Quasi-Phase-Matched Gallium Arsenide for Mid Infrared Frequency Conversion

Similar documents
Periodic Poling of Stoichiometric Lithium Tantalate for High-Average Power Frequency Conversion

THz QCL sources based on intracavity difference-frequency mixing

Oscillateur paramétrique optique en

Measurement of thermal lensing in GaAs induced by 100-W Tm:fier laser

Potassium Titanyl Phosphate(KTiOPO 4, KTP)

Quadratic nonlinear interaction

Lukas Gallmann. ETH Zurich, Physics Department, Switzerland Chapter 4b: χ (2) -nonlinearities with ultrashort pulses.

THz Electron Gun Development. Emilio Nanni 3/30/2016

Idler-efficiency-enhanced long-wave infrared beam generation using aperiodic orientation-patterned GaAs gratings

3.5x10 8 s/cm (c axis, 22 C, 1KHz) α x =11x10-6 / C, α y =9x10-6 / C, α z =0.6x10-6 / C

Characterizing Optical Loss in Orientation Patterned III-V Materials Using Laser Calorimetry

Laser Spectroscopy of HeH + 施宙聰 2011 AMO TALK 2011/9/26

Fabrication and characterization of Teflonbonded periodic GaAs structures for THz generation

Singly resonant optical parametric oscillator for mid infrared

Simultaneous optical parametric oscillation and intracavity second-harmonic generation based on a hexagonally poled lithium tantalate

AIR FORCE INSTITUTE OF TECHNOLOGY

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels.

Optical Materials 34 (2012) Contents lists available at ScienceDirect. Optical Materials. journal homepage:

Crystals NLO Crystals LBO

Emission Spectra of the typical DH laser

Performance Limits of Delay Lines Based on "Slow" Light. Robert W. Boyd

Temperature Tuning Characteristics of Periodically Poled Lithium Niobate for Second Harmonic Generation at 490 nm

Optical Parametric Generation

Fiber-Optics Group Highlights of Micronova Department of Electrical and Communications Engineering Helsinki University of Technology

Signal regeneration - optical amplifiers

Lasers and Optics 05 MAR Howard Schlossberg Program Officer AFOSR/RTB Air Force Research Laboratory. Integrity Service Excellence

Nonlinear ultrafast fiber optic devices based on Carbon Nanotubes

Self-Phase Modulation in Optical Fiber Communications: Good or Bad?

Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators

Nonlinear optics with quantum-engineered intersubband metamaterials

Broadband Nonlinear Frequency Conversion

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

Improved dispersion relations for GaAs and applications to nonlinear optics

New Concept of DPSSL

12. Nonlinear optics I

Survey on Laser Spectroscopic Techniques for Condensed Matter

Implementation of ALOHA up-conversion interferometer at 3.39µm (L band) 1/20

Semiconductor Disk Laser on Microchannel Cooler

BaGa 4 S 7 : wide-bandgap phase-matchable nonlinear crystal for the mid-infrared

LASERS. Dr D. Arun Kumar Assistant Professor Department of Physical Sciences Bannari Amman Institute of Technology Sathyamangalam

Dmitriy Churin. Designing high power single frequency fiber lasers

SECOND HARMONIC GENERATION IN PERIODICALLY POLED NONLINEAR CRYSTALS WITH 1064 nm GAUSSIAN LASER PULSES

Generation of ultrafast mid-infrared laser by DFG between two actively synchronized picosecond lasers in a MgO:PPLN crystal

ORIENTATION-PATTERNED GALLIUM ARSENIDE FOR QUASI-PHASEMATCHED INFRARED NONLINEAR OPTICS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF APPLIED PHYSICS

Rapid hyperspectral, vibrationally resonant sum-frequency generation microscopy

LASER & PHOTONICS REVIEWS

Nonlinear Effects in Optical Fiber. Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET

Multi-cycle THz pulse generation in poled lithium niobate crystals

THz experiments at the UCSB FELs and the THz Science and Technology Network.

Efficient Generation of Second Harmonic Wave with Periodically. Poled MgO:LiNbO 3

THz QCL sources for operation above cryogenic temperatures Mikhail Belkin

Broadly tunable terahertz differencefrequency generation in quantum cascade lasers on silicon

Fiber Lasers. Chapter Basic Concepts

Multiple-color cw visible lasers by frequency sum-mixing in a cascading Raman fiber laser

Electrically Driven Polariton Devices

Alexander Gaeta Department of Applied Physics and Applied Mathematics Michal Lipson Department of Electrical Engineering

High performance THz quantum cascade lasers

Quantum Dot Lasers. Jose Mayen ECE 355

Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating

Frequency Doubling Ole Bjarlin Jensen

Far IR (FIR) Gas Lasers microns wavelengths, THz frequency Called Terahertz lasers or FIR lasers At this wavelength behaves more like

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

ESH Benign Processes for he Integration of Quantum Dots (QDs)

SUPPLEMENTARY INFORMATION

3-1-2 GaSb Quantum Cascade Laser

Highly Nonlinear Fibers and Their Applications

Ultra-Slow Light Propagation in Room Temperature Solids. Robert W. Boyd

laser with Q-switching for generation of terahertz radiation Multiline CO 2 Journal of Physics: Conference Series PAPER OPEN ACCESS

AFRL-RX-WP-JA

Design and modeling of semiconductor terahertz sources based on nonlinear difference-frequency mixing. Alireza Marandi. Master of Applied Science

Wavelength Stabilized High-Power Quantum Dot Lasers

Nonlinear Fiber Optics and its Applications in Optical Signal Processing

ECE 695 Numerical Simulations Lecture 35: Solar Hybrid Energy Conversion Systems. Prof. Peter Bermel April 12, 2017

Tunable, high-energy, mid-infrared, picosecond optical parametric generator based on CdSiP 2

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission.

Frequency combs for ultrasensitive molecular detection

Evaluation of Second Order Nonlinearity in Periodically Poled

B 2 P 2, which implies that g B should be

Continuous-wave mid-infrared laser sources based on difference frequency generation

Recent progress on single-mode quantum cascade lasers

Lasers and Electro-optics

Simultaneous stimulated Raman scattering and second harmonic generation in periodically poled lithium niobate

Optical Spectroscopy of Advanced Materials

Engineering Medical Optics BME136/251 Winter 2017

γ c = rl = lt R ~ e (g l)t/t R Intensität 0 e γ c t Zeit, ns

Noise Correlations in Dual Frequency VECSEL

Supplementary Information for Mid-Infrared Optical Frequency Combs at 2.5 µm based on Crystalline Microresonators

Harmonic and supercontinuum generation in quadratic and cubic nonlinear optical media

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures

Probing and Driving Molecular Dynamics with Femtosecond Pulses

Broadband Quantum-Dot/Dash Lasers

Supporting Online Material for

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p.

System optimization of a long-range Brillouin-loss-based distributed fiber sensor

DEVELOPMENT OF HIGH-POWER PICOSECOND FIBER-BASED ULTRAVIOLET SOURCE

Continuous room-temperature operation of optically pumped InGaAs/InGaAsP microdisk lasers

Periodically Poled Lithium Niobate Waveguides for Quantum Frequency Conversion

Investigation of Novel Applications of Nonlinear Optics: From Parametric Oscillation to Image Restoration

Singly-resonant optical parametric oscillator based on KTA crystal

AD-A REPORT DOCUMENT Pi AD-A )

Transcription:

Quasi-Phase-Matched Gallium Arsenide for Mid Infrared Frequency Conversion E. Lallier, A. Grisard Research & Technology Thales Research & Technology, France B. Gerard Alcatel-Thales 3-5 Lab, France

2 Mid-IR sources requirements and OPOs Military Environment Medical Industrial Tunability, multi-spectral t l Mid-IR laser sources High energy /peak power CW to short pulses Narrow or broad linewidth Optical Parametric Oscillator (OPO) Pump Multi-wavelength capability NL Cristal χ (2) Wide tunability Suitable MIR nonlinear crystal?

3 MWIR quasi-phase-matched crystal Desirable properties for the NL crystal: High nonlinear coefficient Low absorption loss High laser damage threshold Low thermal lensing Non-critical phase matching Transmission (µm) Nonlinear Coefficient (pm/v) PPLN ZGP GaAs 0.35-5 1-12 1-16 27 75 96 QPM vs BPM: High nonlinearities Non-critical interactions Engineering flexibility Thermal Conductivity (W/m.K) α (cm -1 ) (> 2 µm) 5 35 52 -- 0,025 0,02 PPLN-like crystal for the mid-ir?

Quasi-Phasematching (QPM) in GaAs Periods under 100 µm for near-infrared pump lasers 16000 15000 14000 13000 12000 11000 10000 OP-GaAs 60 µm OP-GaAs 50 µm d eff -d eff d eff -d eff d eff Λ = 2π / Δk wavelength (nm) 9000 8000 7000 6000 5000 OP-GaAs 40 µm OP-GaAs 30 µm Output The informatio 4 4000 3000 PPLN 30 µm 2000 1500 1600 1700 1800 1900 2000 Pump wavelength (nm)

5 Quasi-Phasematching (QPM) in GaAs Following Armstrong et al. (1962) π + χ (2) - χ (2) + χ (2) (19 GaAs plates) [110] [-110] [110] ( p ) π π Boyd et al. (1966) Thompson et al. (1976) 0,5 mm (95 GaAs plates) - χ (2) - χ (2) - χ (2) + χ (2) + χ (2) + χ (2) + χ (2) 8 mm kg 9 mm 7 mm GaAs substrate Gordon et al. (1993) Thales/ Stanford (1999)

Thales prior written approval. THALES 2008. Template trtp 6 Fabrication of Thick Orientation-Patterned GaAs 1) [001] + [001] 2) [001] 0.1 µm [001] 2 GaAs wafer 2 GaAs wafer + etch-stop layer + 0.1 µm GaAs layer regrowth Crystallographic inversion by wafer bonding process 5) - χ (2) 4) 3) - χ (2) [00-1] [001] Lc [00-1] - χ (2) + χ (2) - χ (2) - χ (2) + χ (2) - χ (2) >500 µm - χ (2) - χ (2) - χ (2) + χ (2) + χ (2) 0,1 µm HVPE regrowth Gratings defined by photolithographic process Mechanical & chemical etching

7 Growth techniques on QPM GaAs samples 100 µm 100 µm DB GaAs DB GaAs CSVT growth on 212 µm DB-GaAs sample HVPE growth on 212 µm DB-GaAs sample 500 µm 500 µm OP-GaAs template OP-GaAs template HVPE growth on 60 µm 2 OP-GaAs template (Thales) HVPE growth on 60 µm OP-GaAs sample (Stanford/Thales)

Hydride Vapour Phase Epitaxy (HVPE) Physics of GaAs growth : GaCl g + ¼ As 4g + ½ H 2g GaAs + HCl g Oven HCl + H 2 H 2 + HCl add AsH 3 Quartz HCl GaCl HCl Gallium source As 2 / As 4 H 2 GaAs substrate Growth Characteristics : Perfect growth selectivity (preserve initial orientations) GaAs growth with low impurity concentration (residual 10 14 cm 3 ) High frequency desorption of As/GaCl precursors on surface Growth rate up to 35 µm/h 8

9 Influences of HVPE growth parameters Examples of HVPE growth anisotropy of GaAs crystal: III/V= 9, T=760 C T= 780 C, III/V = 3 GaAs band // [-110] III/V = 3 T= 760 C GaAs band // [110], III/V = 3,T= 760 C Due to χ (2) /-χ (2) orientations on OP-GaAs template: OP-GaAs template Apparition of a morphology conflict during HVPE regrowth

10 HVPE regrowth on OP-GaAs template (1) Gratings period ~30 µm HVPE film 380 µm 100 µm L C OP-GaAs 30 µm Gratings period ~ 60 µm HVPE film 380 µm 200 µm L C OP-GaAs 60 µm Gratings period ~ 212 µm HVPE film 380 µm L C OP-GaAs L C 212 µm

11 HVPE regrowth on the OP-GaAs (2) HVPE regrowth on an OP-GaAs template with intentional Si doping : Gratings period: 60 µm zoom OP-GaAs GA 30 µm [001] [00-1] [001] [00-1] [001] [00-1] [001] [00-1] [001] V(113) V(-112) Intentional GaAs doping 25 35 OP-GaAs 30 µm L C No GaAs doping The informatio Growth parameters verify the condition: v(113) * sin 55 = v(-112) * sin 65

12 Full wafer growth 2 multigrating 500 µm thick OP-GaAs 500 µm Growth characteristics: Growth rates: v(113)= 33 µm/h v(-112)= 30 µm/h 4 growth interruptions P=63.8 µm 500 µm 0 16,6 mm 500 µm 33,3 mm Cross section of a 3 cm-long OP-GaAs sample (63 µm grating period)

13 Towards thicker samples Old growth conditions with shorts cycles: 0.5 mm thickness (prior art) 0.8 mm thickness (summer 2009) 1.3 mm thickness (summer 2010) New growth conditions with long cycles: Thickness is limited it by parasitic nucleation Thicker samples will require a new reactor 1.5 mm thickness (winter 2011)

Optical transmission 1,2 1 Air 0,8 Transmission (mw) 0,6 Probe 0,4 HVPE Substrate 1 2 λ =1.5 µm ω 0 =50 µm 0,2 0 1cm 0 150 300 390 450 510 570 630 690 750 810 870 930 990 1050 1110 1170 1230 1290 0,08 Déplacement vertical (µm) 0,07 006 0,06 0,05 0,04 0,03 1 2 α < 0.03 cm -1 pertes cm-1 The informatio 0,02 0,01 0 490 510 530 550 570 590 610 630 650 670 690 710 730 750 770 790 810 830 850 870 890 14 Lowest loss measured 0.016 cm -1 at 2 µm (in resonant cavity)

15 Optical Parametric Oscillation First demonstration of GaAs OPO (2004): Stanford University & Thales (K.L Vodopyanov et al., Optics Letters, Vol 29, 16 (2004)) 500 µm HVPE film OP-GaAs sample length: 13 mm HVPE layer thickness: 500 µm PPLN OPO pump

Difference Frequency Generation DFG at around 7.8 µm from Er and Tm CW fiber lasers : UoDusseldorf (S. Vasilyev et al., Opt. Lett., 33, 13, 2008, pp. 1413-15) 33 mm GaAs optional Isolator Er source l th 1.55 μ m 10 W mid-ir detector wavelength measurement and control optional λ/2 mid-ir DFG output Theorical fit Tm source μ 1.93 m 0.25 W Isolator λ/2 L1 Λ= 38.6 μm t=25-175 O C L2 L3 DM OP-GaAs Beam separation 120 100 80 60 DFG output, % The informatio 16 40 20 Theorical fit 0 00 0.0 05 0.5 10 1.0 15 1.5 20 2.0 25 2.5 30 3.0 35 3.5 40 4.0 X, mm

17 High power OPO High power GaAs OPO (2008): Institut t St. Louis (ISL) (C. Kieleck et al., Optics Letters, Vol 34, 3 (2009)) 2.09 µm high rep.rate Ho:YAG pump, 3-5 µm emission. Up to 60% slope efficiency and 2.85 W output Efficiency comparable to ZnGeP 2 0.5 mm OP-GaAs 20 mm long 200 µm pump diameter 50% OC (s+i)

18 DIRCM module 20 W Tm fiber laser 10 W Q-switched Ho:YAG 3.0 W MWIR at 40 khz M 2 = 1.4 Portable demo A. Grisard et al., Proc SPIE 7836-06 (2010)

Parametric amplification of a DFB QCL 3 mw 4.5 µm CW DFB QCL 2.09 µm Ho:YAG 30 ns pulsed pump p at 20 khz 53 db gain with 41 mm long GaAs crystal 600 W peak power M 2 = 1.3, Δλ < 0.5 nm (instr. limited) 60 55 41 mm GaAs Tm Fiber Pump Stage 1.9µm AO Ho:YAG 450 µm OP-GaAs 50 45 40 35 Signal Gain (db) The informatio 19 DFB-QCL 4.5µm 2.09µm Pump : 2.09µm Idler : 3.9µm 30 32 mm GaAs OP-GaAs Signal : 4.5µm 25 20 0 1 2 3 4 Average Pump Power (W) G. Bloom et al., Optics Letters, Vol.35, N 4, (2010).

20 Recent results using OP-GaAs 7.7 W average power ns OPO (ISL) Fiber laser pumped ns OPO (ISL) Intracavity ps DFG for THz generation (Stanford) Fs MIR frequency comb (Stanford) CW OPO (BAE US) CLEO 2012

21 Aknowledgments C. Kieleck, M. Eichhorn, and A. Hildenbrand (ISL) S. Vasilyev and S. Shiller (UoDusseldorf) Part of this work was supported by the French MoD DGA/UM-TER/CGN Part of this work was/is supported by the European Comission: i VILLAGE (http://www.neo.no/village) MIRSURG (http://www.mirsurg.eu) IMPROV (http://www.fp7project-improv.eu)