CMOS Analog Circuits

Similar documents
Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

Lecture 050 Followers (1/11/04) Page ECE Analog Integrated Circuits and Systems II P.E. Allen

Lecture 37: Frequency response. Context

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

ECE 546 Lecture 11 MOS Amplifiers

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University

ECE 523/421 - Analog Electronics University of New Mexico Solutions Homework 3

ECE 342 Electronic Circuits. Lecture 25 Frequency Response of CG, CB,SF and EF

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN

The transistor is not in the cutoff region. the transistor is in the saturation region. To see this, recognize that in a long-channel transistor ifv

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

Circle the one best answer for each question. Five points per question.

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

6.012 Electronic Devices and Circuits Spring 2005

Lecture 28 Field-Effect Transistors

Exact Analysis of a Common-Source MOSFET Amplifier

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

Chapter 13 Small-Signal Modeling and Linear Amplification

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

Biasing the CE Amplifier

ECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER

At point G V = = = = = = RB B B. IN RB f

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

University of Toronto. Final Exam

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Switching circuits: basics and switching speed

The Devices. Devices

ECE 342 Electronic Circuits. 3. MOS Transistors

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

EECS 105: FALL 06 FINAL

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

Chapter 10 Feedback. PART C: Stability and Compensation

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

CMOS Inverter (static view)

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

Digital Integrated Circuits

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Integrated Circuit Operational Amplifiers

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

EECS 141: FALL 05 MIDTERM 1

Power Dissipation. Where Does Power Go in CMOS?

The Inverter. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET)

Lecture 3: CMOS Transistor Theory

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

ESE319 Introduction to Microelectronics. Output Stages

EEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

Advanced Current Mirrors and Opamps

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering

Bipolar junction transistors

Amplifiers, Source followers & Cascodes

Chapter 4 Field-Effect Transistors

The Devices. Jan M. Rabaey

ECE 6412, Spring Final Exam Page 1

MOS Transistor Theory

Vidyalankar S.E. Sem. III [EXTC] Analog Electronics - I Prelim Question Paper Solution

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

Frequency Response Prof. Ali M. Niknejad Prof. Rikky Muller

MOS Transistor Theory

Sample-and-Holds David Johns and Ken Martin University of Toronto

MOSFET: Introduction

ECE 546 Lecture 10 MOS Transistors

Practice 7: CMOS Capacitance

5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1

Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1

DC and Transient Responses (i.e. delay) (some comments on power too!)

Lecture 17 Date:

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

EE105 Fall 2015 Microelectronic Devices and Circuits Frequency Response. Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)

Homework Assignment 08

MOS Transistor I-V Characteristics and Parasitics

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

Design of Analog Integrated Circuits

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

LECTURE 380 TWO-STAGE OPEN-LOOP COMPARATORS - II (READING: AH ) Trip Point of an Inverter

ECE 497 JS Lecture - 12 Device Technologies

Homework Assignment 09

M2 EEA Systèmes Microélectroniques Polytech montpellier MEA 4. Analog Integrated Circuits Design

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

ECE 3050A, Spring 2004 Page 1. FINAL EXAMINATION - SOLUTIONS (Average score = 78/100) R 2 = R 1 =

Lecture 04: Single Transistor Ampliers

Electronics II. Midterm II

MICROELECTRONIC CIRCUIT DESIGN Second Edition

EE 330. Lecture 35. Parasitic Capacitances in MOS Devices

THE INVERTER. Inverter

1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp)

3. Design a stick diagram for the PMOS logic shown below [16] Y = (A + B).C. 4. Design a layout diagram for the CMOS logic shown below [16]

CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM SHAPING CIRCUITS

ECE 342 Solid State Devices & Circuits 4. CMOS

Microelectronics Main CMOS design rules & basic circuits

Transcription:

CMOS Analog Circuits L6: Common Source Amplifier-1 (.8.13) B. Mazhari Dept. of EE, IIT Kanpur 19

Problem statement : Design an amplifier which has the following characteristics: + CC O in R L - CC A 100 f 3dB 1MHz o (max) 3 o CC 3 ; RL 1K The amplifier should be insensitive to variations in supply voltage and temperature. The amplifier has to be monolithically implemented using 0.5μm CMOS technology Technology : HP 0.5m 0

Technology : HP 0.5m Parameter NMOS PMOS TO() 0.69-0.869 (for L = 1μm) 0.015015 0.065065 0.696 0.456 LD ~0 ~0 WD(μm) 0.8 0.5 KP (μa/ ) 100 40 CGSO (pf/m) 81 5 CGDO(pF/m) 81 5 CGBO(pF/m) 100 100 CJ (μf/m ) 467.7 93 PB 0.5 0.9 MJ 0.5 0.466 CJSW(μF/m) 616.95 181 MJSW 0.35 0.5 1

Trial Solution Common Source Amplifier with Resistive load dc analysis a s G = 1. R D = 100K /1 O+v o DD = 3.3 I n DSQ ( GS TN ) 0 A I R 1.9 DSQ DD DSQ D 0.51 so Tr. is in Saturation DSat GSQ TN

Small Signal Model g g DD = 3.3 mb v bs R g v D = 100K m gs r r o i ds d G = 1. /1 O +v o s b IDSQ gm IDSQ 78.7 A/ GSQ THN r o 1 3.3M I n DSQ gmb gm. 3.75 A / 3

1. oltage Gain R D R D = 100K DD = 3.3 G = 1. /1 O +v o g m v gs v gs m gs r o v o v g v R r o m in D o v A o gmrd ro gmrd 7.9 v ro 3.3M 4

. Output Resistance v gs R D g m v gs ro v o v gs R D R O v i i X g m v gs 0 r v X o x x v in R D i X R R r R 100K O D o D r o v X 5

3. Output oltage Swing R D DD W/L O Bias 6

The absolute limits on output voltage swing can be determined from the consideration that the transistor should not come out of saturation mode of operation. R D DD W/L O Bias DS GS THN DS I DS N 7

8

Distortion also occurs as transistor is driven into subthreshold region R D DD =3.3 W/L O Bias 9

3. Output oltage Swing DD DD R D v Omax1 W/L O DSQ Bias v Omax dsat GND vomax1 DD DSQ v max o DSQ dsat v Min { v ; v } o max o max1 o max 30

DD DSQ dsat v Omax1 v Omax GND v v o o max1 DD DSQ 31

DD DSQ dsat v Omax1 v v o omax DSQ dsat v Omax GND 3

Optimum drain-source bias? DD v Omax1 DSQ v Omax dsat GND v v omax1 omax DD DSQ DSQ dsat DSQ DD dsat 33

G = 1. R D = 70K DD = 3.3 dsat 1. 0.7 0.5 /1 3.3 0.5 O DD dsat DSQ 1.9 G I n DSQ ( GS TN ) 0 A R D DD DSQ 70k I DSQ Expected voltage swing: 1.4 33 3.3 Peak-to-peak swing is.8 1.9 0.5 1.4 1.4 0 34

Simulation Results 3.3 1.9 0.5 1.4 1.4 0 1.06 1.35 Peak-to-peak swing is ~.4, 0.4 smaller than the expected value 35

Swing with less distortion 0.93 1.75 Peak-to-peak swing is ~., 0.6 smaller than the expected value 36

Distortion InI the earlier analysis, a hard limitit on output t voltage swing was determined. Actually as output voltage swing increases, harmonic distortion also increases and becomes very large when we reach the limits derived earlier due to clipping of waveform. 37

Harmonic distortion refers to the phenomenon that even though the input may be a sinusoid of frequency f o, the output may have additional frequency components due to nonlinearity in the waveform. Harmonic distortion HD k corresponding to frequency component f k is defined as: HD a a k k 0 where a k refers to the amplitude of frequency component f k Harmonic distortion in CS amplifier occurs because the relationship between drain current and gate voltage is nonlinear. I DSQ i ds 0.5 ( v i g v ( ) g v GSQ gs T ) ds m gs m gs GSQ T 38

i ds g m v gs 0.5 ( ) gmvgs GSQ T In conventional small-signal analysis, we assume that the second nonlinear term is negligible and keep the first linear term only. However, the second term is responsible for harmonic distortion. v gs a sin( f t ) o a o g m a o g m ds m o o o 4GSQ T 4( GSQ T ) o i g a sin( ft ) ( ) ( )cos( ft ) a / 4 HD (%) o 100 GSQ T Suppose GSQ - T = 0.5, then for HD < 5%, input signal magnitude must be kept smaller than 100m. If the voltage gain of the amplifier is 10, then it implies that one can have a maximum output voltage swing which is 1 39

Output oltage Swing v a sin( f t) v in o o in HD a /4 (%) o v 100 in 5 GSQ T dsat HD dsat v 5 o Avvin gmrdvin g m I I DSQ GSQ HD v o IDSQRD HD v ( ) 1.5 o DD DSQ 1.5 DD T R D W/L O DD v Omax1 Bias DSQ v Omax dsat GND v v max ( 0.1) omax1 DD DSQ o DSQ dsat 40

Bias W/L R D O DD HD v ( ) o DD DSQ 1.5 v ( 01) 0.1) o DSQ dsat Optimum drain-source bias HD ( DD DSQ) DSQ ( dsat 0.1) 1.5 DSQ DD HD dsat 0.1 1.5 HD 1 1.5 v omax DD dsat 1.5 1 HD 0.1 41

Optimum drain-source bias DD = 3.3 R D = 95.7K /1 G = 1. O DSQ DD HD dsat 0.1 1.5 HD 1 1.5 v omax DD dsat 0.1 1.5 1 HD Example: HD = 5% (~-6dB), GSQ = 1. DSQ 1.38 138 I n R DSQ ( GS TN ) 0 A D Expected voltage swing: 0.77 DD DSQ 95.7k I DSQ 4

R D = 95.7K DD = 3.3 G = 1. /1 O HD v in dsat 0.10 5 0.8 0.68 43

Simulation Results THD = 4% 44

Example- DD = 3.3 R D = 115.5K /1 G = 1. O DSQ DD HD dsat 0.1 1.5 HD 1 1.5 v omax DD dsat 0.1 1.5 1 HD Example: HD = % (~-34dB), GSQ = 1. DSQ I n R DSQ ( GS TN ) 0 A D 098 0.98 Expected voltage swing: 0.37 DD DSQ 115.5k I DSQ 45

R D = 115.5K DD = 3.3 G = 1. /1 O HD v in dsat 39m 5 0.38 0.35 46

Simulation Results 47

Output oltage Swing: Summary Bias DD HD R D v omax1 ( DD DSQ ) 1.5 W/L O v o max DSQ dsat 0.1 vomax Min vomax1 vomax { ; } Optimum bias point: DSQ DD HD dsat 0.1 1.5 HD 1 1.5 Optimum Swing : v omax DD dsat 0.1 1.5 1 HD 48

Amplifier with Feedback DD R D R G=10 3 1 W/L G=1 O Bias R vo v in R R 1 49

1k 3 G=10 3 /1 70k 1. 10k O 3.3 G=1 3.3 1.9 0.5 14 1.4 1.4 0 1.4 1.4 50

100k 3.3 3.3 1k 3 G=10 3 /1 1. 10k O G=1 1.3 0.5 0.9 0 1.5 1.5 51

Optimum case 100k 33 3.3 33 3.3 1k G=10 3 /1 O G=1 1.65 1.65 1. 10k 0.5 0 5

How is distortion avoided? 3.3 100k 1k G=10 3 i /1 O G=1 1. 10k 53

More Realistic case 3.3 100k 1k G=10 3 /1 100k /1 O G=1 i 1. 10k 54

4. Frequency Response Low frequency behavior is caused by external capacitances Mid frequency region: all capacitances can be ignored oltage gain vs. frequency High frequency behavior is caused by internal transistor capacitances 55

3-dB Upper Cutoff Frequency Bias W/L DD R D O R D R S C gd v o g C C m v gs C v db S gs v gs r o C L The general method for determining frequency response of an amplifier is to carry out analysis of the circuit to obtain the transfer function and then obtain the 3dB frequency there B. Mazhari, from. IITK g R S h R A( s) g C 1 s g sg gd R m m D 1 ( Cgs Cgd (1 gmrd )) RD ( Cgd Cdb) S R D { Cgd Cdb) Cgs CgdCdb} s h 56

A () s g R g m D 1 1 C j g gd m jg h But we require an expression for 3dB frequency as well. 57

Determination of poles makes it easier to estimate 3dB frequency A( j) A(0) j 1 3 j j (1 ) (1 ) 1 A (j) -0dB/decade -40dB/decade d If then ~ 1 3dB 1 58

The determination of poles from the transfer function becomes easier if one of the poles (say p 1 ) is dominant (much lower frequency) than the other pole p. Cgd 1 s g A( s) g R m m D 1 sg s h 1 1 (1 s s s s s gs hs ) (1 )(1 ) 1 s( ) 1 p p p p p p p p p 1 1 1 1 1 p 1 1 1 g pp g 1 h ; p h f 3dB 1 1 R ( C C (1 g R )) R ( C C ) S gs gd m D D gd db p 3dB 1 p C gs C gd g C m gs C C gd db C gd C db 59