2SJ280(L), 2SJ280(S)

Similar documents
2SJ182(L), 2SJ182(S)

2SJ332(L), 2SJ332(S)

2SJ172. Silicon P-Channel MOS FET

2SJ174. Silicon P-Channel MOS FET

2SK1169, 2SK1170. Silicon N-Channel MOS FET. Application. Features. Outline. High speed power switching

2SK1254(L), 2SK1254(S)

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosⅦ) TK6A50D

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (U-MOSII) 2SK3236

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosvi) 2SK3567

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (DTMOS ) TK15J60U

TOSHIBA Field Effect Transistor Silicon P-Channel MOS Type (U MOSIII) 2SJ668

P-Channel Enhancement Mode Field Effect Transistor PARAMETERS/TEST CONDITIONS SYMBOL LIMITS UNITS

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosv) 2SK3538

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosvi) 2SK3667

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosvi) 2SK3767

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosⅣ) 2SK4013

500V N-Channel MOSFET

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosiv) 2SK3565

TOSHIBA Field Effect Transistor Silicon N-Channel MOS Type (π-mos VI) 2SK4108. JEDEC Repetitive avalanche energy (Note 3) E AR 15 mj

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (DTMOS) TK40J60T

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosⅦ) TK12A50D

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (U MOSⅢ) TK30A06J3

TPCF8402 F6B TPCF8402. Portable Equipment Applications Mortor Drive Applications DC-DC Converter Applications. Maximum Ratings (Ta = 25 C)

TSP10N60M / TSF10N60M

OptiMOS 2 Power-Transistor

TPCA8107-H 4± ± M A .0±.0± 0.15± ± ± ± ± ± 4.25±0.2 5±0. 3. Maximum Ratings (Ta 25 C)

OptiMOS 3 Power-MOSFET

OptiMOS TM Power-Transistor

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (L 2 π MOSV) 2SK2385

OptiMOS 3 Power-MOSFET

OptiMOS 2 Power-Transistor

OptiMOS TM Power-Transistor

OptiMOS 3 Power-Transistor

OptiMOS 3 Power-MOSFET

OptiMOS 3 Power-Transistor

GP1M003A080H/ GP1M003A080F GP1M003A080HH/ GP1M003A080FH

OptiMOS TM 3 Power-Transistor

OptiMOS 2 Power-Transistor

OptiMOS 2 Power-Transistor

OptiMOS 3 Power-Transistor

OptiMOS TM 3 Power-Transistor

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (U-MOSIII) TPC6004

OptiMOS TM Power-MOSFET

SIPMOS Power-Transistor

IRF5851. HEXFET Power MOSFET. Ultra Low On-Resistance Dual N and P Channel MOSFET Surface Mount Available in Tape & Reel Low Gate Charge.

400V N-Channel MOSFET GENERAL DESCRIPTION VDSS RDS(ON) ID. Features. Ordering Information 400V 0.55Ω 10.5A. This Power MOSFET is produced using

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π MOSV) 2SK2996

TOSHIBA Field Effect Transistor Silicon P Channel MOS Type (U-MOS III) TPCF8102

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π MOSIII) 2SK2610

OptiMOS 2 + OptiMOS -P 2 Small Signal Transistor

OptiMOS 3 Power-Transistor

OptiMOS 3 M-Series Power-MOSFET

OptiMOS (TM) 3 Power-Transistor

OptiMOS 3 M-Series Power-MOSFET

OptiMOS 3 Power-Transistor

OptiMOS -5 Power-Transistor

OptiMOS TM Power-MOSFET

OptiMOS 2 Small-Signal-Transistor

OptiMOS (TM) 3 Power-Transistor

OptiMOS TM Power-MOSFET

TOSHIBA Field Effect Transistor Silicon N-Channel MOS Type (Ultra-High-speed U-MOSIII) TPCA8011-H

TOSHIBA Field Effect Transistor Silicon P Channel MOS Type (U-MOSⅣ) TPC8114. DC (Note 1) I D 18 A Pulse (Note 1) I DP 72

OptiMOS 2 Power-Transistor

OptiMOS (TM) 3 Power-Transistor

OptiMOS P2 Small-Signal-Transistor

OptiMOS 3 M-Series Power-MOSFET

OptiMOS -P2 Power-Transistor

OptiMOS -5 Power-Transistor

OptiMOS Power-Transistor

OptiMOS TM Power-Transistor

SIPMOS Small-Signal-Transistor

OptiMOS TM Power-MOSFET

OptiMOS 2 Power-Transistor

OptiMOS TM P3 Power-Transistor

TOSHIBA Field Effect Transistor Silicon P Channel MOS Type (U-MOSⅣ) TPCA8103

N-channel TrenchMOS transistor


OptiMOS 3 Power-Transistor

OptiMOS -T2 Power-Transistor

OptiMOS Power-Transistor

IXTT440N04T4HV V DSS

FEATURES SYMBOL QUICK REFERENCE DATA

OptiMOS TM 3 Power-Transistor

SIPMOS Small-Signal-Transistor

OptiMOS -T2 Power-Transistor Product Summary

CoolMOS Power Transistor

PHD110NQ03LT. 1. Product profile. 2. Pinning information. N-channel TrenchMOS logic level FET. 1.1 Description. 1.2 Features. 1.

SIPMOS Small-Signal-Transistor

OptiMOS TM -T2 Power-Transistor

OptiMOS -T Power-Transistor

OptiMOS -P Small-Signal-Transistor

OptiMOS -T Power-Transistor Product Summary

OptiMOS 2 Power-Transistor

CoolMOS TM Power Transistor

OptiMOS -T2 Power-Transistor Product Summary

OptiMOS TM -T2 Power-Transistor

OptiMOS -5 Power-Transistor

OptiMOS -P2 Power-Transistor Product Summary

SIPMOS Power-Transistor

SSF8NP60U. Main Product Characteristics: 600V V DSS. 0.73Ω (typ.) Features and Benefits: Description: Absolute max Rating:

Transcription:

Silicon P-Channel MOS FET November 1996 Application High speed power switching Features Low on-resistance High speed switching Low drive current 4 V gate drive device can be driven from 5 V source Suitable for switching regulator, DC-DC converter Avalanche ratings Outline LDPAK 4 4 D 1 3 1 3 G S 1. Gate. Drain 3. Source 4. Drain

Absolute Maximum Ratings (Ta = 5 C) Item Symbol Ratings Unit Drain to source voltage V DSS 6 V Gate to source voltage V GSS ± V Drain current I D 3 A Drain peak current I D(pulse) * 1 1 A Body to drain diode reverse drain current I DR 3 A Avalanche current I AP * 3 3 A Avalanche energy E AR * 3 77 mj Channel dissipation Pch* 75 W Channel temperature Tch 15 C Storage temperature Tstg 55 to +15 C Notes 1. PW 1 µs, duty cycle 1%. Value at T C = 5 C 3. Value at Tch = 5 C, Rg 5 Ω

Electrical Characteristics (Ta = 5 C) Item Symbol Min Typ Max Unit Test conditions Drain to source breakdown V (BR)DSS 6 V I D = 1 ma, V GS = voltage Gate to source breakdown voltage V (BR)GSS ± V I G = ± µa, V DS = Gate to source leak current I GSS ±1 µa V GS = ±16 V, V DS = Zero gate voltage drain current I DSS 5 µa V DS = 5 V, V GS = Gate to source cutoff voltage V GS(off) 1..5 V I D = 1 ma, V DS = 1 V Static drain to source on state resistance R DS(on).33.43 Ω I D = 15 A, V GS = 1 V* 1.45.6 Ω I D = 15 A, V GS = 4 V* 1 Forward transfer admittance y fs 17 5 S I D = 15 A, V DS = 1 V* 1 Input capacitance Ciss 33 pf V DS = 1 V, V GS =, f = 1 MHz Output capacitance Coss 15 pf Reverse transfer capacitance Crss 48 pf Turn-on delay time t d(on) 3 ns I D = 15 A, V GS = 1 V, R L = Ω Rise time t r 17 ns Turn-off delay time t d(off) 5 ns Fall time t f 39 ns Body to drain diode forward voltage Body to drain diode reverse recovery time Note 1. Pulse test V DF 1.5 V I F = 3 A, V GS = t rr ns I F = 3 A, V GS =, di F /dt = 5 A/µs 3

75 Power vs. Temperature Derating Channel Dissipation Pch (W) 5 5 5 1 15 Case Temperature Tc ( C) Drain Current I D (A) 5 3 1 3 1 Maximum Safe Operation Area Operation in this area is limited by R DS(on) 1 µ s 1 µ s 1 ms PW = 1 ms DC Operation (Tc = 5 C) 3 Ta = 5 C 1.5.1.3 1 3 1 3 1 Drain to Source Voltage V DS (V) Drain Current I (A) D 5 4 3 1 Typical Output Characteristics 1 V 6 V 4 V 3.5 V 3 V.5 V V GS = V 4 6 8 1 Drain to Source Voltage V DS (V) Drain Current I (A) D 5 4 3 1 Typical Transfer Characteristics Tc = 5 C 5 C 75 C Pulse Test V GS = 1 V 1 3 4 5 Gate to Source Voltage V GS (V) 4

Drain to Source Saturation Voltage V DS (on) (V). 1.6 1..8.4 Drain-Source Saturation Voltage vs. Gate-Source Voltage Pulse Test I D = 3 A A 1 A 4 6 8 1 Gate to Source Voltage V GS (V) Static Drain-Source on State Resistance R DS(on) ( Ω ).5..1.5..1 Static Drain-Source on State Resistance vs. Drain Current V GS= 4 V 1 V.5 5 1 5 1 Drain Current I D (A).1 Static Drain-Source on State Resistance vs. Temperature Static Drain-Source on State Resistance R DS(on) ( Ω ).8.6.4. Pulse test V GS= 4 V 1 V I = 3 A D 1 A, A I D = 3 A 1 A, A 4 4 8 1 16 Case Temperature T C ( C) 5

1 Forward Transfer Admittance y fs (s) 5 1 5 Forward Transfer Admittance vs. Drain Current Pulse Test V DS= 1 V Tc = 5 C 5 C 75 C 1.5 1 5 1 5 Drain Current I D (A) 5 Body-Drain Diode Reverse Recovery Time Reverse Recovery Time t rr (ns) 1 5 1 di/dt = 5 A/ µ s, V GS = Ta = 5 C 5 1 5 1 5 1 Reverse Drain Current I DR (A) 1 Typical Capacitance vs. Drain-Source Voltage Ciss Capacitance C (pf) 1 1 V GS=, f = 1 MHz Coss Crss 1 1 3 4 5 Drain to Source Voltage V (V) DS 6

Drain to Source Voltage V DS (V) 4 6 8 Dynamic Input Characteristics V DD= 1 V 5 V 5 V VDS V DD= 1 V 5 V 5 V I D = 3 A V GS 1 4 8 1 16 Gate Charge Qg (nc) 4 8 1 16 Gate to Source Voltage V GS (V) 1 Switching Characteristics t d(off) Switching Time t (ns) 5 1 5 t f t r t d(on) V GS = 1 V, V DD 3 V PW = µ s, duty < = 1% 1.5 1 5 1 5 Drain Current I D (A) =: 5 Reverse Drain Current vs. Source to Drain Voltage Reverse Drain Current I DR (A) 4 3 1 Pulse Test V GS= 1 V 5 V, 5V.4.8 1. 1.6. Source to Drain Voltage V (V) SD Repetive Avaranche Energy E AR (mj) 1 8 6 4 Maxmum Avalanche Energy vs. Channel Temperature Derating I AP = 3 A V DD = 5 V duty <.1% Rg > = 5 Ω 5 5 75 1 15 15 Channel Temperature Tch ( C) 7

Avalanche Test Circuit and Waveform V DS Monitor Rg Vin 15 V 5Ω L IAP Monitor D.U.T V DD V DD E = AR I AP 1 L I AP I D V DSS V DSS VDD VDS V (BR)DSS Normalized Transient Thermal Impedance γ S (t) 3 1..3.1.3.1 1 µ D = 1.5..1.5..1 1 Shot Pulse Normalized Transient Thermal Impedance vs. Pulse Width T PW T C = 5 C θch c (t) = γ S (t) θch c θch c = 1.67 C/W, T C = 5 C 1 µ 1 m 1 m 1 m 1 1 Pulse Width PW (s) P DM D = PW T Switching Time Test Circuit Vin Monitor D.U.T Vout Monitor Vin 1 V 5 Ω R L V. DD =. 3 V Vin 1% Waveforms 9% 9% 9% Vout 1% t d (on) t r t d (off) 1% t f 8

When using this document, keep the following in mind: 1. This document may, wholly or partially, be subject to change without notice.. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi s permission. 3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user s unit according to this document. 4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Hitachi s semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein. 5. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd. 6. MEDICAL APPLICATIONS: Hitachi s products are not authorized for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Hitachi s sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi s products are requested to notify the relevant Hitachi sales offices when planning to use the products in MEDICAL APPLICATIONS. 9