University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

Similar documents
The Devices. Devices

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

The Physical Structure (NMOS)

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

MOSFET: Introduction

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture 3: CMOS Transistor Theory

MOS Transistor Theory

EEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

VLSI Design and Simulation

EE 560 MOS TRANSISTOR THEORY

EE 560 MOS INVERTERS: DYNAMIC CHARACTERISTICS. Kenneth R. Laker, University of Pennsylvania

MOS Transistor I-V Characteristics and Parasitics

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Check course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Lecture 4: CMOS Transistor Theory

ECE 497 JS Lecture - 12 Device Technologies

MOS Transistor Theory

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

ENEE 359a Digital VLSI Design

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

ESE 570 MOS TRANSISTOR THEORY Part 2

EE5311- Digital IC Design

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

ECE 342 Electronic Circuits. 3. MOS Transistors

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering

EEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Practice 7: CMOS Capacitance

Chapter 2 MOS Transistor theory

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

ECE 546 Lecture 10 MOS Transistors

Lecture 11: MOS Transistor

FIELD-EFFECT TRANSISTORS

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing

The Devices: MOS Transistors

The transistor is not in the cutoff region. the transistor is in the saturation region. To see this, recognize that in a long-channel transistor ifv

EECS 141: FALL 05 MIDTERM 1

THE INVERTER. Inverter

Chapter 4 Field-Effect Transistors

MOS Transistor Properties Review

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Practice 3: Semiconductors

CMOS Inverter (static view)

EE105 - Fall 2005 Microelectronic Devices and Circuits

EE105 - Fall 2006 Microelectronic Devices and Circuits

Lecture 14 - Digital Circuits (III) CMOS. April 1, 2003

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

The Inverter. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Topics to be Covered. capacitance inductance transmission lines

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

EE382M-14 CMOS Analog Integrated Circuit Design

Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1

Lecture 5: CMOS Transistor Theory

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power

VLSI GATE LEVEL DESIGN UNIT - III P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT

The Devices. Jan M. Rabaey

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

Device Models (PN Diode, MOSFET )

ECE321 Electronics I

Digital Microelectronic Circuits ( )

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

VLSI Design The MOS Transistor

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: CMOS Inverter: Visual VTC. Review: CMOS Inverter: Visual VTC

The CMOS Inverter: A First Glance

Lecture 12: MOS Capacitors, transistors. Context

The CMOS Inverter: A First Glance

ECE-305: Fall 2017 MOS Capacitors and Transistors

N Channel MOSFET level 3

Step 1. Finding V M. Goal: Þnd V M = input voltage for the output = V M both transistors are saturated at V IN = V M since

Introduction and Background

ECE321 Electronics I

ELEC 3908, Physical Electronics, Lecture 26. MOSFET Small Signal Modelling

CS/EE N-type Transistor

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

Conduction in Semiconductors -Review

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Low Power VLSI Circuits and Systems Prof. Ajit Pal Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Name: Answers. Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015

Transcription:

University of Pennsylvania Department of Electrical Engineering ESE 570 Midterm Exam March 4, 03 FORMULAS AND DATA. PHYSICAL CONSTANTS: n i = intrinsic concentration undoped) silicon =.45 x 0 0 cm -3 @ 300 o K k = Boltzmans constant =.38 x 0-3 J/ o K q = electronic charge =.60 x 0-9 C Å = 0-8 cm ε Si = permittivity of Si =.06 x 0 - F/cm ε SiO = ε ox = permittivity of SiO = 0.34 x 0 - F/cm. MOS TRANSISTOR I-V CHARACTERITICS for n-channel DEVICE: I D = k n V GS! V [ Tn )V DS! V DS ] + "V DS ) for 0 < V DS < V GS - V Tn ) I D = k n V GS - V Tn ) + λ V DS ) for V DS > V GS - V Tn ) k n = µ n! SiO t ox W n L n a. Threshold Voltage: ) ± qn I V T = V T 0 +! " F + V SB " " F φ F p-sub) = kt q C ox ln n i N A and φ F n-sub) = kt q ln N D n i γ = ε Si qn A C ox 3. CMOS RESISTORS: TABLE Sheet Resistance for Materials in an n-well CMOS process with 3 metal Layers ---------------------------------------------------------------------------------- Material Min Typical Max Ω/sq Ω/sq Ω/sq ---------------------------------------------------------------------------------- Metal,Metal 0.05 0.07 0. Metal3 0.03 0.04 0.05 Polysilicon 5 0 30 Silicide 3 6 Diffusion n+,p+) 0 5 00 Silicide diffusion 4 0 n-well K K 5K ----------------------------------------------------------------------------------

-- 4. CMOS CAPACITORS: C ox = ε ox t ox C GS0 = C ox WL D ) C GD0 = C ox WL D ) C BG0 = C ox W ov L M ) a. MOS Gate Capacitance TABLE Gate Capacitance ------------- Capacitor OFF Non-saturated Saturated ------------- C gb total) C ox WL eff + C BG0 C BG0 C BG0 C gs total) C GS0 C ox WL eff 3 C oxwl eff + C GS0 + C GS0 C gd total) C GD0 C oxwl eff C GD0 + C GD0 ------------- b. MOS Diffusion Source/Drain) Capacitance Y 5 3 x j n W + Channel n + 4 Source Drain p - Substrate -> N A p + - Channel-stop -> 0N A Junction Area Type 3 4 5 W x j Y x j W x j Y x j WY n + /p n + /p + n + /p + n + /p + n + /p

-3- C db = A D C j 0 + P D C j 0sw sw) C j V ) = A! C j 0 + V & " 0 where φ 0 = kt q m and C jsw V ) = P!C jsw + V " 0sw & msw) ln N AN D n i and φ 0sw = kt q ln N Asw) N D n i =! 0 ) V " V ) " m j sw) = V " V! 0sw ) + * + + V! 0 ) ) " m j sw) " m j & " + V & ) + V & +! 0sw * + where V V V and V 0, V 0! 0 " m j " m j sw),. -. " + V &! 0sw " m j sw),. -. C load = C dbn W n ) + C dbp W p ) + C int + C gb c. Routing Capacitance TABLE 3 Typical µm CMOS Capacitances -------------------- Capacitor Capacitance Description af 0-8 )/µm -------------------- C p 50 Poly to substrate - over field oxide C m 30 Metal to substrate - over field oxide C mp 60 Metal to poly C md 60 Metal to diffusion C m 0 Metal to substrate - over field oxide C mm 50 Metal to metal C mp 30 Metal to poly C md 30 Metal to diffusion C m3 0 Metal3 to substrate - over field oxide C m3m 30 Metal3 to metal C m3m 5 Metal3 to metal C m3p Metal3 to poly C m3d 0 Metal3 to diffusion --------------------

-4-5. SCALING: a. CONSTANT FIELD Scaling: a. All dimensions, including those vertical to the surface /α) b. device voltages /α) c. concentration densities α). b. CONSTANT VOLTAGE Scaling: a. All dimensions, including those vertical to the surface /α) b. device voltages ) c. concentration densities α ). c. LATERAL Scaling: a. gate L /α) only. 6. STATIC/DYNAMIC CHARACTERISTICS OF GATES: a. Temporal Performance Definitions: V 50 = V OL + V OH ) τ PHL = time for output voltage to fall from V OH to V 50. τ PHL = time for output voltage to rise from V OL to V 50. τ P = t PHL + t PHL τ PHL = C load ΔV HL I avghl τ PLH = C load ΔV LH I avglh b. Complementary CMOS Inverter step input): C load τ PHL = k n V DD - V Tn ) [ V Tn V DD - V + ln 4V DD - V Tn ) Tn V - )] DD C load τ PLH = k p V DD - V Tp ) [ V Tp V DD - V Tp + ln 4V DD - V Tp ) V - )] DD V " dv out = k n V in! V Tn )V out! V out k n V in! V Tn V [ ] c. Including t r and t f of input: ) ln V out V in! V Tn )! V out & V out = V V out = V τ PHL actual) = τ PLH actual) = τ PHL step input) + t r ) τ PLH step input) + t f ) d. Super Buffer: a N+ = C LOAD Cg t total = N + )! 0 C d + ac g C d + C g

-5- a opt [ ln a opt )!] = C d C g 7. NOMINAL SPICE PARAMETERS for µm n-well CMOS PROCESS TABLE 4 Parameter nmos pmos Units VT0 0.5-0.5 V KP 8.5 E-5 3.4 E-5 A/V GAMMA 0.48-0.69 V LAMBDA 0.0 0.0 V - CGS0 6.0 E-0 6.0 E-0 F/m CGD0 6.0 E-0 6.0 E-0 F/m CGB0.0 E-0.0 E-0 F/m CJ 3.0 E-4 3.0 E-4 F/m MJ 0.5 0.5 - CJSW 4.0 E-0 4.0 E-0 F/m MJSW 0.5 0.5 - PB 0.6 0.6 V LD 0. E-7 0. E-7 m TOX E-8 E-8 m PHI -0.74 0.77 V NSUB E6 4 E6 cm -3 NFS 5E0 9E0 cm - U0 500 00 cm /Vs XJ.0 E-7.0 E-7 m DL 0 0 m DW -.0 E-7 -.0 E-7 m 8. n-well CMOS DESIGN RULES Layer/Dimension λ RULE A. N-well Layer A. Minimum size 0 λ A. Minimum spacing wells at same potential) 6 λ A.3 Minimum spacing wels at different potential) 8 λ B. Active Area B. Minimum size 3 λ B. Minimum spacing 3 λ B.3 N-well overlap of p+ 5 λ B.4 N-well overlap of n+ 3 λ B.5 N-well space to n+ 5 λ B.6 N-well space to p+ 3 λ C. Poly C. Minimum size λ

-6- C. Minimum spacing λ C.3 Spacing to n+ or p+ λ C.4 Gate extension λ C.5 Minimum n+ or p+ extension 3 λ E. Contact E. Minimum size λ E. Minimum spacing poly) λ E.3 Minimum spacing n+ or p+) λ E.4 Minimum overlap of n+ or p+ λ E.5 Minimum overlap of poly λ E.6 Minimum overlap of metal λ E.7 Minimum spacing to gate λ F. Metal F. Minimum size 3 λ F. Minimum spacing 3 λ Layer/Dimension λ RULE G. Via G. Minimum size λ G. Minimum spacing 3 λ G.3 Minimum metal overlap λ G.4 Minimum metal overlap λ H. Metal H. Minimum size 3 λ H. Minimum spacing 4 λ I. Via I. Minimum size λ I. Minimum spacing 3 λ J. Metal3 J. Minimum size 8 λ J. Minimum spacing 5 λ J.3 Minimum via overlap λ J.4 Minimum via overlap λ