Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Similar documents
CMOS Analog Circuits

The Devices. Devices

ECE 342 Electronic Circuits. 3. MOS Transistors

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

MOS Transistor I-V Characteristics and Parasitics

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

Lecture 3: CMOS Transistor Theory

MOSFET: Introduction

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

Chapter 4 Field-Effect Transistors

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

ESE 570 MOS TRANSISTOR THEORY Part 2

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

MOS Transistor Theory

The Devices: MOS Transistors

MOSFET Capacitance Model

EE105 - Fall 2005 Microelectronic Devices and Circuits

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

ELEC 3908, Physical Electronics, Lecture 26. MOSFET Small Signal Modelling

Circuits. L5: Fabrication and Layout -2 ( ) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

ECE 497 JS Lecture - 12 Device Technologies

MOS Transistor Theory

The Physical Structure (NMOS)

Integrated Circuits & Systems

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

EE105 - Fall 2006 Microelectronic Devices and Circuits

Lecture 5: CMOS Transistor Theory

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

MOS Transistor Properties Review

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing

Quantitative MOSFET. Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current.

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Lecture 4: CMOS Transistor Theory

VLSI Design The MOS Transistor

6.012 Electronic Devices and Circuits Spring 2005

Chapter 13 Small-Signal Modeling and Linear Amplification

Introduction and Background

Practice 3: Semiconductors

Lecture 12: MOSFET Devices

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

ECE 546 Lecture 10 MOS Transistors

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor

Lecture 11: MOS Transistor

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

The transistor is not in the cutoff region. the transistor is in the saturation region. To see this, recognize that in a long-channel transistor ifv

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

EE 330. Lecture 35. Parasitic Capacitances in MOS Devices

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

Figure 1: MOSFET symbols.

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

The Devices. Jan M. Rabaey

ECE-305: Fall 2017 MOS Capacitors and Transistors

(S&S ) PMOS: holes flow from Source to Drain. from Source to Drain. W.-Y. Choi. Electronic Circuits 2 (09/1)

EEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

FIELD-EFFECT TRANSISTORS

Device Models (PN Diode, MOSFET )

Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling?

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

EE5311- Digital IC Design

VLSI Design and Simulation

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

ECE315 / ECE515 Lecture-2 Date:

Device Models (PN Diode, MOSFET )

EE 560 MOS TRANSISTOR THEORY

Conduction in Semiconductors -Review

Lecture 12: MOS Capacitors, transistors. Context

ECE 546 Lecture 11 MOS Amplifiers

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Microelectronics Part 1: Main CMOS circuits design rules

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

ECE321 Electronics I

EECS130 Integrated Circuit Devices

Biasing the CE Amplifier

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs

Chapter 2 MOS Transistor theory

EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

Lecture 28 Field-Effect Transistors

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

CHAPTER 3 - CMOS MODELS

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Refinement. Last Time. No Field. Body Contact

EE 435. Lecture 37. Parasitic Capacitances in MOS Devices. String DAC Parasitic Capacitances

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

EE105 - Fall 2006 Microelectronic Devices and Circuits. Some Administrative Issues

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

EKV MOS Transistor Modelling & RF Application

CMOS Digital Integrated Circuits Analysis and Design

Robert W. Brodersen EECS140 Analog Circuit Design

N Channel MOSFET level 3

Transcription:

EE610: CMOS Analog Circuits L: MOS Models- (1 st Aug. 013) B. Mazhari Dept. of EE, IIT Kanpur 3

NMOS Models MOS MODEL Above Threshold Subthreshold ( GS > TN ) ( GS < TN ) Saturation ti Ti Triode ( DS > DSAT ) ( DS < DSAT ) 4

The other classification of models can be done on the basis of magnitude and frequency of applied voltages MOS MODEL Large Signal Small Signal dc or Low frequency Dynamic Low frequency High frequency 5

Threshold oltage G SiO B S D Poly P + N + N + P-Silicon THN ( THN 0 F SB F ) qn s A body parameter Units : : C o x C ox t ox ox, F kt N ln( q n i A ) 6

Body effect is important for NMOS SiO SiO Poly Poly Poly Poly P + N + N + N + P + P + P + N + N + N + P + P + N-well N-well P-Silicon P-Silicon P-Silicon P-Silicon All NMOS transistors t have acommonbd body contact(which t( h is attached to the most negative point in the circuit), while body for PMOS transistors can be tied to their respective source terminals. 7

Body effect can be very significant DD = 3.3 Bias4 M 3 Bias3 Pmos: source and body can be shorted together SB =.1 0 -.1 SS =-33 3.3 M M 1-1. TN 1 0. 7 TN 0.7 ( 1.7 F SB F ) 0.696; F 0.35 8

Dc Model: Triode (or Linear) I DS vs. DS GS TN Triode saturation DS Dsat GS TN I DS N DSAT DS GS THN DS N kp. N W eff A kp C :( TransConduct ance parameter ) N n ox L eff L eff L Drawn L D W W W eff Drawn D 9

A 3.3 A 3.3 1. 0.9/0.6 1. 1.8/0.6 M1 M Why is drain current of M not double that of M1? L eff L Drawn L D W W W eff Drawn D 30

Effective Channel Length L drawn Poly P + N + N + L eff P-Silicon L D L D L eff L L Drawn L D 31

Effective Channel Width M 1 M 3

W eff W W W WD ForHP 0.5m technology, ogy, WD =0.8m.. eff So a W = 0.9 m is effectively equal to W 0.44 m eff 33

Effective Gate Width M 1 09 0.9m M 1.8m I ( M1) 6.06 A DS I ( ) 18.344 3 I DS DS M A IDS1 W eff 1.8 0.8 0.9 0.8 W eff 1 3 34

DC Model: Saturation Region I DS vs. DS GS THN Triode saturation DS GS THN DSAT I DS N ( GS THN ) [1 n DS ] λ N is the channel length modulation parameter 35

The basic I model requires 7 parameters I DS N ( ) [1 ] GS THN n DS,, KPN, LD, WD F TNO N It is important to note that as a designer, one can control drain-tosource current using gate, drain and body voltages as expected but also using the dimensions of the MOS transistor (W/L ratio). Most of MOS design is done by suitably sizing the different transistors in the circuit 36

Temperature dependence I DS KP N W ( L GS THN ) [1 n Temperature affects the current through its impact on transconductance parameter KP N and threshold voltage THN DS ] kp N C At room temperature, mobility decreases with further increase in temperature so that KP N also decreases. A simple model for its temperaturet dependenced is: T 1.5 KPN ( T ) KPN ( TO ) ( ) T The threshold voltage also decreases with increase in temperature THN ( T) THN ( TO ) (1 TCTHN ( T TO )) T O TC THN n ox 1 THN d dt THN TC THN is the temperature coefficient of the threshold voltage. A 37 typical value might be ~ -3000 PPM/ o C 1PPM = 10-6

Although both K PN and THN and decrease with temperature, the former causes a decrease in current while the latter causes an increase in current I DS KPN W L ( GS THN ) [1 Parameter NMOS 3.3 TO() 0.69 (for L = 1μm) 0.015 1. /1 1. /1 0.696 LD ~0 WD(μm) 0.8 KP (μa/ ) 100 T=5 o C T=50 o C n 0.8A DS ] 3.65A 3.3 A 33 3.3 5.6A 33 3.3 0.41mA 33 3.3 0.39mA 33 3.3 0.9 /1 0.9 /1 3 /1 3 /1 T=5 o C T=50 o C T=5 o C T=50 o C 38

The dc model of the transistor in triode and saturation region can be represented in the form of an equivalent circuit: G G D I Poly DS N + N + S D B S P-Silicon B Although there is a small leakage I DS is a voltage controlled current source current between gate and ad (CCS) with an expression described source/drain through the thin gateoxide, earlier. Two PN junction diodes, one it has been ignored in the model. Similarly, with each terminal between source and body and another between drain and body have also been there is a small parasitic resistance in series which is also not shown. With continued reduction in gate added. Normally these diodes are reverse biased and contribute little to current. Application i of avery large drain or bd body oxide thickness, gate leakage is bias can cause breakdown of these diodes becoming of increasing concern and result in large leakage currents. 39

Capacitance Model Saturation AA large signal dynamic model can be built by adding capacitances to the dc model. There are five distinct components of capacitance as illustrated below Cgs Cox. Weff. Leff Cgso. Weff 3 C GS SiO C GD gd GDO eff Poly C C. W N + N + L C SB C C GB DB P-Silicon W S G D L S L D 40

Capacitances: Area and Perimeter Components L W C WLCp (L W) d 41

SiO P-Silicon PSilicon C GS C GD Poly N + N + W S G D C SB C C GB DB L L S L D C sb Csb, bottom Csb, sidewall A C s j C sb, sidewall Area of Source, Zero bias Capacit ance C C jsw. PS, P S L M jsw SB 1 PBSW C. A j s sb, bottom, A M s j SB 1 P B S W eff P built in potential, M grading Coefficient B j W eff 4. L S

C db Cdb, bottom Cdb, sidewall C db, sidewall C jsw. PD, PD L M jsw DB 1 PBSW D W eff C C. L gb GBO eff W L S G D L S L D A factor of is included in C GBO itself 43

Triode/Linear Region 1 C gs Cox. Weff. Leff CGSO. W eff Cutoff Region C C. W gs GSO eff 1 C gd Cox. Weff. Leff CGDO. W eff C gd CGDO. W eff C sb sameasbefore C db sameasbefore C b sameasbefore C gb Assuming DS ~0 DS C sb sameasbefore C db sameasbefore bf C C. L C. W. L gb GBO eff ox eff Assuming Tr. is in accumulation eff 44

The capacitance model presented herein requires 10 parameters: CGSO, CGDO, CGBO, COX, CJ, PB, M J, CJSW, PBSW, M JSW Complete Large Signal Model C gd G C gs I DS Cdb I ds D C gb C sb S B 45

To analyze circuits we need parameters of model Hence, we need to select a MOS technology first. of a MOSFET. Parameter NMOS PMOS TO() 0.69-0.869 (for L = 1μm) 0.015 0.065 0.696 0.456 LD ~0 ~0 WD(μm) 0.8 0.5 KP (μa/ ) 100 40 CGSO (pf/m) 81 5 CGDO(pF/m) 81 5 CGBO(pF/m) 100 100 CJ (μf/m ) 467.7 93 PB 0.5 0.9 MJ 0.5 0.466 CJSW(μF/m) 616.95 181 MJSW 0.35 0.5 Model Parameters for HP 0.5m Technology 46

Typical alues of Capacitances 1m D C GD C DB m S G D G B C GS C SB m m S area C gs 4.1 ff ; C gd 0. 43 C sb 1.3 3.174.47 ff ff C db 0.58.17. 75 ff DB = perimeter 47

ariation of Capacitance with Gate-Source oltage 1.5 GS 48

Small Signal Model 49

Incremental Circuit Analysis R D = 100K DD = 3.3 G = 1. /1 O +v o Given v =1m, find v due to v in o in Parameter NMOS TO() 0.69 (for L = 1μm) 0.015 0.696 LD ~0 WD(μm) 0.8 KP B. Mazhari, (μa/iitk ) 100 v in N I DS GS THN n DS ( ) [1 ] I R O DS DD DS D N O DD ( GS THN) [1 no] RD 1.54 for GS 1.00 1.018 1.46 for 1.01 v 8m GS o 50

Incremental Circuit Analysis R 1.54 for 1.00 N O DD ( GS THN) [1 n O] D GS 1.46 for 1.01 v 8 m GS o 1.018 Can we neglect this factor? R 1.9 for 1.00 error is 38m N ( ) O DD GS THN YES! D GS R 1.84 for 1.01 N O DD ( GS THN ) D GS vo 8m 51

Incremental Circuit Analysis R 1 I 1 0 s1 R I s s =10m volts; =? s1 0 5

0 =5m 53

One Method: Superposition Theorem R 1 I 1 R 1 0 S1 R I s R R vs1 0 v s1 s v o s1 R R R 1 5m But this requires the circuit to be linear! 54

Alternative Method s1 R 1 I 1 0 (1) S 1 I1R1 0 R I s I = I +( - )/R () s 1 S 0 S R 1 v i 0 1 v s1 R Incremental Equivalent Circuit Let I S 1 1 +i Δ +v 1 s1 s 1 = I = v s1 = (I +i S 1 +( 0 1 ) R + +v o 1 - s1 1 1 S 0 )/R (3)-(1): v =i R +v (4)-():() i =v o /R v =i R +i R 1 s1 1 1 1 o +v o (3) (4) Increment equivalent circuit can be obtained by building incremental device model for each circuit element. 55

Terminology X : Nominal or base alue X Normally is a dc vx : incremental alue Often ac but could be dc as well x X vx :Netle alue 56

Incremental Models: Resistor R v( I i) R IR vir Incremental model of a resistor is a resistor of the Same magnitude Capacitor d I = C dt d( + v) I + i = C Incremental model of a capacitor is a capacitor of the same magnitude. The same holds for an inductor as well. i = C dv dt dt 57

Incremental Models = constant v = 0 I = constant i = 0 Incremental model of a constant oltage Source is a short circuit Incremental model of a constant current Source is an open circuit 58

Solution using incremental equivalent device models S1 R 1 I 1 R 1 R 0 I s v s1 i 1 v 0 R v s1 s Incremental Equivalent Circuit v v o s1 R R R 1 59

Nonlinear element I 1 R 0 i R v S cc X I s v s? I X =K X I x k x I i k( v ) X x X x X v x X i x = k {1 ( + / ) - 1} 60

Non-linearity makes the model difficult to use so approximations are used to make it linear i x X v x X =k {1 ( + / ) -1} Small signal approximation: v x / X << 1 i x v k {(1 x X ) 1} k X X v x i = v / r ; r = x x x x 1 k X 61

Nonlinear element I 1 R 0 cc X I s i R v o r x v S v s I X =K X v o v s rx R r x r x = 1 k o 6

How small is small? Depends on how much error we can tolerate! X x X i x =k {1 ( + v / ) -1} ix k X v x X = 1 4 I k v x () Error (%) 0.0 1 0. 10 0.5 0 x x X = 1 v x () Error (%) 0.007 1 1.0 33.3 0.071 10 0.5 50.77 1.0 73.3 Stronger nonlinearity implies smaller voltage for same error 63

One of the strongest non-linearity is exponential I x x X vx kexp( ) IX ix kexp( ).06.06 i x X v x X vx kexp( ) {exp( ) 1} ix kexp( ) ( ).06.06.06.06 X = 0.7 v x (m) Error (%) 0.53 1 5.4 10 10 18 6 41.8 64

General approach for obtaining small signal model for a -terminal device (not containing capacitor/inductors) I = f( ) x x I +i = f( +v ) X x X x df = f( )+v ( ) +... X x d X x i x =vx/rx r x = 1 df ( ) d X x 65

General approach for obtaining small signal model for a 3-terminal device I i I 0 + i i i i 0 + - - δf i=ν δ i i i δi I ν r i i I=f() I +i = f(+ν ) I i i I i Assumption: unilateral (Output does not affect the input) 1 r= i δfi δ i I From the input port, the device appears as a resistance 66

I i I 0 + + i 0 - - I I O O = +i o Output port: f O = (, f O i ( O i ) ν i, O +ν o ) δf δf I i f (, ) ν ν... 0 0 O o o i o i o O I δi δ0 δf δf i ν ν 0 0 o i o O I δi δ0 i =g ν o g m m i δff δ ν r o o 0 1 r0 O i δf0 I δ0 g m v i v o r 0 67

Complete small signal model (dc) for a 3-terminal device. unilateral I i I 0 + + i 0 - - i O v o i i r i g m v i r O 68

Small Signal Model (dc/low frequency) G D S I DS I ds N (1 ) gs THN () n ds B gs GSQ v gs ds DSQ v ds sb SBQ v sb I ds I DSQ i ds 69 Q: quiescent or dc bias point

I i v v v N DSQ ds GSQ gs THN BSQ bs 1 n DSQ n ds i ds gs thn n ds v v v I DSQ 1 1 1 1 GSQ THN n DSQ vthn THN BSQ vbs ( ) THN v v thn F BSQ bs F BSQ i ds 1 vgs vthn 1 nv I ds DSQ 1 1 GSQ THN n DSQ Assumption: v ( ) gs GSQ THN vgs vthn nv Ignoring cross terms: ds i ds IDSQ 1 1 1 GSQ THN ndsq 70

vgs vthn i I v GSQ THN ds DSQ n ds v ( v ) thn F BSQ bs F BSQ v v 1 bs v 1 bs thn F BSQ F BSQ F BSQ Assumption: v ( ) bs F SBQ v gs v i bs ds I DSQ nv ds ( ) GSQ THN GSQ THN F BSQ 71

v gs v i bs ds IDSQ nvds ( ) GSQ THN GSQ THN F BSQ v i g v g v r ds ds m gs mbbs b o r o 1 I n DSQ g m I GSQ DSQ THN I DSQ g mb g m. F SBQ 7

Small Signal low frequency model i ds g m v gs g mb v bs v r ds o g g mb v bs i ds d g mv gs r o s b 73

i ds v v 1 gs thn DSQ 1 I GSQ THN g m I DSQ GSQ THN I DSQ i ds g v m gs (1 vgs ) GSQ THN Thus the small signal approximation i g v is accurate when v ( ) gs GS THN ds m gs v gs / GS - THN +0.1-0.1 +0. -0. +0.5-0.5 1-1 Error (%) -4.7 5.6-9.1 11.11-0 33.33-33.3 100 For positive values of v gs, the small signal approximation results in underestimation of current while for negative values, the current is 74 B. overestimated. Mazhari, IITK

High Frequency Small Signal Model C gd G C gs g i ds mb v bs g m v gs r o i d D C gb C S sb C db B 75