Branching Brownian motion seen from the tip

Similar documents
A. Bovier () Branching Brownian motion: extremal process and ergodic theorems

Critical branching Brownian motion with absorption. by Jason Schweinsberg University of California at San Diego

Extremal Particles in Branching Brownian Motion - Part 1

Recent results on branching Brownian motion on the positive real axis. Pascal Maillard (Université Paris-Sud (soon Paris-Saclay))

The genealogy of branching Brownian motion with absorption. by Jason Schweinsberg University of California at San Diego

The extremal process of branching Brownian motion

Yaglom-type limit theorems for branching Brownian motion with absorption. by Jason Schweinsberg University of California San Diego

arxiv: v4 [math.pr] 24 Sep 2012

Slowdown in branching Brownian motion with inhomogeneous variance

Lecture 17 Brownian motion as a Markov process

Mouvement brownien branchant avec sélection

Variable Speed Branching Brownian Motion 1. Extremal Processes in the Weak Correlation Regime

Introduction to Random Diffusions

1. Stochastic Processes and filtrations

On a class of stochastic differential equations in a financial network model

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3

arxiv: v3 [math.pr] 21 Sep 2016

Introduction to self-similar growth-fragmentations

Hydrodynamics of the N-BBM process

Convergence to a single wave in the Fisher-KPP equation

Almost sure asymptotics for the random binary search tree

Branching Processes II: Convergence of critical branching to Feller s CSB

LAN property for ergodic jump-diffusion processes with discrete observations

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( )

I forgot to mention last time: in the Ito formula for two standard processes, putting

Crump Mode Jagers processes with neutral Poissonian mutations

Real roots of random polynomials and zero crossing properties of diffusion equation

Dynamics of the evolving Bolthausen-Sznitman coalescent. by Jason Schweinsberg University of California at San Diego.

Solution for Problem 7.1. We argue by contradiction. If the limit were not infinite, then since τ M (ω) is nondecreasing we would have

Probability Background

9.2 Branching random walk and branching Brownian motions

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

LogFeller et Ray Knight

Stability of Stochastic Differential Equations

Uniformly Uniformly-ergodic Markov chains and BSDEs

Exercises. T 2T. e ita φ(t)dt.

p 1 ( Y p dp) 1/p ( X p dp) 1 1 p

1 IEOR 6712: Notes on Brownian Motion I

Brownian Motion and Stochastic Calculus

Selected Exercises on Expectations and Some Probability Inequalities

Stochastic Process (ENPC) Monday, 22nd of January 2018 (2h30)

Theoretical Tutorial Session 2

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 7 9/25/2013

Partial differential equation for temperature u(x, t) in a heat conducting insulated rod along the x-axis is given by the Heat equation:

Strong approximation for additive functionals of geometrically ergodic Markov chains

AN EXTREME-VALUE ANALYSIS OF THE LIL FOR BROWNIAN MOTION 1. INTRODUCTION

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

Partial Differential Equations, Winter 2015

Stat 150 Practice Final Spring 2015

On Ergodic Impulse Control with Constraint

MA8109 Stochastic Processes in Systems Theory Autumn 2013

Hybrid Atlas Model. of financial equity market. Tomoyuki Ichiba 1 Ioannis Karatzas 2,3 Adrian Banner 3 Vassilios Papathanakos 3 Robert Fernholz 3

Supplemental Material for KERNEL-BASED INFERENCE IN TIME-VARYING COEFFICIENT COINTEGRATING REGRESSION. September 2017

The Central Limit Theorem: More of the Story

Lecture 21 Representations of Martingales

PDEs, Homework #3 Solutions. 1. Use Hölder s inequality to show that the solution of the heat equation

Stochastic Calculus and Black-Scholes Theory MTH772P Exercises Sheet 1

Hypothesis testing for Stochastic PDEs. Igor Cialenco

Lower Tail Probabilities and Normal Comparison Inequalities. In Memory of Wenbo V. Li s Contributions

MS&E 321 Spring Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 10

On the submartingale / supermartingale property of diffusions in natural scale

Continuous-state branching processes, extremal processes and super-individuals

(A n + B n + 1) A n + B n

Preliminary Exam: Probability 9:00am 2:00pm, Friday, January 6, 2012

A Change of Variable Formula with Local Time-Space for Bounded Variation Lévy Processes with Application to Solving the American Put Option Problem 1

Brownian Motion. Chapter Definition of Brownian motion

Research Article Existence and Uniqueness Theorem for Stochastic Differential Equations with Self-Exciting Switching

ERRATA: Probabilistic Techniques in Analysis

Universal examples. Chapter The Bernoulli process

x ct x + t , and the characteristics for the associated transport equation would be given by the solution of the ode dx dt = 1 4. ξ = x + t 4.

Erdős-Renyi random graphs basics

Extreme values of two-dimensional discrete Gaussian Free Field

The Chaotic Character of the Stochastic Heat Equation

Travelling-waves for the FKPP equation via probabilistic arguments

Solutions to the Exercises in Stochastic Analysis

Question 1. Question Solution to final homework!! Friday 5 May Please report any typos immediately for a timely response.

Strong Markov property of determinatal processes

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539

Kolmogorov Equations and Markov Processes

Exponential functionals of Lévy processes

Two viewpoints on measure valued processes

Chapter 1. Poisson processes. 1.1 Definitions

Large Deviations Principles for McKean-Vlasov SDEs, Skeletons, Supports and the law of iterated logarithm

1.1 Definition of BM and its finite-dimensional distributions

Weak solutions of mean-field stochastic differential equations

P (A G) dp G P (A G)

{σ x >t}p x. (σ x >t)=e at.

Other properties of M M 1

Exact Simulation of Diffusions and Jump Diffusions

A quantum heat equation 5th Spring School on Evolution Equations, TU Berlin

Mathematical Methods - Lecture 9

On continuous time contract theory

Reflected Brownian Motion

Model Specification Testing in Nonparametric and Semiparametric Time Series Econometrics. Jiti Gao

Scaling limits for random trees and graphs

E. Vitali Lecture 6. Brownian motion

On Stopping Times and Impulse Control with Constraint

Quenched invariance principle for random walks on Poisson-Delaunay triangulations

Wiener Measure and Brownian Motion

Weak convergence and large deviation theory

Transcription:

Branching Brownian motion seen from the tip J. Berestycki 1 1 Laboratoire de Probabilité et Modèles Aléatoires, UPMC, Paris 09/02/2011 Joint work with Elie Aidekon, Eric Brunet and Zhan Shi J Berestycki (Paris) ANR MANEGE 09/02/2011 1 / 35

Outline 1 BBM and FKPP J Berestycki (Paris) ANR MANEGE 09/02/2011 2 / 35

Outline 1 BBM and FKPP 2 BBM seen from the tip J Berestycki (Paris) ANR MANEGE 09/02/2011 2 / 35

Outline 1 BBM and FKPP 2 BBM seen from the tip J Berestycki (Paris) ANR MANEGE 09/02/2011 3 / 35

BBM The model = Particles X 1 (t),..., X N(t) (t) on R Start with one particle at 0. Movement = independent Brownian motions Branching = at rate 1 into two new particles (more general possible). J Berestycki (Paris) ANR MANEGE 09/02/2011 4 / 35

Rightmost particle Define M(t) = max i=1,...,n(t) X i (t). Theorem (Rightmost particle M(t)) c = 2. lim t M(t) t = c. c t M(t) a.s. Proof by martingale techniques J Berestycki (Paris) ANR MANEGE 09/02/2011 5 / 35

Rightmost particle Define M(t) = max i=1,...,n(t) X i (t). Define u(t, x) := P(M(t) < x). Theorem (Rightmost particle M(t)) c = 2. lim t M(t) t = c. c t M(t) a.s. Proof by martingale techniques J Berestycki (Paris) ANR MANEGE 09/02/2011 5 / 35

Rightmost particle Define M(t) = max i=1,...,n(t) X i (t). Theorem (Rightmost particle M(t)) c = 2. lim t M(t) t = c. c t M(t) a.s. Proof by martingale techniques Define u(t, x) := P(M(t) < x). The map u(t, x) = P(M(t) < x) solves t u = 1 2 2 x u + u(u 1) ( avec 1 u(x, 0) = 1 0 0 ) J Berestycki (Paris) ANR MANEGE 09/02/2011 5 / 35

Rightmost particle Define M(t) = max i=1,...,n(t) X i (t). Theorem (Rightmost particle M(t)) c = 2. lim t M(t) t = c. c t M(t) a.s. Proof by martingale techniques Define u(t, x) := P(M(t) < x). The map u(t, x) = P(M(t) < x) solves t u = 1 2 2 x u + u(u 1) ( avec 1 u(x, 0) = 1 0 0 ) Idea : Initial particle in 0. After dt - with proba (1 dt) no split but diffuse : u(t + dt, x) u(t, x ξ t ) - with proba dt branch u(t + dt, x) u(t, x) 2 J Berestycki (Paris) ANR MANEGE 09/02/2011 5 / 35

Bramson s result Define m t by u(t, m t ) = 1/2. i.e. m t is the median of M(t) (results still valid if we take the expectation). KPP 37 u(t, m t + x) w(x) unif. in x as t where m t = 2t + a(t) and a(t). (McKean shows that a(t) 2 3/2 log t) and w solution to 1 2 w + 2w + (w 2 w) = 0. Purely analytical method. J Berestycki (Paris) ANR MANEGE 09/02/2011 6 / 35

Bramson s result Define m t by u(t, m t ) = 1/2. i.e. m t is the median of M(t) (results still valid if we take the expectation). KPP 37 u(t, m t + x) w(x) unif. in x as t where m t = 2t + a(t) and a(t). (McKean shows that a(t) 2 3/2 log t) and w solution to 1 2 w + 2w + (w 2 w) = 0. Purely analytical method. Bramson 83 m t = 2t 3 2 3/2 log t + c + o t (1) J Berestycki (Paris) ANR MANEGE 09/02/2011 6 / 35

Bramson s result Define m t by u(t, m t ) = 1/2. i.e. m t is the median of M(t) (results still valid if we take the expectation). KPP 37 u(t, m t + x) w(x) unif. in x as t where m t = 2t + a(t) and a(t). (McKean shows that a(t) 2 3/2 log t) and w solution to 1 2 w + 2w + (w 2 w) = 0. Purely analytical method. Bramson 83 m t = 2t 3 log t + c + o 2 3/2 t (1) ( ) ( ) 1 1 If change initial condition from, to Then only the constant c changes 0 0 0 0 J Berestycki (Paris) ANR MANEGE 09/02/2011 6 / 35

Bramson s result Define m t by u(t, m t ) = 1/2. i.e. m t is the median of M(t) (results still valid if we take the expectation). KPP 37 u(t, m t + x) w(x) unif. in x as t where m t = 2t + a(t) and a(t). (McKean shows that a(t) 2 3/2 log t) and w solution to 1 2 w + 2w + (w 2 w) = 0. Purely analytical method. Bramson 83 m t = 2t 3 log t + c + o 2 3/2 t (1) ( ) ( ) 1 1 If change initial condition from, to Then only the constant c changes Hence C B R such that with P(W x) = w(x). M t ( 2t 3 2 2 log t + C B) dist W 0 J Berestycki (Paris) ANR MANEGE 09/02/2011 6 / 35 0 0 0

Lalley-Sellke KPP, Bramson P(M t m t < x) w(x) so M t m t converges in law to a variable with dist. w. J Berestycki (Paris) ANR MANEGE 09/02/2011 7 / 35

Lalley-Sellke KPP, Bramson P(M t m t < x) w(x) so M t m t converges in law to a variable with dist. w. Can t be ergodic i.e. 1 t 1 Ms<m t s+xds w(x) a.s.. 0 J Berestycki (Paris) ANR MANEGE 09/02/2011 7 / 35

Lalley-Sellke KPP, Bramson P(M t m t < x) w(x) so M t m t converges in law to a variable with dist. w. Can t be ergodic i.e. 1 t 1 Ms<m t s+xds w(x) a.s.. 0 Suppose it holds. Then t 1 t 0 1 M x s <m s+xds w(0) a.s.. J Berestycki (Paris) ANR MANEGE 09/02/2011 7 / 35

Lalley-Sellke KPP, Bramson P(M t m t < x) w(x) so M t m t converges in law to a variable with dist. w. Can t be ergodic i.e. 1 t 1 Ms<m t s+xds w(x) a.s.. 0 Suppose it holds. Then t 1 t 0 1 M x s <m s+xds w(0) a.s.. Start two independent BBM, one at x and one at 0. Positive probability that they meet before any branching successfull coupling so w(0) = w(x). Contradiction. J Berestycki (Paris) ANR MANEGE 09/02/2011 7 / 35

The derivative martingale The derivative martingale Z(t) = u N(t) ( 2t X u (t))e 2Xu(t) 2t (additive martingale W 2 (t) = u N(t) e 2X u(t) 2t 0) Z := lim Z(t) exists, is finite and positive with proba. 1. Not UI. J Berestycki (Paris) ANR MANEGE 09/02/2011 8 / 35

The derivative martingale The derivative martingale Z(t) = u N(t) ( 2t X u (t))e 2Xu(t) 2t (additive martingale W 2 (t) = u N(t) e 2X u(t) 2t 0) Z := lim Z(t) exists, is finite and positive with proba. 1. Not UI. Theorem C > 0 s.t. x R lim lim P (M(t + s) m(t + s) x F s) = exp{ CZe 2x }, a.s. s t J Berestycki (Paris) ANR MANEGE 09/02/2011 8 / 35

The derivative martingale The derivative martingale Z(t) = u N(t) ( 2t X u (t))e 2Xu(t) 2t (additive martingale W 2 (t) = u N(t) e 2X u(t) 2t 0) Z := lim Z(t) exists, is finite and positive with proba. 1. Not UI. Theorem C > 0 s.t. x R lim lim P (M(t + s) m(t + s) x F s) = exp{ CZe 2x }, a.s. s t Thus the TW has representation [ ] w(x) = E exp{ CZe 2x } J Berestycki (Paris) ANR MANEGE 09/02/2011 8 / 35

The derivative martingale The derivative martingale Z(t) = u N(t) ( 2t X u (t))e 2Xu(t) 2t (additive martingale W 2 (t) = u N(t) e 2X u(t) 2t 0) Z := lim Z(t) exists, is finite and positive with proba. 1. Not UI. Theorem C > 0 s.t. x R lim lim P (M(t + s) m(t + s) x F s) = exp{ CZe 2x }, a.s. s t Thus the TW has representation 1 w(x) Cxe 2x. [ ] w(x) = E exp{ CZe 2x } J Berestycki (Paris) ANR MANEGE 09/02/2011 8 / 35

Structure of W Suggests that, once we "know" Z, P (M(t) m(t) x) exp{ e 2x+log CZ }, a.s. so that P( 2(M(t) m(t)) log(cz) x) exp( e x ) and hence M(t) m(t) 2 1/2 log(cz) dist 2 1/2 G where G is a Gumbel variable. W = dist (G + log(cz))/ 2 J Berestycki (Paris) ANR MANEGE 09/02/2011 9 / 35

Structure of W Suggests that, once we "know" Z, P (M(t) m(t) x) exp{ e 2x+log CZ }, a.s. so that P( 2(M(t) m(t)) log(cz) x) exp( e x ) and hence M(t) m(t) 2 1/2 log(cz) dist 2 1/2 G where G is a Gumbel variable. W = dist (G + log(cz))/ 2 Purple line is m(t) J Berestycki (Paris) ANR MANEGE 09/02/2011 9 / 35

Structure of W Suggests that, once we "know" Z, P (M(t) m(t) x) exp{ e 2x+log CZ }, a.s. so that P( 2(M(t) m(t)) log(cz) x) exp( e x ) and hence M(t) m(t) 2 1/2 log(cz) dist 2 1/2 G where G is a Gumbel variable. W = dist (G + log(cz))/ 2 Purple line is m(t) Because of early fluctuation a random delay is created (2 1/2 log(cz)) J Berestycki (Paris) ANR MANEGE 09/02/2011 9 / 35

Structure of W Suggests that, once we "know" Z, P (M(t) m(t) x) exp{ e 2x+log CZ }, a.s. so that P( 2(M(t) m(t)) log(cz) x) exp( e x ) and hence M(t) m(t) 2 1/2 log(cz) dist 2 1/2 G where G is a Gumbel variable. W = dist (G + log(cz))/ 2 Purple line is m(t) Because of early fluctuation a random delay is created (2 1/2 log(cz)) Fluctuations around m(t) + 2 1/2 log(cz) are Gumbel. J Berestycki (Paris) ANR MANEGE 09/02/2011 9 / 35

Outline 1 BBM and FKPP 2 BBM seen from the tip J Berestycki (Paris) ANR MANEGE 09/02/2011 10 / 35

Conjecture Let X 1 (t) > X 2 (t) >... be the particles ordered by position at time t. J Berestycki (Paris) ANR MANEGE 09/02/2011 11 / 35

Conjecture Let X 1 (t) > X 2 (t) >... be the particles ordered by position at time t. Lalley and Sellke conjecture that the point process of particles converges to an equilibrium state. X i (t) m(t) + c log(cz(t))/ 2 J Berestycki (Paris) ANR MANEGE 09/02/2011 11 / 35

Conjecture Let X 1 (t) > X 2 (t) >... be the particles ordered by position at time t. Lalley and Sellke conjecture that the point process of particles X i (t) m(t) + c log(cz(t))/ 2 converges to an equilibrium state. First we show a simple argument due to Brunet Derrida to show that the PP X i (t) m(t) converges. Uses Bramson and McKean representation. J Berestycki (Paris) ANR MANEGE 09/02/2011 11 / 35

McKean Representation Recall : u(t, x) := P(M(t) < x) solves t u = 1 2 2 x u + u(u 1) with ( ) 1 1 u(x, 0) =. More generally, let g : R [0, 1] then Theorem (McKean, 1975) 0 If u : R R + [0, 1] solves the FKPP equation 0 t u = 1 2 2 x u + u(u 1) with initial condition u(0, x) = g(x), then u(t, x) = E[ u N(t) g(x u (t) + x)]. J Berestycki (Paris) ANR MANEGE 09/02/2011 12 / 35

McKean Representation Recall : u(t, x) := P(M(t) < x) solves t u = 1 2 2 x u + u(u 1) with ( ) 1 1 u(x, 0) =. More generally, let g : R [0, 1] then Theorem (McKean, 1975) 0 If u : R R + [0, 1] solves the FKPP equation 0 t u = 1 2 2 x u + u(u 1) with initial condition u(0, x) = g(x), then u(t, x) = E[ u N(t) In general t u = 1 2 2 x u + β(f (u) u). g(x u (t) + x)]. J Berestycki (Paris) ANR MANEGE 09/02/2011 12 / 35

Brunet Derrida argument (seen from m t ) 1 0 exp( k) H φ (x, t) = E[ φ(x X u (t))], H φ solves KPP with H φ (x, 0) = φ(x). If φ H φ (x, t) = P(M(t) < x) Bramson : H φ (m(t) + z, t) w(z + δ(φ)). If φ H φ (x, t) = E[e kn(x,t) ] with N(x, t) = #u : X u (t) > x. J Berestycki (Paris) ANR MANEGE 09/02/2011 13 / 35

Brunet Derrida argument (seen from m t ) 1 0 exp( k) H φ (x, t) = E[ φ(x X u (t))], H φ solves KPP with H φ (x, 0) = φ(x). If φ H φ (x, t) = P(M(t) < x) If φ H φ (x, t) = E[e kn(x,t) ] with N(x, t) = #u : X u (t) > x. Bramson : H φ (m(t) + z, t) w(z + δ(φ)). For any Borel set A R, the Laplace transform of #{u : X u (t) m(t) + A} converges. Theorem (Brunet Derrida 2010) The point process of the particles seen from m(t) converges in distribution as t. J Berestycki (Paris) ANR MANEGE 09/02/2011 13 / 35

Not too hard to show : the limit point process (X i, i = 1, 2,...) has the superposition property, i.e., α, β s.t. e α + e β = 1 : X α + X β = d X. Clearly the PPP (e x ) has this property. Who else? J Berestycki (Paris) ANR MANEGE 09/02/2011 14 / 35

Not too hard to show : the limit point process (X i, i = 1, 2,...) has the superposition property, i.e., α, β s.t. e α + e β = 1 : X α + X β = d X. Clearly the PPP (e x ) has this property. Who else? each atom is replaced by an iid copy of a point process Maillard (2011) show those are the only superposable PP. What is the decoration of BBM? J Berestycki (Paris) ANR MANEGE 09/02/2011 14 / 35

Not too hard to show : the limit point process (X i, i = 1, 2,...) has the superposition property, i.e., α, β s.t. e α + e β = 1 : X α + X β = d X. Clearly the PPP (e x ) has this property. Who else? each atom is replaced by an iid copy of a point process Maillard (2011) show those are the only superposable PP. What is the decoration of BBM? Independently, Bovier, Arguin and Kestler 2010 obtain results that are similar to part of what follows. Seem to use techniques. J Berestycki (Paris) ANR MANEGE 09/02/2011 14 / 35

Normalization We do the following change of coordinates : we suppose that the Brownian motions have diffusion σ 2 = 2 and drift ρ = 2. Instead of rightmost focus on leftmost. Tilts the cone in which the BBM lives. Left-most particle m(t) = 3 2 log t + C B. J Berestycki (Paris) ANR MANEGE 09/02/2011 15 / 35

Normalization We do the following change of coordinates : we suppose that the Brownian motions have diffusion σ 2 = 2 and drift ρ = 2. Instead of rightmost focus on leftmost. Tilts the cone in which the BBM lives. Left-most particle m(t) = 3 2 log t + C B. In this framework Z(t) := u N(t) X u (t)e Xu(t) is the derivative martingale. Recall its limit exists and is positive a.s. J Berestycki (Paris) ANR MANEGE 09/02/2011 15 / 35

BBM seen from the tip Y i (t) := X i (t) m t + log(cz), 1 i N(t). Theorem (Aidekon, B., Brunet, Shi 11) As t the point process (Y i (t), 1 i N(t)) converges in distribution to the point process L obtained as follows (i) Define P a Poisson point process on R +, with intensity measure 2 σ e 2x/σ dx where a is a constant. (ii) For each atom x of P, we attach a point process x + Q (x) where Q (x) are i.i.d. copies of a certain point process Q. (iii) L is then the superposition of all the point processes x + Q (x) : L := {x + y : x P {0}, y Q (x) } Bovier Arguin and Kistler (2010) obtain a very similar result (and much more). J Berestycki (Paris) ANR MANEGE 09/02/2011 16 / 35

Structure of Q τ X 1,t 2 τ X 1,t 1 t X 1,t N τ 1 t,x 1,t N τ 2 t,x 1,t J Berestycki (Paris) ANR MANEGE 09/02/2011 17 / 35

Structure of Q τ X 1,t 2 τ X 1,t 1 Y (s) := X 1,t(t s) X 1,t(t) is the red path. Q is the superposition of the BBM that branch on this path. t X 1,t N τ 1 t,x 1,t N τ 2 t,x 1,t J Berestycki (Paris) ANR MANEGE 09/02/2011 17 / 35

Structure of Q τ X 1,t 2 τ X 1,t 1 Y (s) := X 1,t(t s) X 1,t(t) is the red path. Q is the superposition of the BBM that branch on this path. t X 1,t N τ 1 t,x 1,t N τ 2 t,x 1,t N x (t) = BBM at time t started from one ptc at x. Nx (t) = BBM at time t conditioned to min Nx (t) > 0 started from one ptc at x. G t (x) := P{min N 0 (t) x}, so that G t (x + m t ) P(σW x) by Bramson. J Berestycki (Paris) ANR MANEGE 09/02/2011 17 / 35

Law of Y. U (b) v := B v, if v [0, T b ], b R v Tb, if v T b. J Berestycki (Paris) ANR MANEGE 09/02/2011 18 / 35

Law of Y. U (b) v := B v, if v [0, T b ], b R v Tb, if v T b. Take b random : P(b dx) = f (x)/c 1 where f (x) := E [e 2λ 0 ] G v (σu v (x) )dv (1) and c 1 = constant. J Berestycki (Paris) ANR MANEGE 09/02/2011 18 / 35

Law of Y. U (b) v := B v, if v [0, T b ], b R v Tb, if v T b. Take b random : P(b dx) = f (x)/c 1 where f (x) := E [e 2λ 0 ] G v (σu v (x) )dv (1) and c 1 = constant. Conditionally on b, Y has a density /U (b) given by 1 f (b) e 2λ 0 G v (σu v (b) )dv (2) J Berestycki (Paris) ANR MANEGE 09/02/2011 18 / 35

Structure of Q Theorem (Aidekon, B., Brunet, Shi 11) Let (Y (t), t 0) be as above. Start independent BBMs N Y (t) (t) conditioned to finish to the right of X 1,t along the path Y at rate 2λ(1 P(min N Y (t) (t) 0))dt. Then t π N Y (t) (t) is distributed as Q. t X 1,t τ X 1,t 1 τ X 1,t 2 N τ 1 t,x 1,t N τ 2 t,x 1,t D(ζ, t) := τ X N (i) 1,t i t ζ t,x 1,t particles born off X 1,t less than ζ unit of time ago, then we have the following joint convergence in distribution lim lim {(X 1,t(t s) X 1,t (t), s 0), D(ζ, t)} = {(Y (s), s 0), Q}. ζ t J Berestycki (Paris) ANR MANEGE 09/02/2011 19 / 35

Structure of Q { ( I ζ (t) = E exp i 1 )} nj=1 t τ i <ζ α j #[N τ i t,x 1,t (X 1 (t) + A j )] J Berestycki (Paris) ANR MANEGE 09/02/2011 20 / 35

Structure of Q { ( I ζ (t) = E exp i 1 )} nj=1 t τ i <ζ α j #[N τ i t,x 1,t (X 1 (t) + A j )] Theorem (Aidekon, B., Brunet, Shi 11) α j 0 (for 1 j n), E {e n j=1 α jq(a j ) } = lim lim I 0 ζ(t) = ζ t 0 E(e 2λ 0 E(e 2λ 0 G v (σu(b) v )dv )db G v (σu v (b) )dv )db, where G v (x) := P{min N (v) x}, Gv (x) := 1 E [e n j=1 α j#[n (v) (x+a j )] 1{min N (v) x} ]. J Berestycki (Paris) ANR MANEGE 09/02/2011 20 / 35

Define { I(t) := E F (X 1,t (s), s [0, t]) ( exp i f (t τ X 1,t i ) n j=1 )} α j #[N τ i t,x 1,t (X 1 (t) + A j )], τ X 1,t 2 τ X 1,t 1 t X 1,t N τ 1 t,x 1,t N τ 2 t,x 1,t J Berestycki (Paris) ANR MANEGE 09/02/2011 21 / 35

Define { I(t) := E F (X 1,t (s), s [0, t]) ( exp i f (t τ X 1,t i ) n j=1 )} α j #[N τ i t,x 1,t (X 1 (t) + A j )], τ X 1,t 2 r 0, x R define τ X 1,t 1 G r (x) := P{min N (r) x}, n ] G (f ) r (x) := E [e f (r) α j #[N (r) (x+a j )] j=1 1{min N (r) x}. Hence, when f 0 we have G (f ) r (x) = 1 G r (x)). t X 1,t N τ 1 t,x 1,t N τ 2 t,x 1,t J Berestycki (Paris) ANR MANEGE 09/02/2011 21 / 35

Define { I(t) := E F (X 1,t (s), s [0, t]) ( exp i f (t τ X 1,t i ) n j=1 )} α j #[N τ i t,x 1,t (X 1 (t) + A j )], τ X 1,t 2 r 0, x R define τ X 1,t 1 G r (x) := P{min N (r) x}, n ] G (f ) r (x) := E [e f (r) α j #[N (r) (x+a j )] j=1 1{min N (r) x}. Hence, when f 0 we have G (f ) r (x) = 1 G r (x)). t X 1,t N τ 1 t,x 1,t N τ 2 t,x 1,t Theorem (Aidekon, B., Brunet, Shi 11) We have I(t) = E [e σbt F (σb s, s [0, t]) e 2λ t where B is BM. 0 [1 G(f t s(σb ) t σb s)]ṣ ], J Berestycki (Paris) ANR MANEGE 09/02/2011 21 / 35

Theorem (Aidekon, B., Brunet, Shi 11) In particular, the path (s X 1,t (s), 0 s t) is a standard Brownian motion in a potential : [ ] E F (X 1,t (s), s [0, t]) = E [e σbt F (σb s, s [0, t]) e 2λ t ] G 0 t s(σb t σb s)ds. (3) J Berestycki (Paris) ANR MANEGE 09/02/2011 22 / 35

path of the leftmost particle Theorem (Aidekon, B., Brunet, Shi 11) ɛ > 0 x > 0 s.t. P(A t (x)) > 1 ɛ for all t large enough. J Berestycki (Paris) ANR MANEGE 09/02/2011 23 / 35

path of the leftmost particle Theorem (Aidekon, B., Brunet, Shi 11) ɛ > 0 x > 0 s.t. P(A t (x)) > 1 ɛ for all t large enough. Again see also Arguin Bovier Kistler. J Berestycki (Paris) ANR MANEGE 09/02/2011 23 / 35

Theorem (Aidekon, B., Brunet, Shi 11) As t the point process (Y i (t), 1 i N(t)) converges in distribution to the point process L obtained as follows (i) Define P a Poisson point process on R +, with intensity measure 2 σ e 2x/σ dx where a is a constant. (ii) For each atom x of P {0}, we attach a point process x + Q (x) where Q (x) are i.i.d. copies of a certain point process Q. (iii) L is then the superposition of all the point processes x + Q (x) : L := {x + y : x P {0}, y Q (x) } With extreme value theory. J Berestycki (Paris) ANR MANEGE 09/02/2011 24 / 35

Idea : Fix K > 0 large and stop particles when they hit k for the first time. (no escape). H k = # particles stoped at k k Z = lim k 2 1/2 ke k H k, (4) exists a.s., is in (0, ). ξ k,u u J Berestycki (Paris) ANR MANEGE 09/02/2011 25 / 35

Idea : Fix K > 0 large and stop particles when they hit k for the first time. (no escape). H k = # particles stoped at k k Z = lim k 2 1/2 ke k H k, (4) ξ k,u u exists a.s., is in (0, ). Start iid BBM so that u H k, X u 1 (t) = d k + X 1 (t ξ k,u ), where ξ k,u = time when u reaches k. By Bramson k 1, u H k, X u 1 (t) m t law k + Wu, t. (see also Bovier Arguin and Kistler (2010) : extremal particles in BBM either branch at the very beginning or at the end) J Berestycki (Paris) ANR MANEGE 09/02/2011 25 / 35

Define Pk, := δ k+w (u)+log Z. u H k Recall that P = PPP with intensity ae x dx. Proposition Pk, P In the sense of convergence in distribution. J Berestycki (Paris) ANR MANEGE 09/02/2011 26 / 35

Take (X i, i N) a sequence of i.i.d. r.v. such that P(X i x) Cxe x, as x. Call M n = max i=1,...,n X i the record. Define b n = log n + log log n. Then P(M n b n y) = (P(X i y + b n )) n = (1 (1 + o(1))c(y + b n )e (y+bn) ) n ( ) 1 exp nc(y + b n ) n log n e y exp( Ce y ) J Berestycki (Paris) ANR MANEGE 09/02/2011 27 / 35

Take (X i, i N) a sequence of i.i.d. r.v. such that P(X i x) Cxe x, as x. Call M n = max i=1,...,n X i the record. Define b n = log n + log log n. Then P(M n b n y) = (P(X i y + b n )) n = (1 (1 + o(1))c(y + b n )e (y+bn) ) n ( ) 1 exp nc(y + b n ) n log n e y exp( Ce y ) Therefore P(M n (b n + log C) y) exp( e y ). By classical results the point process n ζ n := δ Xi b n log C i=1 converges in distribution to a Poisson point process on R with intensity e x dx. J Berestycki (Paris) ANR MANEGE 09/02/2011 27 / 35

Recall that P(W x) Cxe x so apply to u H k δ W (u)+(log Hk +log log H k )+log C which converges in dist. to a PPP on R with intensity e x dx. J Berestycki (Paris) ANR MANEGE 09/02/2011 28 / 35

Recall that P(W x) Cxe x so apply to u H k δ W (u)+(log Hk +log log H k )+log C which converges in dist. to a PPP on R with intensity e x dx. Use k2 1/2 e k H k Z to obtain H k σk 1 e k Z and therefore and hence log H k + log log H k k + log Z + c P k, = u H k δ k+w (u)+log Z also converges (as k ) towards a PPP on R with intensity 2 σ e 2x/σ dx. J Berestycki (Paris) ANR MANEGE 09/02/2011 28 / 35

many-to-one W t := u N (t) e X(u), t 0, is the additive martingale. Because critical not UI and 0. Q F t = W t P F t. Under Q spine = BM drift (0), branch at rate 2 into two particles. Q{Ξ t = u F t } = e X(u) W t. For each u N (t), G u = a r.v. in F t. E P [ u N (t) G u ] = E Q 1 W t u N (t) [ ] = E Q e X(Ξt) G Ξ. G u Suppose that we want to check if a path X u (s) with some property A P( u = t : (X u (s), s [0, t]) A) = P(e σbt ; (σb s, s [0, t]) A). J Berestycki (Paris) ANR MANEGE 09/02/2011 29 / 35

path of the leftmost particle Theorem (Aidekon, B., Brunet, Shi 11) ɛ > 0 x > 0 s.t. P(A t (x)) > 1 ɛ for all t large enough. J Berestycki (Paris) ANR MANEGE 09/02/2011 30 / 35

A t (x) := E 1 (x) E 2 (x) E 3 (x) E 4 (x) where the events E i are defined by { X1,t E 1 (x) := 3 } 2 log t x, { E 2 (x) := E 3 (x) := E 4 (x) := min X 1,t(s) x, min X 1,t(s) 3 [0,t] [t/2,t] 2 log t x { s [x, t/2], X 1,t (s) s 1/3} { } s [t/2, t x], X 1,t (s) X 1,t [(t s) 1/3, (t s) 2/3 ]. } J Berestycki (Paris) ANR MANEGE 09/02/2011 31 / 35

the event E 3 Suppose we have E 1(z) and E 2(z) for z large enough. By the many-to-one lemma, we get P(E 3(x) c, E 1(z), E 2(z)) { e z t 3/2 P s [x, t/2] : B s s 1/3, min B s z, [0,t/2] min B s 3 t/2,t 2 log t z, Bt 3 }. 2 log t + z Applying the Markov property at time t/2, it yields that { P s [x, t/2] : B s s 1/3, min B s z, min B s 3 [0,t/2] t/2,t 2 log t z, Bt 3 } 2 log t + z = E [ 1 { s [x,t/2]:bs s 1/3 } 1 {min [0,t/2] B s z} { P Bt/2 min B s 3 2 log t z, B t/2 3 } ] 2 log t + z s [0,t/2] c2zt 3/2 E [1 { s [x,t/2]:bs s 1/3} 1 {min[0,t/2] Bs z}(b t/2 3 ] 2 log t + z) c2zt 3/2 E [ 1 { s [x,t/2]:bs s 1/3 } 1 {min [0,t/2] B s z}(b t/2 + z) ] where { the second inequality comes from } bound on P min s [0,t] B s x, B t x + y. We recognize the h-transform of the Bessel. J Berestycki (Paris) ANR MANEGE 09/02/2011 32 / 35

We end up with P(E 3 (x) c, E 1 (z), E 2 (z)) e z c2zp z ( s [x, t/2] : R s s 1/3 ) e z c2zp z ( s x : R s s 1/3 ) which is less than ε for x large enough. J Berestycki (Paris) ANR MANEGE 09/02/2011 33 / 35

proof Step 1 : The process V x (t) := u N(t) w( 2t X i (t) + x) is a F t -martingale J Berestycki (Paris) ANR MANEGE 09/02/2011 34 / 35

proof Step 1 : The process V x (t) := u N(t) w( 2t X i (t) + x) is a F t -martingale Step 2 : u N(t) e 2X u(t) 2t is a positive martingale, converges to a finite value, so min u ( 2t X u (t)) = + a.s. J Berestycki (Paris) ANR MANEGE 09/02/2011 34 / 35

proof Step 1 : The process V x (t) := u N(t) w( 2t X i (t) + x) is a F t -martingale Step 2 : u N(t) e 2X u(t) 2t is a positive martingale, converges to a finite value, so min u ( 2t Xu x (t)) = + a.s. Step 3 : 1 w(y) = Cye 2y. log V x (t) = u N(t) u N(t) log w( 2t X i (t) + x) C( 2t X i (t) + x)e 2t+ 2X i (t) 2x CZ(t)e 2x CY (t)xe 2x with Y (t) = u N(t) e 2X i (t) 2t. Clearly lim Y /Z = 0. lim Y (t) = Y 0 exists a.s. so Z(t) a.s. on the event Y > 0, this V x = 0. But since E(V x ) = w(x) 1 when x, P(Y > 0) = 0. J Berestycki (Paris) ANR MANEGE 09/02/2011 34 / 35

proof 2 Step 4 : Thus lim Z(t) = e 2x C 1 log V x. We conclude that lim Z(t) exists and > 0 a.s. [ { }] w(x) = E[V x ( )] = E exp CZe 2x. J Berestycki (Paris) ANR MANEGE 09/02/2011 35 / 35

proof 2 Step 4 : Thus lim Z(t) = e 2x C 1 log V x. We conclude that lim Z(t) exists and > 0 a.s. [ { }] w(x) = E[V x ( )] = E exp CZe 2x. Step 5 : P(M(t +s) m(t +s)+x F s ) = u N(t) u(t, x +m(t +s) X u(s)). J Berestycki (Paris) ANR MANEGE 09/02/2011 35 / 35

proof 2 Step 4 : Thus lim Z(t) = e 2x C 1 log V x. We conclude that lim Z(t) exists and > 0 a.s. [ { }] w(x) = E[V x ( )] = E exp CZe 2x. Step 5 : P(M(t +s) m(t +s)+x F s ) = u N(t) u(t, x +m(t +s) X u(s)).recall that u(t, x + m(t)) = P(M(t) m(t) + x) w(x) and that lim t (m(t + s) m(t) 2s) = 0 J Berestycki (Paris) ANR MANEGE 09/02/2011 35 / 35

proof 2 Step 4 : Thus lim Z(t) = e 2x C 1 log V x. We conclude that lim Z(t) exists and > 0 a.s. [ { }] w(x) = E[V x ( )] = E exp CZe 2x. Step 5 : P(M(t +s) m(t +s)+x F s ) = u N(t) u(t, x +m(t +s) X u(s)).recall that u(t, x + m(t)) = P(M(t) m(t) + x) w(x) and that lim t (m(t + s) m(t) 2s) = 0 so that lim t P(M(t + s) m(t + s) + x F s ) = u N(t) = u N(t) := V x (s) w(x + m(t + s) X u (s) m(t) w(x + 2s X u (s)) J Berestycki (Paris) ANR MANEGE 09/02/2011 35 / 35