Interatomic Potentials. The electronic-structure problem

Similar documents
Molecular Dynamics 9/6/16

Potentials, periodicity

Molecular Dynamics. What to choose in an integrator The Verlet algorithm Boundary Conditions in Space and time Reading Assignment: F&S Chapter 4

Molecular Dynamics. The Molecular Dynamics (MD) method for classical systems (not H or He)

From Atoms to Materials: Predictive Theory and Simulations

Chapter 3. Crystal Binding

CE 530 Molecular Simulation

Set the initial conditions r i. Update neighborlist. r i. Get new forces F i

Earth Solid Earth Rocks Minerals Atoms. How to make a mineral from the start of atoms?

Set the initial conditions r i. Update neighborlist. Get new forces F i

The broad topic of physical metallurgy provides a basis that links the structure of materials with their properties, focusing primarily on metals.

Lecture 6 - Bonding in Crystals

The electronic structure of materials 1

Force Fields in Molecular Mechanics

Pair Potentials and Force Calculations

CHAPTER 3. Crystallography

Same idea for polyatomics, keep track of identical atom e.g. NH 3 consider only valence electrons F(2s,2p) H(1s)

DFT EXERCISES. FELIPE CERVANTES SODI January 2006

Interatomic potentials with error bars. Gábor Csányi Engineering Laboratory

Teoría del Funcional de la Densidad (Density Functional Theory)

IMFA s. intermolecular forces of attraction Chez Chem, LLC All rights reserved.

Molecular mechanics. classical description of molecules. Marcus Elstner and Tomáš Kubař. April 29, 2016

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components.

Atoms, Molecules and Solids (selected topics)

VIRTUAL LATTICE TECHNIQUE AND THE INTERATOMIC POTENTIALS OF ZINC-BLEND-TYPE BINARY COMPOUNDS

Module17: Intermolecular Force between Surfaces and Particles. Lecture 23: Intermolecular Force between Surfaces and Particles

Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland

CE 530 Molecular Simulation

Structural Bioinformatics (C3210) Molecular Mechanics

MOLECULES. ENERGY LEVELS electronic vibrational rotational

Lecture contents. A few concepts from Quantum Mechanics. Tight-binding model Solid state physics review

Reactive potentials and applications

ECE440 Nanoelectronics. Lecture 07 Atomic Orbitals

Why Is Molecular Interaction Important in Our Life

1.1 Atoms. 1.1 Atoms

An Introduction to Quantum Chemistry and Potential Energy Surfaces. Benjamin G. Levine

Materials 218/UCSB: Class III Cohesion in solids van der Waals, ionic, covalent, metallic

CHAPTER 2 INTERATOMIC FORCES. atoms together in a solid?

Atoms & Their Interactions

Multi-Scale Modeling from First Principles

Advanced Molecular Molecular Dynamics

Machine learning the Born-Oppenheimer potential energy surface: from molecules to materials. Gábor Csányi Engineering Laboratory

Molecular Physics. Attraction between the ions causes the chemical bond.

ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below

André Schleife Department of Materials Science and Engineering

PH 548 Atomistic Simulation Techniques

Atomic structure & interatomic bonding. Chapter two

510 Subject Index. Hamiltonian 33, 86, 88, 89 Hamilton operator 34, 164, 166


Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education

Introduction to Molecular Dynamics

Complicated, short range. þq 1 Q 2 /4p3 0 r (Coulomb energy) Q 2 u 2 /6(4p3 0 ) 2 ktr 4. u 2 1 u2 2 =3ð4p3 0Þ 2 ktr 6 ðkeesom energyþ

Chapter 2 Experimental sources of intermolecular potentials

Chapter 11. Kinetic Molecular Theory. Attractive Forces

221B Lecture Notes Many-Body Problems II Molecular Physics

Electrons and Molecular Forces

Lecture 11: Potential Energy Functions

Classical potentials for metals

Part III: Theoretical Surface Science Adsorption at Surfaces

The Linearized Augmented Planewave (LAPW) Method

Computer simulation methods (2) Dr. Vania Calandrini

DFT calculations of NMR indirect spin spin coupling constants

Chapter 11. Intermolecular Forces and Liquids & Solids

Water models in classical simulations

Project: Vibration of Diatomic Molecules

Computational Methods. Chem 561

Oslo node. Highly accurate calculations benchmarking and extrapolations

- intermolecular forces forces that exist between molecules

X-Ray transitions to low lying empty states

Atoms, Molecules and Solids (selected topics)

Atomic orbitals of finite range as basis sets. Javier Junquera

Molecular Dynamics Simulation of a Nanoconfined Water Film

Bioengineering 215. An Introduction to Molecular Dynamics for Biomolecules

Chapter 1: Chemical Bonding

Atomic Structure & Interatomic Bonding

VALENCE Hilary Term 2018

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University

Lecture 3. Solving the Non-Relativistic Schroedinger Equation for a spherically symmetric potential

Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015,

Ionic Bonding. Example: Atomic Radius: Na (r = 0.192nm) Cl (r = 0.099nm) Ionic Radius : Na (r = 0.095nm) Cl (r = 0.181nm)

Molecular Aggregation

Atoms, electrons and Solids

CHEM3023: Spins, Atoms and Molecules

362 Lecture 6 and 7. Spring 2017 Monday, Jan 30

Chapter Outline Understanding of interatomic bonding is the first step towards understanding/explaining materials properties Review of Atomic

What is Classical Molecular Dynamics?

1. Introduction to Clusters

CHAPTER ELEVEN KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS

Bonding Test pg 1 of 4 Name: Pd. Date:

This is a very succinct primer intended as supplementary material for an undergraduate course in physical chemistry.

André Schleife Department of Materials Science and Engineering

Atoms have the ability to do two things in order to become isoelectronic with a Noble Gas.

Concepts in Surface Physics

Name: Date: Blk: Examine your periodic table to answer these questions and fill-in-the-blanks. Use drawings to support your answers where needed:

Chapter 10. Liquids and Solids

Lecture 4: Nuclear Energy Generation

Physics of Materials: Bonding and Material Properties On The basis of Geometry and Bonding (Intermolecular forces) Dr.

Electronic properties of CdSe nanocrystals in the absence and presence of a dielectric medium

DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY

Bonding in solids The interaction of electrons in neighboring atoms of a solid serves the very important function of holding the crystal together.

Transcription:

Interatomic Potentials Before we can start a simulation, we need the model! Interaction between atoms and molecules is determined by quantum mechanics: Schrödinger Equation + Born-Oppenheimer approximation BO: we can get rid of electrons and consider the effective interaction of nuclei the potential energy surface, V(R). V(q) determines the quality of result. But we don t know V(R)! Semi-empirical approach: make a good guess and use experimental data to adjust it. (This is fast! May not reveal correct details, depends on V).) Quantum chemistry approach: compute the surface at a few points and fit to a reasonable form. (This is hard!) Ab initio approach: do the QM calculations on the fly as the trajectory is being generated. Couple a quantum calculation of the electrons with a classical one of the nuclei. (Much more computer effort, but no analytic form needed.) 1 The electronic-structure problem The non-relativistic Hamiltonian for a collection of ions and electrons: N 2 e 2 ie H i i1 2mi i j r external fields symmetry and boundary conditions ij Atomic units : m e e 1 Energy in Hartrees=27.2eV=316,000K Lengths in Bohr radii= 0.529 A = 5.29 x10-9 cm N e N I 1 1 H 2 i1 2 i a1 2M a / m e 2 a symmetry and boundary conditions ab j Z a Z b r ab Z a i,a r ia i j r ij 1 external fields Accuracy needed to address questions at room temp.: 100 K=0.3 mha=0.01ev. MANY DECIMAL PLACES! Solving this is difficult! 2 1

Born-Oppenheimer (1927) Approximation Make use of the fact that nuclei are so much heavier than electrons. Worse case: proton mass= 1836 electron mass. Electrons move much faster! Factor total wavefunction into ionic and electronic parts. (adiabatic approx) H H e H N N e 1 H e 2 2 i i1 ab Z a Z b R a R b i,a electronic and nuclear parts N Z a 1 I 1 2 H R a r N i i j r i r j a1 2M a / m e a (r R) (r R)(R) variational trial function H e (r R) E BO (R) (r R) E BO R BO energy surface H N E BO (R) (R) E tot (R) error(e tot ) O m 3/2 e electronic energy 10 5 Ha m I Does requite classical ions (but MD assumes it) Eliminate the electrons and replace by an effective potential. 3 What data? Semi-empirical potentials Assume a functional form, e.g., a 2-body or 3-body. Find some data from experiment. Use theory+simulation to determine parameters. Molecular bond lengths, binding energies Atom-atom scattering in gas phase Virial coefficients, transport in gas phase Low temperature properties of the solid, cohesive energy, lattice constant, elastic moduli, vibrational frequencies, defect energies. Melting temperature, critical point, triple point, surface tension,. Point defects, surface energies, diffusion barriers Liquid structure GIGO, i.e. garbage in, garbage out! Interpolation versus extrapolation: transferability Are results predictive? How much theory to use, and how much experimental data? 4 2

5 Atom-Atom potentials V (R) v( r i r j ) i j Total potential is the sum of atom-atom pair potentials Assumes molecule is rigid, in non-degenerate ground state, interaction is weak so the internal structure is weakly affected by the environment. Geometry (steric effect) is important. Short-range effects-repulsion caused by cores: exp(-r/c) Perturbation theory as r ij >> core radius Electrostatic effects: do a multipole expansion (if charged or have dipoles) Induction effects (by a charge on a neutral atom) Dispersion effects: dipole-induced-dipole (C 6 /r 6 ) C 6 d A ( ) B ( ) 6 3

Atomic systems Neutral rare gas atoms are the simplest atoms to find a potential for: little attractive spheres. Repulsion at short distances because of overlap of atomic cores. Attraction at long distance die to the dipole-induced-dipole force. Dispersion interaction is c 6 r -6 + c 8 r -8 +. He-He interaction is the most accurate. Use all available low density data (virial coefficients, quantum chemistry calculations, transport coefficients,.) Good to better than 0.1K (work of Aziz over last 20 years). But that system needs quantum simulations. Three-body (and many-body) interactions are small but not zero. Good potentials are also available for other rare gas atoms. H 2 is almost like rare gas from angular degree of freedom averages out due to quantum effects. But has a much larger polarizability. 7 Lennard-Jones (2-body) potential V (R) v( r i r j ) v(r) 4 i j r 12 6 r ~ minimum = wall of potential Good model for non-bonded rare gas atoms Standard model for MD! Why these exponents? 6 and 12? There is only 1 LJ system! v(x) 4 x -12 x 6 Reduced units: Energy in : T * =k B T/ Lengths in : x=r/ Time is mass units, pressure, density,.. See references on FS pgs. 51-54 8 4

Phase diagram of Lennard-Jones A. Bizjak, T.Urbi and V. VlachyActa Chim. Slov. 2009, 56, 166 171 9 LJ Force Computation! Loop over all pairs of atoms. do i=2,natoms do j=1,i-1!compute distance between i and j. r2 = 0 do k=1,ndim dx(k) = r(k,i) - r(k,j)!periodic boundary conditions. if(dx(k).gt. ell2(k)) dx(k) = dx(k)-ell(k) if(dx(k).lt.-ell2(k)) dx(k) = dx(k)+ell(k) r2 = r2 + dx(k)*dx(k) enddo!only compute for pairs inside radial cutoff. if(r2.lt.rcut2) then r2i=sigma2/r2 r6i=r2i*r2i*r2i!shifted Lennard-Jones potential. pot = pot+eps4*r6i*(r6i-1)- potcut!radial force. rforce = eps24*r6i*r2i*(2*r6i-1) do k = 1, ndim force(k,i)=force(k,i) + rforce*dx(k) force(k,j)=force(k,j) - rforce*dx(k) enddo endif enddo enddo 10 5

Lennard-Jones force calculation for i in range(natoms): for j in range(i+1,natoms): dx=x[i]-x[j] # this will be a vector if x&y are array for d in range(3): # more clever ways to do this? if dx[d]>l[d]/2: dx[d] -= L[d] if dx[d]<-l[d]/2: dx[d] += L[d] r2 = sum(dx*dx) # dx[0]*dx[0]+dx[1]*dx[1]+dx[2]*dx[2] if r2>rcutoff2: continue # outside of cutoff distance^2 r2i = sigma/r2 r6i = r2i**3 pot += eps4*r6i*(r6i-1) - potcut rforce = eps24*r6i*r2i*(2*r6i-1) F[i] = F[i] + rforce*dx # F[i] and dx are vectors! F[j] = F[j] - rforce*dx Note number of times through loops over atoms Pair potential ~N 2 iterations; reduce to ~N using neighbor tables. 11 Morse potential v(r) [e 2a(r r 0 ) 2e a(r r 0 ) ] Like Lennard-Jones but for bonded atoms Repulsion is more realistic - but attraction less so. Minimum at r 0, approximately the neighbor position Minimum energy is An extra parameter a that can be used to fit a third property: lattice constant (r 0 ), bulk modulus (B) and cohesive energy. de dr r0 0 B V dp dv V0 V d2 E dv 2 V 0 12 6

13 Various Other Empirical Potentials a) Hard sphere - simplest, first, no integration error. b) Hard sphere, square well c) Coulomb (long-ranged) for plasmas d) 1/r 12 potential (short-ranged) 14 7

v(r) Z i Z j r Fit for a Born potential A r n Attractive charge-charge interaction Repulsive interaction determined by atom core. EXAMPLE: NaCl Obviously Z i = 1 on simple cubic structure/alternating charges Use cohesive energy and lattice constant (at T=0) to determine A and n E B e a d e r A d n de B dd e a d 2 ne r A d n1 0 n=8.87 A=1500eV 8.87 Now we need a check, say, the bulk modulus. We get 4.35 x 10 11 dy/cm 2 Experiment = 2.52 x 10 11 dy/cm 2 You get what you fit for! 15 Arbitrary Pair Potential For anything more complicated than a LJ 6-12 potential you can use a table-driven method. In start up of MD, compute or read in a table of potential values. e.g. V(ri), dv/dr on a table. During computation, map interatomic distance to a grid and compute grid index and difference Do table look-up and compute (cubic) polynomial. Complexity is memory fetch+a few flops/distance Advantage: Code is completely general-can handle any potential at the same cost. Disadvantage: some cost for memory fetch. (cache misses) 16 8

Failure of pair potentials Property Cu Ag Pt Au LJ E c /T m 30 28 33 33 13 E v /E c 0.33 0.36 0.26 0.25 1 C 12 /C 44 1.5 1.9 3.3 3.7 1.000 E c =cohesive energy and E v =vacancy formation energy T m =melting temperature C 12 and C 44 are shear elastic constants. A Cauchy relation makes them equal in a cubic lattice for any pair potential. Problem in metals: electrons are not localized! After Ercolessi, 1997 17 Metallic potentials Have a inner core + valence electrons Valence electrons are delocalized. Hence pair potentials do not work very well. Strength of bonds decreases as density increases because of Pauli principle. does EZ or E Z for Z coordination number? EXAMPLE: at a surface LJ potential predicts expansion but metals contract. Embedded Atom Model (EAM) or glue models work better. Daw and Baskes, PRB 29, 6443 (1984). V (R) F(n i ) (r ij ) n i r ij atoms pairs Three functions to optimize! Good for spherically symmetric atoms: Cu, Pb Not for metals with covalent bonds or metals (Al) with large changes in charge density under shear. j 18 9

19 20 10

21 22 11

Silicon potential Solid silicon can not be described with a pair potential. Has open structure, with coordination 4! Tetrahedral bonding structure caused by the partially filled p-shell. Very stiff potential, short-ranged caused by localized electrons: Stillinger-Weber (Phys. Rev. B 31, 5262, 1985) potential fit from: Lattice constant,cohesive energy, melting point, structure of liquid Si v 2 (B / r 4 1/(r a) A)e for r<a v 3 e /(r ij a) /(r ik a) [cos( i ) 1/3] 2 i, j,k Minimum at 109 o r i i r k r j 23 Hydrocarbon potential Empirical potentials to describe intramolecular and inter-molecular forces AMBER potential is: Two-body Lennard-Jones+ charge interaction (non-bonded) Bonding potential: k r (r i -r j ) 2 Bond angle potential k a (- 0 ) 2 Dihedral angle: v n [ 1 - cos(n)] All parameters taken from experiment. Rules to decide when to use which parameter. Several force fields available (open source/commercial). 24 12

25 Water potentials Older potentials: BNS,MCY,ST2 New ones: TIP3P,SPC,TIP4P TIP5P Rigid molecule with 5 sites Oxygen in center that interacts with other oxygens using LJ 6-12 4 charges (e = 0.24) around it so it has a dipole moment Compare with phase diagram (melting and freezing), pair correlations, dielectric constant Mahoney & Jorgensen 26 13

Potentials for Charged Systems 27 Problems with potentials Potential is highly dimensional function. Arises from QM so it is not a simple function. Procedure: fit data relevant to the system you are going to simulate: similar densities and local environment. Use other experiments to test potential. Do quantum chemical (SCF or DFT) calculations of clusters. Be aware that these may not be accurate enough. No empirical potentials work very well in an inhomogenous environment. This is the main problem with atom-scale simulations-- they really are only suggestive since the potential may not be correct. Universality helps (i.e., sometimes the potential does not matter that much) 28 14

29 Which approach to use? Type of systems: metallic, covalent, ionic, van der Waals Desired accuracy: quantitative or qualitative Transferability: many different environments Efficiency: system size and computer resources (10 atoms or 10 8 atoms. 100fs or 10 ms) Total error is the combination of: statistical error (the number of time steps) systematic error (the potential) 30 15