( Gauss),, Gauss,, Giddings [1,2 ] Dose [3 ]

Similar documents
Determination of Solubility Parameters using Inverse Gas Chromatography

CHEM340 Tutorial 4: Chromatography

Principles of Instrumental Analysis

Fast Analysis of Aromatic Solvent with 0.18 mm ID GC column. Application. Authors. Introduction. Abstract. Gas Chromatography

10/27/10. Chapter 27. Injector typically 50 C hotter than oven

Title Experiment 7: Gas Chromatography and Mass Spectrometry: Fuel Analysis

Supporting Information Pure Substance and. Mixture Viscosities Based on Entropy-Scaling. and an Analytic Equation of State

Determination of adsorption isotherms on graphitized carbon black by zonal gas chromatography

--> Buy True-PDF --> Auto-delivered in 0~10 minutes. YC/T Translated English of Chinese Standard: YC/T

Division of Chemistry and Chemical Engineering, Mail Code , California Institute of Technology, Pasadena, CA 91125

Determination of Normal Hydrocarbons C 5 -C 18 Using Silanized Algerian Bentonite (B 1100 ) as Support in Gas Chromatographic Analysis

Unique Selectivity: The Power of Ionic Liquid GC Columns

Headspace Technology for GC and GC/MS: Features, benefits & applications

NOMENCLATURE FOR NON-LINEAR CHROMATOGRAPHY?

Water Injections in GC - Does Water Cause Bleed?

Original Articles. 1. Introduction. You Zhou 1,, Liwei Xue 1, Kai Yi 1, Li Zhang 1, Seung Kon Ryu 2 and Ri Guang Jin 1

Understanding Gas Chromatography

Recent advances in Inverse Gas Chromatography - IGC - measurements of HSP. RALF DUEMPELMANN, ERIC BRENDLE and STEVEN ABBOTT

Thermodynamic Characteristics of Adsorption-Desorption of Methane in 3 # Coal Seam of Sihe

Nomenclature of alkanes

Accepted for publication in Analytical Chemistry, August, 2011 SUPPORTING INFORMATION FOR. address:

Introducing New Functionalities in Liquid Stationary Phases in GC Columns for Confirming Organic Volatile Impurity Testing in Pharmaceutical Products.

TEMPERATURE DEPENDENCE OF KOVÁTS INDICES IN GAS CHROMATOGRAPHY. EXPLANATION OF EMPIRICAL CONSTANTS BY USE OF TRANSITION-STATE THEORY

INTERFACE PREDICTION: INVERSE GAS CHROMATOGRAPHY (IGC) AND ITS POTENTIAL APPLICATION TO FIBRE-MATRIX ADHESION PROBLEMS

Introduction (1) where ij denotes the interaction energy due to attractive force between i and j molecules and given by; (2)

Determination of Carbon Fibre-Polymer Interactions by Inverse Gas Chromatography

Chemistry Instrumental Analysis Lecture 28. Chem 4631

Watercare Air Quality Group March 2002 APPENDIX A. Monitoring Site Location Diagrams

Resolution Modeling of Length Tuning in Gas Chromatography

Chromatographic Methods of Analysis Section: 5 Gas Chromatography (GC) Prof. Tarek A. Fayed

Supporting Information For. Removal of Antimonite (Sb(III)) and Antimonate (Sb(V)) from Aqueous Solution

Trajan SGE GC Columns

The Adsorption Isotherms of the Bleaching of Sunflower-Seed Oil

Gas Chromatographic Analysis of Aromatic Hydrocarbons from C6 through C10*

EPA TO-17 Volatile Organic Compounds

PHYSICAL CHEMISTRY CHEM330

Magnitudes of Back Diffusion During Long-Term Diffusive Sampling of Volatile Organic Compounds Using Carbotrap and Chromosorb 106

Substance identification and naming convention for hydrocarbon solvents

Chemistry Gas Chromatography: Separation of Volatile Organics

İsmet KAYA Department of Chemistry, Faculty of Sciences and Arts, Department of Chemistry, Faculty of Sciences and Arts, Received

Column Dimensions. GC Columns and Consumables. Mark Sinnott Application Engineer. March 12, 2010

Continuous Improvement in Petroleum/Petrochemical Analysis HP s Family of Innovative PLOT Columns

CHAPTER 5. EQUILIBRIUM AND THERMODYNAMIC INVESTIGATION OF As(III) AND As(V) REMOVAL BY MAGNETITE NANOPARTICLES COATED SAND

Selection of a Capillary

GAS CHROMATOGRAPHY (GC)

Comparison of vapor adsorption characteristics of acetone and toluene based on polarity in activated carbon fixed-bed reactor

Gas Chromatography. Presented By Mr. Venkateswarlu Mpharm KTPC

Condensed Phase Ethanol Conversion to Higher Alcohols. Tyler L. Jordison, Carl T. Lira, and Dennis J. Miller

Optimizing GPC Separations

Introduction to Chromatographic Separations (Chapter 1) Many determinations involve separation followed by analysis chromatography electrophoresis

Solvents and solvent selection for chromatography. Prof. Colin F. Poole Department of Chemistry Wayne State University USA

Integration of normal phase liquid chromatography with supercritical fluid chromatography for analysis of fruiting bodies of Ganoderma lucidum

Selection of a Capillary GC Column

Texas Commission on Environmental Quality INTEROFFICE MEMORANDUM

AN INTEGRATED SYSTEM USING TEMPERATURE BASED SAMPLING FOR POLYMER CHARACTERIZATION

Phase Separation Degree of Freedom Analysis. Binary Vapor-Liquid Systems. Azeotropic Systems. - Gibbs phase rule F C P 2 -General analysis

Lab 3 Guide: Gas Chromatography (GC) (Sept 8-14)

3.5. Kinetic Approach for Isotherms

NAMING AND ISOMERISM

Synthesis of jet fuel range cycloalkanes with diacetone alcohol. from lignocellulose

Supplementary Material. Improving cycling performance of LiMn 2 O 4 battery by. adding an ester functionalized ionic liquid to electrolyte

Secrets of GC Column Dimensions

Nonlinear isotherm of benzene and its derivatives by frontal analysis

Mechanism and Kinetics of the Synthesis of 1,7-Dibromoheptane

Organic Chemistry. A brief introduction

Performance evaluation of the Agilent 1290 Infinity 2D-LC Solution for comprehensive two-dimensional liquid chromatography

CHAPTER 6 GAS CHROMATOGRAPHY

Chapter 5 Mass Uptake of Penetrants

Investigation of Thermodynamic Properties of Hyperbranched Poly(ester amide) by Inverse Gas Chromatography

Improve lives IT S ABOUT IMPROVING PEOPLE S LIVES IT S ABOUT INTENT

GC-MS Studies of the Plant Clematis Gouriana

Experimental and Simulation Study on the Reactive Distillation Process for the Production of Ethyl Acetate

MCGILL UNIVERSITY FACULTY OF SCIENCE MIDTERM EXAMINATION CHEM 120 MONDAY MARCH 16, :30PM 8:30PM VERSION NUMBER: 1

Lab Workshop 1: Nomenclature of alkane and cycloalkanes

DiatoSorb-W Diatomaceous Earth: Great Chromatography Millions of Years in the Making

Separation Methods Based on Distributions in Discrete Stages (02/04/15)

Efficient removal of typical dye and Cr(VI) reduction using N-doped

Ultra-Inert chemistry for Trace Level Analysis

Speakers. Moderator. John V Hinshaw GC Dept. Dean CHROMacademy. Tony Taylor Technical Director CHROMacademy. Dave Walsh Editor In Chief LCGC Magazine

Validation of New VPH GC/MS Method using Multi-Matrix Purge and Trap Sample Prep System

Chemical Product Design How is it done? Dr. Kevin G. Joback Molecular Knowledge Systems, Inc.

5.3 ORGANIC COMPOUNDS

UV-PCO DEVICE FOR INDOOR VOCS REMOVAL: INVESTIGATION ON MULTIPLE COMPOUNDS EFFECT

Generalized relation between surface tension and viscosity: a study on pure and mixed n-alkanes

D. S. Dasdan* and base,

Enthalpies of Solution and Excess Enthalpies of Oxo Compounds by Capillary Gas Chromatography

Acid-base Polymeric Engineered Foams for Adsorption of Micro-Oil Droplets from Industrial Effluents

Gel Permeation Chromatography - GPC

[ a ppl ic at ion no t e ]

Molecular Interaction Study of Binary Solutions of n-butyl Acetate and Isopropanol at Various Temperatures

Supporting Information

Measurement of Liquid Liquid Equilibria for Condensate þ Glycol and Condensate þ Glycol þ Water Systems

CHEMISTRY 104 Practice Problems #1 Organic Chem and Ch. 11 Kinetics Do the topics appropriate for your lecture

Chromatography Outline

Colin F. Poole Department of Chemistry Wayne State University USA

Gas Chromatography. A schematic diagram of a gas chromatograph

Combustible Gas Catalytic Bead (0-100 %LEL) Part No FM Performance Certified 1,4 FM Performance Certified 1

General Chemistry Unit 7A ( )

Analysis of volatile organic compounds emitted from aircraft carpets: comparison using headspace and dynamic chamber tests

Determination of Retention Factors of Aromatic Compounds by Gradient-Elution Reverse-Phase High Performance Liquid Chromatography

Transcription:

31 (FENXI HUAXUE) 10 2003 10 Chinese Journal of Analytical Chemistry 1164 1168 3 (, 710069), 2 22 2 (DOP) 2 L (Apiezon), 2 (ODPN),, (Freundlich),,, 1,,,, ( Gauss),, Gauss,, Giddings [1,2 ] Dose [3 ],,, [4,5 ],, ( Freundlich), (Freundlich), [6,7 ] (stoichiometric displacement theory for adsorption, SDT2A),, 2 2, Zhao Fengsheng [8 ], 2 2. 1 HP6890 ( ), 2. 2 ( ),,, t R t 0, k k 2, 2 3 3. 1 [4,9 ], C 11 2L, 2,,,, 2002211218 ;2003206230

10 : 1165 2, ; 1 1 Fig. 1 The adsorption isotherm a. (linear isotherm), DOP2 (hexane) :20 % dioctyl phthalate (DOP) (2 m 3 mm) ; (column temperature) : 70 ; (vaporizer) :170 ; (detector) : 150 ; (flow rate) : 50 mlpmin ; (sample size) : 3. 1 31. 0 mol b. (convex isotherm), Apiezon2 (nonane) :25 % Apiezon2L (2 m 3 mm) ; (column temperature) :170 ; (vaporizer) :240 ; (detector) :190 ; (flow rate) :59 mlpmin, (sample size) :3. 33 23. 3 mol c. (concave isotherm), ODPN2C 11 (undecane) : 20 %, 2oxydipropionitrile (ODPN) (3 m 3 mm) ; (column temperature) : 80 ; (vaporizer) :190 ; (detector) :140 ; (flow rate) :60 mlpmin, (sample size) : 1. 90 23. 7 mol, ( 1a), 118 ;, ( 1b), 182 138 ;, 2, ( 1c), 73 114 :,, k k d,, 3. 2, ;,,, Langmuir, C s p, C s p, Freundlich, [10 C s p ] : C s = kp n (1) k n, n 0 1 ( 0) 2 [6 ], n, C g P (2) : R, T C s = k ( RT) n C n g (2) (2) C g 2 K d C g K d = k ( RT) n C n- 1 g (3)

1 166 31 k k d, (3) : k = kv s ( RT) n C n- 1 g (4) V s C g m : C g = m (1 + k ) k 1, 1 + kk, (4) (5) k = ( kv s ) 1 n (5) RT m (1-1 n ) (6), (6), A, ln k = lna + (1 - lna = ln[ ( kv s ) 1 n 1 ) ln m (7) n RT ] (8) (7),, lna 1,1 - n n = 1, 0,, n 0 1 ( 0),,, (7), C s C g : C s = k 0 ( RT) 1 n C g 1 n (9) k 0, : ln k = lna 0 + (1 - n) ln m (10) (10), n 0 1 ( 0),,,, n = 1, (7) (10), 20 % P6201 25 % P102 30 % P6201 20 %, 2 P6201 20 % 2400P6201 Porapak2p,, 1 2 3 1 3 : (1), ln k 2ln m, 0. 98, (7) (10) ; (2), ln k 2ln m, ; ln k 2ln m, ; ln k 2ln m 0, ; (3) ln k - ln m n 0 1, Freundlich n ln k 2ln m, n, Freundlich 2, ; (4) 2 3, ( As2m), 0. 99,,,,, ; (5),, ;, ; 2400

10 : 1167, 2400, 5. 47 54. 6 mol, 54. 6 403 mol, 70, 80, ( ) 1 ln k ln m Table 1 The relation between lnk and ln m for symmetrical peak Changing region of Capacity factor sample size ln m Changing region of Capacity factor sample size ln m Hexane 1. 130 3. 430 1. 194 Toluene 1. 320 3. 334 1. 754 Heptane 1. 873 5. 274 1. 174 Butanone 2. 362 3. 460 2. 612 Benzene 1. 500 3. 515 0. 8403 (note) : (Dop) (hexane)2 (toluene) ; 2400 (polyethylene glycol2400) : (butanone) 2 ln k 2ln m Table 2 ln k 2ln m relation for tailed peak Region of sample Change of capacity Intercept size ln m factor (lna) Slope (1-1Pn) 2 Correlation Correlation coefficient coefficient of sample size2area r r Pentane 1. 193 3. 901 0. 9808 0. 6444 1. 157-0. 1299-0. 995 - Hexane - 0. 2965 1. 495 1. 032 0. 9008 1. 015-0. 07425-0. 996 0. 999 Heptane 0. 9552 3. 663 2. 374 1. 986 2. 526-0. 1438-0. 997 0. 998 Nonane 1. 202 3. 282 2. 578 2. 308 2. 754-0. 1330-0. 992 0. 994 Decane 1. 363 3. 378 1. 572 1. 386 1. 707-0. 0927-0. 993 0. 997 Unndecane 0. 6408 3. 349 2. 013 1. 780 2. 084-0. 0853-0. 990 0. 998 Dodecane 0. 7830 2. 575 3. 245 3. 062 3. 333-0. 1023-0. 995 1. 00 Tridecane 1. 176 3. 191 2. 717 2. 515 2. 845-0. 1027-0. 991 0. 998 Benzene 1. 500 4. 208 1. 281 0. 9932 1. 475-0. 1116-0. 988 0. 998 Toluene 1. 320 4. 028 1. 864 1. 548 2. 043-0. 1182-0. 993 0. 998 Ethyl benzene 1. 134 3. 842 2. 356 2. 022 2. 525-0. 1268-0. 993 0. 998 Pentanol 1. 255 3. 963 1. 456 1. 214 1. 595-0. 0934-0. 991 0. 998 Butanone 1. 667 3. 458 3. 069 2. 766 3. 347-0. 1659-0. 998 0. 998 Butanol 0. 7110 3. 419 3. 060 2. 686 3. 170-0. 1350-0. 990 0. 997 Acetic ether 2. 318 4. 621 2. 143 1. 684 2. 563-0. 1936-0. 991 0. 986 (note) : (apiezon) : (pentane)2 (butanone) ; Porapak2p : (butanol) ; (squalane) : (acetic ether) 3 ln k 2ln m Table 3 ln k 2ln m relation for skew front peak Region of sample Change of Intercept size ln m capacity factor (lna) Slope (1 - n) Correlation Correlation coefficient coefficient of area2sample r size r Octane 3. 382 5. 684 2. 002 2. 302 1. 537 0. 1300 0. 980 0. 999 Nonane 1. 020 4. 016 1. 956 2. 056 1. 915 0. 03290 0. 979 0. 999 Ethyl benzene 2. 050 3. 149 3. 481 3. 514 3. 419 0. 0297 0. 992 1. 000 Decane 2. 684 3. 378 1. 868 2. 049 1. 159 0. 2640 1. 000 - Undecane 1. 334 3. 166 2. 017 2. 408 1. 708 0. 2134 0. 993 - Dodecane 0. 7830 4. 472 2. 449 3. 453 2. 179 0. 282 0. 995 0. 998 Butyl alcohol 2. 503 4. 112 2. 932 2. 993 2. 807 0. 0445 0. 992 0. 992 Toluene 2. 824 3. 922 2. 923 2. 959 2. 827 0. 0331 0. 989 0. 991 Acetic ether 2. 318 6. 230 2. 378 2. 479 2. 320 0. 0238 0. 981 - (note) : (Dop) (octane)2 (ethyl benzene) ;, 2 (, 2oxydipropionitrile) : (decane)2 (butyl alcohol) ; 2400 (polyethylene glycol2400) : (toluene), (acetic ether) References 1 Giddings J C. Anal. Chem., 1963, 35 (13) : 1999 2002

1 168 31 2 Giddings J C. J. Chromatogr., 1961, 5 : 46 60 3 Dose E V, Guiochon G. Anal. Chem., 1990, 62 : 1723 1730 4 Huber J F K, Gerritse R G. J. Chromatogr., 1971, 58 (2) :137 158 5 Engelhardt H. Translation by Yang Wenlan( ), Ma Yanlin( ). High Performance Liquid Chromatography ( ). Beijing( ) :Mechanical Industry Press( ), 1982 :97 101 6 Geng Xindu( ). Guide to the Theory of Modern Separation Science ( ). Beijing ) : High Education Press( ), 2001 : 54 110 7 Geng Xindu( ), Regnier F E, Wang Yan( ). Chinese Science Bulletin ( ), 2001, 49 :880 889 8 Zhao Fengsheng, Shen Jianhua. Langmuir, 1995, 4 :1403 1407 9 Domingo G M, Lopez G F J, Lopez G R, Moreno C C. J. Chromatogr., 1985, 324 : 19 28 10 Fu Xiancai ( ), Shen Wenxia( ), Yao Tianyang( ). Physical Chemistry ( ). Fourth Edition( ), Beijing( ) : High Education Press( ), 1990 : 938 939 Relationship bet ween Retention and Sample Size in Gas Chromatography Li Rong, Li Jin, Chen Guoliang 3, Li Huaru, Geng Xindu ( Department of Chemical Engineering, Institute of Modern Separation Science, Northwest University, Xi an 710069) Abstract A new method used to measure the adsorption isotherm has been proposed in gas chromatography. It is based on the constituent concentration of gas phase and stationary phase at the equilibrium can be calculated by using capacity factor determined under injecting different sample size. The adsorption isotherms of n2hexane, n2 nonane and n2undecane on diocty1 phthalate (DOP), Apiezon2L and, 2oxydipropionitrile (ODPN) column were determined using the established method, respectively. The corresponding relation between the chromatographic peak shape and adsorption isotherm type was also discussed. The influence of sample size on the retention was investigated in gas chromatography. A mathematical expression describing the relationship of the retention and sample size was derived from Freundlich adsorption isotherm equation. The theory and experiment show that the logarithm of the capacity factor and sample size has good linear relation. Keywords Retention, capacity factor, adsorption isotherm, sample size (Received 18 November 2002 ; accepted 30 June 2003) ( ISSN 1000-8713, CODEN SEPUER, CN 21-1185PO6) 1984,, 96, 16, 15, 90 : L000015 8-43, DK21010, ( 782 ) : 457, :116023, P : (0411) 4379021,E2mail :sepu @dicp. ac. cn, :http : www. sepu. dicp. ac. cn