 2010, Maynooth. Photons. Myungshik Kim.

Integrated optical circuits for classical and quantum light. Part 2: Integrated quantum optics. Alexander Szameit

OIST, April 16, 2014

400 nm Solid State Qubits (1) Daniel Esteve GROUP. SPEC, CEA-Saclay

Quantum Memory with Atomic Ensembles

Quantum dots and Majorana Fermions Karsten Flensberg

Susana F. Huelga. Dephasing Assisted Transport: Quantum Networks and Biomolecules. University of Hertfordshire. Collaboration: Imperial College London

Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup

Quantum. Mechanics. Y y. A Modern Development. 2nd Edition. Leslie E Ballentine. World Scientific. Simon Fraser University, Canada TAIPEI BEIJING

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

and conversion to photons


Beam Splitters, Interferometers and Hong-Ou-Mandel Effect for Interacting Bosonic and Fermionic Walkers in a Lattice

Quantum Confinement in Graphene

Simple scheme for efficient linear optics quantum gates

Labs 3-4: Single-photon Source

Journal Club Presentation Quantum Information Science: Indistinguishable Photons from Separated Silicon-Vacancy Centers in Diamond [1]

More measurement & computing (Clusters, N00N states, Zeno gates,...) 13 Mar 2012

Summary lecture IX. The electron-light Hamilton operator reads in second quantization

Martes Cuánticos. Quantum Capacitors. (Quantum RC-circuits) Victor A. Gopar

Path Entanglement. Liat Dovrat. Quantum Optics Seminar

Driving Qubit Transitions in J-C Hamiltonian

The Physics of Nanoelectronics

Closing the Debates on Quantum Locality and Reality: EPR Theorem, Bell's Theorem, and Quantum Information from the Brown-Twiss Vantage

Exploring finite-dimensional Hilbert spaces by Quantum Optics. PhD Candidate: Andrea Chiuri PhD Supervisor: Prof. Paolo Mataloni

Quantum Information Processing with Semiconductor Quantum Dots

arxiv:cond-mat/ v2 [cond-mat.mes-hall] 13 May 2007

Quantum Optics and Quantum Information Laboratory

Semiclassical formulation

Coherence and indistinguishability of single electron wavepackets emitted by independent sources

arxiv: v1 [cond-mat.mes-hall] 28 Feb 2012

Single photons. how to create them, how to see them. Alessandro Cerè

Quantum Mechanics: Fundamentals

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

InAs Quantum Dots for Quantum Information Processing

A Tunable Fano System Realized in a Quantum Dot in an Aharonov-Bohm Ring

SUPPLEMENTARY INFORMATION

Developing Quantum Logic Gates: Spin-Resonance-Transistors

Fabrication / Synthesis Techniques

Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum dots

Persistent spin helix in spin-orbit coupled system. Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab

Playing Games with Quantum Information: Experiments with Photons and Laser-Cooled Atoms

Electrical control of superposed quantum states evolution in quantum dot molecule by pulsed field

Quantum noise studies of ultracold atoms

Quantum Networks with Atomic Ensembles

Chapter 3 Properties of Nanostructures

Quantum Ghost Imaging by Measuring Reflected Photons

Quantum Logic Operations Using Single Photons and the Zeno Effect. J.D. Franson, B.C. Jacobs, and T.B. Pittman. Johns Hopkins University

Learning about order from noise

Transcription:

FIRST 2011.8.13 Flying qubits in semiconductors Yasuhiro Tokura (NTT Basic Research Laboratories) Introduction -flying qubit- Topics Effect of statistics Entanglement generation and detection Single electron emission and collection Qubit entangler Conclusions

Self-introduction NTT

Haruka Tanji NTT.4) Nobuyuki Matsuda Hiromitsu Imai Quantum Optical state control research group

Static qubits and flying qubits S L S R Loss and DiVincenzo PRA (98)

Quantum wire, quantum point contact E F Conductance G = 2e2 h n T n =1 T n Transmission probability of mode n T n Noiseless mode

Shot noise For simplicity, only consider single mode, ev >> k B T Input occupation: n in =1 Transmitted occupation: n T = T Reflected occupation: n R = R # fluctuation from its average n T n T n T Shot noise at zero frequency limit: Conservation of electron # n in = n T + n R S 0 ( n T ) 2 = n 2 T n T 2 1=T + R Electron cannot be divided n T = 0 or 1 = n T n T 2 = T (1 T )

An edge state B Chiral motion, no backscattering A B B Energy Missing of an electron = a hole Propagates to the same direction A Cyclotron frequency E F ω c ω c = eb m

Ideal beam splitter (BS) unitary matrix (T=1/2): a 1 1 1 c b 2 1 1 d Photons - bunching a BS b Collision experiment of photon (Boson) a b 0 1 (c + d ) 1 (c d ) 0 2 2 c d = 1 2 (c 2 d 2 ) 0 Shot noise in port c: S c ( n c ) 2 = n 2 c (n c ) 2 = 2 1=1 Classical limit (distinguishable particles) n c = 0 1 4 +1 1 2 +2 1 4 =1 n 2 c = 0 2 1 4 +12 1 2 +22 1 4 = 3 2 S c 1 2

Electrons - anti-bunching Scanning electron micrograph of an electron beam splitter device BS a σb σ 0 1 2 (c σc σ d σd σ c σd σ c σ d σ) 0 S c ( n cσ ) 2 n cσ 2 σ σ For σ = σ, c σc σ =0! = 5 4 12 = 1 4 R.C. Liu, B. Odom, Y. Yamamoto, & S. Tarucha, Nature 391, 263 (1998).

Cross correlation in two ports a BS BS b c d Statistics Boson Classical Fermion S cross = I c I d Positive (for n a >>1) For spin polarized electrons: Cf. S c (n c 1 2 )2 = n 2 c 1 2 2 = 1 4 0 Negative S cross (n c 1 2 )(n d 1 2 ) = n c n d 1 2 2 = 1 4

Hanbury Brown and Twiss W. D. Oliver, J. Kim, R. C. Liu, Y. Yamamoto, Science 284, 296 (1999).

HBT experiment with edge states M. Henny, et al. Science 284, 296 (1999).

R Quantum coherence: AB interference P Electron! as a wave Path 1 B Path 2 Q S Onsagerʼs law Two-terminal Aharonov-Bohm ring Q ϕ 1 ϕ 2 = k e Q P A dl 1 k e P A dl 2 = k dl e A dl = k dl e BS ( G RS : linear conductance from P to Q ) G RS (B) = G SR (B) : Current conservation G RS (B) = G SR (-B) : Time reversal symmetry! G RS (B) = G RS (-B) 0 G RS (B) B(T) T. Hatano,T. Kubo, Y. Tokura, S. Amaha, S. Teraoka, and S. Tarucha, Phys. Rev. Lett. 106, 076801 (2011).

Geometric phases

AB interferometer with edge states Y. Ji, et al., Nature 422, 415 (2003). Two half mirrors are made of T=1/2 QPCs. Air-bridge technology is essential. Phase coherence length is estimated from the visibility of the AB oscillations L φ ~24 µm @ 20 mk P. Roulleau, et al., Phys. Rev. Lett. 100, 126802 (2008).

Two-electron interference Single electron current is independent of the flux φ, but current correlations are dependent on φ. P. Samuelsson, E. V. Sukhorukov, and M. Buttiker, Phys. Rev. Lett. 92, 026805 (2004).

HBT experiments II Experimental confirmation of twoelectron interference. I. Neder, et al., Nature 448, 333 (2007).

Alternative SU(2) control of spin qubit Using Rashba spin-orbit interaction H SOI = λp E σ A. E. Popescu and R. Ionicioiu, Phys. Rev. B 69, 245422 (2004).

Two qubit interaction and C-NOT Using exchange interaction H ex = J S 1 S 2 R. Ionicioiu, P. Zanardi, and F. Rossi, Phys. Rev. A 63 050101(R) (2001).

Entanglement gen. with post selection Beam splitter a b 0 1 2 (c c d d BS c d c d ) 0 1 2 T 0 Post selection (only singlet electrons in each path) Spin triplet state S. Bose and D. Home, Phys. Rev. Lett. 88, 050401 (2002).

Entangle source of triple quantum dots Spin singlet state D. S. Saraga and D. Loss, Phys. Rev. Lett. 90, 166803 (2003).

Entangler with QD and narrow-width chs. The channels band width should be narrow enough. W. D. Oliver, F. Yamaguchi, and Y. Yamamoto, Phys. Rev. Lett. 88, 037901 (2002).

Robust entangler with localized spin s-d T matrix in Born approx. T = J l=1,2 {S + a lk a lk + S a lk a lk k,k +S z [a lk a lk a lk a lk ]} a 1k F a 2k F 0 S 2 2iπJρ T 0 S ρ: density of states A. T. Costa, Jr. and S. Bose, Phys. Rev. Lett. 87, 277901 (2001).

Verification of entanglement 1 (a 2 b + 1 a b ) 0 (c 2 d + c d ) 0 S cross = I 3 I 4 > 0 G. Burkard, D. Loss, and E. V. Sukhorukov, Phys. Rev. B 61, R16303 (2000).

Bell inequality analysis Bell s inequality: E(a, b)+e(a, b)+e(a, b ) E(a, b ) < 2 Need spin analyzer/filter. E(a, b) = S 56 + S 34 S 36 S 45 S 56 + S 34 + S 36 + S 45 S. Kawabata, J. Phys. Soc. Jpn 70, 1210 (2001). N. M. Chtchelkatchev, et al., Phys. Rev. B 66, 161320(R) (2002).

Perfect spin filter Controlled spin-orbit interaction and magnetic flux in a diamond-like loop - works as an emitter, rotator, and detector of flying spin qubits Magnetic flux φ Effective field from Rashba spin-orbit interaction, α Coupled diamonds offer more flexible, and ideal realization of Datta-Das spin transistor A. Aharony, Y. Tokura, Guy Z. Cohen, O. Entin-Wohlman, and S. Katsumoto, Phys. Rev. B 84, 035323 (2011).

Model calculations β=.25π β=.05π β=.15π β =.27π β =.25π β =.23π

Electron-hole entanglement BS Qubits basis is two edge states (orbital modes). U R and U L are used for the analysis of Bell-inequality ε = E(U L,U R )+E(U L,U R )+E(U L,U R) E(U L,U R), ε max = 2 1+C 2 C: concurrence C. W. J. Beenakker, C. Emary, M. Kindermann, and J. L.van Velsen, Phys. Rev. Lett. 91, 147901 (2003).

Electron-hole interferometer Proposed device using single edge state D. Frustaglia and A. Cabello, Phys. Rev. B 80, 201312R (2009).

Encapsulated flying qubits IDT: interdigitated transduser CAP: coherent acoustic phonon Stroboscopic photoluminescence image Piezo-electric material, like GaAs, forms moving (dynamic) quantum dots (DQDs) by the surface acoustic waves (SAWs). J. A. H. Stotz, R. Hey, P. V. Santos and K. H. Ploog, Nature Materials 41, 585 (2005).

Spin rotates Spatiotemporal evolution of the magneto-optic Kerr Rotation signal The spin rotation is induced from the internal magnetic field originating from the spin-orbit interactions. Spin coherence length > 100 µm! H. Sanada, et al., Phys. Rev. Lett. 106, 216602 (2011).

Quantized current by SAW SAW can accommodate a few electrons per period. I = nef V. I. Talyanskii, et al., Phys. Rev. B 56, 15180 (1997).

Single electron source Pulse signal to the gate electrodes, release single electron/hole to the reservoir J. Gabelli, et al., Science 313, 499 (2006). G. Feve, et al., ibid 316, 1169 (2007).

Flying qubit as an entangler RKKY interaction is an example of entanglement by flying qubits (electrons in the reservoirs). Y. Avishai and Y. Tokura, Phys. Rev. Lett. 87, 9703 (2001). A. T. Costa, Jr., S. Bose, and Y. Omar, Phys. Rev. Lett. 96, 230501 (2006).

Quantum teleportation with flying qubits H = {J 1 S1 + J 2 S2 + J 3 S3 } σ (1) J 1 =0: create maximally entangled state from u> 2 and d> 3. (2) J 3 =0: create maximally entangled state by φ> 1 and ψ> 2 teleportation φ> 1 -> φ> 3 Trick: for (1) and J 2 =J 3, no dynamics by H=J(S 2 +S 3 )σ for spin singlet! Usage of SAW would be promising. F. Ciccarello, S. Bose, and M. Zarcone, Phys. Rev. A 81, 042318 (2010).

Conclusions I reviewed recent progress on the research of realizing flying qubits in semiconductor systems. There are many proposals to generate entangled flying qubits, but not yet experimentally confirmed. Singlet electron sources and spin filters are proposed and start being demonstrated. Surface acoustic wave is a promising technology since it generates encapsulated flying qubits with amazingly long spin coherence length. Using flying qubits and an entangler of localized qubits is another interesting direction of the research.

Thank you. Collaborators: M. Yamamoto, A. Oiwa, S. Tarucha (Univ. Tokyo) Y. Avishai, A. Aharony, O. Entin-Wohlman (Ben-Gurion Univ.) T. Kubo (NTT BRL)