The Random Phase Approximation:

Similar documents
( V ) 0 in the above equation, but retained to keep the complete vector identity for V in equation.

5- Scattering Stationary States

Grand Canonical Ensemble

CIVL 7/ D Boundary Value Problems - Axisymmetric Elements 1/8

Homework: Due

Massachusetts Institute of Technology Introduction to Plasma Physics

Chapter-10. Ab initio methods I (Hartree-Fock Methods)

Diffraction. Diffraction: general Fresnel vs. Fraunhofer diffraction Several coherent oscillators Single-slit diffraction. Phys 322 Lecture 28

Surface properties of nanoparticle

Diffraction. Diffraction: general Fresnel vs. Fraunhofer diffraction Several coherent oscillators Single-slit diffraction. Phys 322 Lecture 28

Solid state physics. Lecture 3: chemical bonding. Prof. Dr. U. Pietsch

Electrochemical Equilibrium Electromotive Force. Relation between chemical and electric driving forces

Hydrogen atom. Energy levels and wave functions Orbital momentum, electron spin and nuclear spin Fine and hyperfine interaction Hydrogen orbitals

PH672 WINTER Problem Set #1. Hint: The tight-binding band function for an fcc crystal is [ ] (a) The tight-binding Hamiltonian (8.

Electromagnetics: The Smith Chart (9-6)

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law

Physics 111. Lecture 38 (Walker: ) Phase Change Latent Heat. May 6, The Three Basic Phases of Matter. Solid Liquid Gas

Q Q N, V, e, Quantum Statistics for Ideal Gas. The Canonical Ensemble 10/12/2009. Physics 4362, Lecture #19. Dr. Peter Kroll

Analysis of a M/G/1/K Queue with Vacations Systems with Exhaustive Service, Multiple or Single Vacations

Q Q N, V, e, Quantum Statistics for Ideal Gas and Black Body Radiation. The Canonical Ensemble

E F. and H v. or A r and F r are dual of each other.

( ) + is the distance from the point of interest to the location of the charge q i

Phy213: General Physics III 4/10/2008 Chapter 22 Worksheet 1. d = 0.1 m

Multi-linear Systems and Invariant Theory. in the Context of Computer Vision and Graphics. Class 4: Mutli-View 3D-from-2D. CS329 Stanford University

Load Equations. So let s look at a single machine connected to an infinite bus, as illustrated in Fig. 1 below.

The angle between L and the z-axis is found from

Heisenberg Model. Sayed Mohammad Mahdi Sadrnezhaad. Supervisor: Prof. Abdollah Langari

Bethe-Salpeter Equation Green s Function and the Bethe-Salpeter Equation for Effective Interaction in the Ladder Approximation

Physics 202, Lecture 5. Today s Topics. Announcements: Homework #3 on WebAssign by tonight Due (with Homework #2) on 9/24, 10 PM

Period vs. Length of a Pendulum

Lecture 14. Relic neutrinos Temperature at neutrino decoupling and today Effective degeneracy factor Neutrino mass limits Saha equation

CHAPTER 33: PARTICLE PHYSICS

Estimation of a Random Variable

5.61 Fall 2007 Lecture #2 page 1. The DEMISE of CLASSICAL PHYSICS

Lecture 3: Phasor notation, Transfer Functions. Context

4.4 Linear Dielectrics F

Aakash. For Class XII Studying / Passed Students. Physics, Chemistry & Mathematics

Rectification and Depth Computation

Theoretical Electron Impact Ionization, Recombination, and Photon Emissivity Coefficient for Tungsten Ions

CHARACTERISTICS OF MAGNETICALLY ENHANCED CAPACITIVELY COUPLED DISCHARGES*

STATISTICAL MECHANICS OF DIATOMIC GASES

School of Electrical Engineering. Lecture 2: Wire Antennas

Physics 240: Worksheet 15 Name

Chapter 3 Binary Image Analysis. Comunicação Visual Interactiva

From Structural Analysis to FEM. Dhiman Basu

The Hyperelastic material is examined in this section.

Set of square-integrable function 2 L : function space F

Extinction Ratio and Power Penalty

September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline

GRAVITATION. (d) If a spring balance having frequency f is taken on moon (having g = g / 6) it will have a frequency of (a) 6f (b) f / 6

GRAVITATION 4) R. max. 2 ..(1) ...(2)

Applications of Lagrange Equations

Energy in Closed Systems

Plasma Sheaths and Langmuir probes

gravity r2,1 r2 r1 by m 2,1

A Velocity Extraction Method in Molecular Dynamic Simulation of Low Speed Nanoscale Flows

SUPPLEMENTARY INFORMATION

Solutions to Supplementary Problems

Ερωτήσεις και ασκησεις Κεφ. 10 (για μόρια) ΠΑΡΑΔΟΣΗ 29/11/2016. (d)

Economics 600: August, 2007 Dynamic Part: Problem Set 5. Problems on Differential Equations and Continuous Time Optimization

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D

1) They represent a continuum of energies (there is no energy quantization). where all values of p are allowed so there is a continuum of energies.

CHAPTER 5 CIRCULAR MOTION

Review - Probabilistic Classification

Chapter 10 DIELECTRICS. Dielectrics

Overview. 1 Recall: continuous-time Markov chains. 2 Transient distribution. 3 Uniformization. 4 Strong and weak bisimulation

Lecture 3.2: Cosets. Matthew Macauley. Department of Mathematical Sciences Clemson University

Realistic model for radiation-matter interaction

External Equivalent. EE 521 Analysis of Power Systems. Chen-Ching Liu, Boeing Distinguished Professor Washington State University

Key words: Qubits, Geometric algebra, Clifford translation, Geometric phase, Topological quantum computing

ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS.

Physics 1501 Lecture 19

Logistic Regression I. HRP 261 2/10/ am

Physics 202, Lecture 2. Announcements

Canonical transformations

COMPSCI 230 Discrete Math Trees March 21, / 22

E For K > 0. s s s s Fall Physical Chemistry (II) by M. Lim. singlet. triplet

CDS 101/110: Lecture 7.1 Loop Analysis of Feedback Systems

Fourier transforms (Chapter 15) Fourier integrals are generalizations of Fourier series. The series representation

Grid Transformations for CFD Calculations

PHYS Week 5. Reading Journals today from tables. WebAssign due Wed nite

iclicker Quiz a) True b) False Theoretical physics: the eternal quest for a missing minus sign and/or a factor of two. Which will be an issue today?

Optimal Ordering Policy in a Two-Level Supply Chain with Budget Constraint

Path (space curve) Osculating plane

Homework 1: Solutions

ENGG 1203 Tutorial. Difference Equations. Find the Pole(s) Finding Equations and Poles

Molecules and electronic, vibrational and rotational structure

Analyzing Frequencies

What Makes Production System Design Hard?

PHY126 Summer Session I, 2008

Chapter 23: Magnetic Field Shielding

8-node quadrilateral element. Numerical integration

and integrated over all, the result is f ( 0) ] //Fourier transform ] //inverse Fourier transform

Finite Element Modelling of truss/cable structures

8 - GRAVITATION Page 1

Modeling of Toroidal Ordering in Ferroelectric Nanodots

3. Anomalous magnetic moment

GMm. 10a-0. Satellite Motion. GMm U (r) - U (r ) how high does it go? Escape velocity. Kepler s 2nd Law ::= Areas Angular Mom. Conservation!!!!

Machine Learning. Spectral Clustering. Lecture 23, April 14, Reading: Eric Xing 1

Transcription:

Th Random Phas Appoxmaton: Elctolyts, Polym Solutons and Polylctolyts I. Why chagd systms a so mpotant: thy a wat solubl. A. bology B. nvonmntally-fndly polym pocssng II. Elctolyt solutons standad dvaton A. Posson-Boltzmann quaton B. Dby-Hücl quaton. f ngy. colatons III. Polym solutons A. What a ntactons. chan Hamltonan. monom ntactons 3. chmcal potntal µ () B. Patton functon and f ngy C. Colatons I. Fld-thotcal dvaton of Dby-Hücl thoy. Fld-thotcal dvaton of th Posson-Boltzmann quaton I. Byond Dby-Hücl thoy B. Oscllatoy chag colatons C. Ion assocaton

II. Elctolyt solutons P-B qn A. Posson-Boltzmann quaton () Lt Φ lctostatc potntal at Φ() 4π ε ρ () Posson wh ρ () z + n + () z n valncy of + chags But n + So n () n+ 0 βz + Φ () n 0 βz Φ # dnsty of - chags ρ() z + n 0 + βz + Φ() z n 0 βz Φ ( ) Φ 4π ε zn + 0 βz + Φ ( ) z n 0 βz Φ( ) { } Boltzmann (man fld appoxmaton) B. Dby-Hücl quaton Lnaz th Posson-Boltzmann quaton (assum lctostatc ngy s wa compad to T) Φ 4π ε z n + + 0 βz + Φ ( ) z n 0 + βz Φ { ( ( ) )} { } Φ 4π ε z + n 0 0 ( + z n ) β z + n 0 + + z 0 ( n )Φ()+... but z n 0 + + z n 0 0 du to lctonutalty, so Φ 4π ε T z + n 0 + + z 0 ( n )Φ Lt ε T B Bjum lngth Thn Φ4π B z + n 0 + + z 0 n Φ κ Wh κ Dby scnng lngth---multvalnt ons scn mo ffctvly.

Thus, w hav Φκ Φ Dby-Hücl quaton. F ngy of Dby-Hücl quaton Consd had sphs of damt a wth chags z ±. sph of chag q 0 whos cnt s at th ogn? What s potntal aound a Φκ Φ Φ0 < a a B.C. s: Φ ( ) 0 Φ() s contnuous at a ε φ s contnuous at a (lctc fld) 3

Soluton: Φ() q ε qκ ε +κa κ( a) qε ε( +κa) Yuawa a > a Exclud th slf-ngy tm q ε. Thn φ ( 0 ) du to all th oth changs s ψ( 0) qκ ε +κa Th lctostatc f ngy satsfs df ψ dq wh ψ potntal actng on chag thmodynamc conjugats. q du to all th oth chags, bcaus ψ and q a F N,,T ψ q () So F ψ λ 0 d( λq ) potntal on on whn all ons hav chags λq. q So ψ () λ λ κλ ε( +κλa) F q κ ε 0 dλ λ +κa λ But: q ε ( ε z + n 0 + + z n 0 ) ε z + n 0 + + z 0 n call that κ 4π ε T z + n 0 + + z 0 n 4

f l q T ε 4π κ F l T κ 3 4π So w hav f l κ 3 wh π f κ a f ( κa) 3 κ 3 a 3 0 λ d λ +κ a λ ln( +κa) κa + κ a Not that f ( κa) as κa 0. So, fo dlut solutons f l κ 3 π Ths s ngatv: attactv ntactons btwn oppost chags pdomnat. Osmotc pssu: βp n 0 + +n 0 κ 3 4π Not that th s no scond val coffcnt du to long-angd ntacton.. Colatons n Dby-Hücl thoy: Poo Pson s vson. Loo at chag dstbuton aound a cntal on q 4 π ε ρ() φ() Posson κ φ() So ρ() ε 4π κ φ() ε 4π κ q κ ( a) ε ( +κ a) So th chag q s suoundd by a scnng cloud of oppost sgn that dcays xponntally and monotoncally wth scnng lngth. 5

III. Polym Solutons th andom phas appoxmaton Suppos w hav N chans, ach M monoms long, n a box of volum. Dfn th numb dnsty of monoms: N M () ds δ ( ) n A. What a th ntactons? 0. Th a ntactons that hold th chan togth. s βh 0 + 3 b 0 M ds s Ths s a contnuous vson of βh 0 + 3 b M s s s So, ths cosponds to a bad-spng modl of a chan: Ths has an avag bond lngth b.. In addton, w can nclud a shot-angd ntacton btwn monoms: β H + v d ρ() fo good solvnt v > 0 3. Fnally, allow fo a chmcal potntal µ ( ) (n unts of T). Ths wll allow us to xamn th avag dnsty and dnsty colatons. βh d µ ()ρ (). B. Th patton functon s Z N! D s β H 0 () { s} βh βh 6

ths s th had on bcaus t s a two-body ntacton tm. Hubbad-Statanovch tansfomaton (complt th squa) Not that v ( () d ρ ) v [ () vρ() ] d J - v d ( J() ) + d J ()ρ() So o DJ v ( d ρ() ) v d J( ) vρ () [ ] DJ v d ( J() ) d J()ρ () v d ρ( ) DJ d DJ J()ρ ( ) v v d J ( ( ) d J So, th patton functon s Z N! DJ v d ( J () ) D s ρ H 0 () d [ µ ( )+ J( )]ρ () wh DJ v d J( ) Th advantag of th Hubbad-Statanovch tansfomaton s that w hav placd a two-body ntacton wth a on-body ntacton wth a chmcal potntal J( ). Ths ducs th poblm to on of non-ntactng chans n a spatally vayng chmcal potntal. Not that ρ () ρ () Wh ρ () ds So, w can wt Z: Z N! δ ( s ) ( [ ]) N DJ Z µ + J v d ( J ( ) wh Z [ µ+j] s th patton functon of a sngl chan n chmcal potntal µ ()+J ( ). Lt µ µ+ J. Thn w hav 7

Z [] µ D s βh 0 d µ ( )ρ () *Dgsson on Fou tansfomatons: I wll us th convnton f d f () f () δ ( ) δ, f d. ( ) + ( ) So d µ ( )ρ( ) µ ρ. f Not: w a fxng ρ so 0 µ 0 0. Also, ρ 0 fo 0. Now xpand th xponntal n Z. µ ρ + µ ρ + µ µ ρ ρ +... Z [] µ Z 0 + µ µ ρ ρ +... Dfn Mg ρ ρ. Ths s th fom facto of th chan. R-xponntat: Z µ [] Z 0 M g µ µ +... Substtut bac nto Z: lt c NM b th monom dnsty. Thn th patton functon fo th many-chan systm s Z Z 0 ( ) N N! DJ +... cg µ + J v J Z 8

Z Z 0 ( ) N N! cg µ µ DJ cg µ J cg + v J J Solv by saddlpont appoxmaton: agumnt of xponntal has zo dvatv whn cg µ cg + v J J cg µ cg + v Evaluat agumnt at saddlpont: c g cg + v µ µ + c g µ µ cg + v c g cg + v µ µ Z Z 0 ( ) N N! Th f ngy s cg cg cg + v 0 N µ µ Z N! cg +vcg µ µ. βw ln Z stuff cg +vcg µ µ Th colatons functons satsfy ρ ρ β W cg. µ µ + vcg So w hav ρ ρ v+ cg Ths s th RPA sult fo th colaton functon. Rcall that Mg ρ ρ fo a sngl chan, wh g s th fom facto. g Mf( Mb 6) Mf( Rg ) wh f() x x ( x + x) s th Dby functon (s Do & Edwads, pp. -3). 9

f() x 3 x x x 0 x M g ~ Rg Incasng v just flattns th cuv out. RPA s a good way to dv man-fld f ngs and colaton functons. 0

I. Fld thotcal dvaton of Dby-Hücl thoy. Consd N + ons of valncy Z + N + Z + N Z N - ons of valncy by lctonutalty Z Lt n ± 0 N ± avag dnsty of ach spcs n ± ρ() z + n + and βh l B N ± () δ ( ) local dnsty of ach spcs () z n () ()ρ( ) d d ρ wh B εt Rwt ths n matx fom: s th Bjum lngth. lt n () () () n + n ( ) B z + z + z z + z z Thn ()ρ() ρ n () ( ) n () βh l d d n() ( ) n In Fou spac: βh l n n wh 4 π z B + z + z z + z z

In addton, w can ntoduc µ () µ + ( ) and βh µ () colaton functons. d µ ( ) n( ) n od to calculat Th patton functon s thn gvn by Z N +! N! D + D βh βh Cay out th Hubbad-Statanovch tansfomaton: n v n DJ + DJ + DJ DJ n J J J J J wh J () J + () J () Not that J ± () s l ± βφ() As bfo, potntal actng at du to oth chags Z N +! N! DJ ± J J D ± ( µ +J) n ( [ ]) N± Z µ +J ± wh Z [ µ+j ± ] D ± µ ± n ± fo a +/- on. Agan, dfn µ µ + J and xamn th sngl patcl patton functon. Z [ µ ± ] Z ± µ ± g ± µ ± ( )+ H O T wh g ± s th fom facto of th +/- on. ( Z [ µ ± ]) N ± tuncat n Dby-Hücl thoy. Ths s quvalnt to assumng lctostatc ngy s wa compad to T. N Z ± ± N ± µ ± g ± µ ±

( [ µ + ]) N + So, Z ( Z [ µ ]) N Z + N + Z N µ G µ wh G n 0 + g + 0. 0 n 0 g Substtut bac nto Z: Z Z N + + N +! Z N N! DJ ± ( µ + J) G ( µ + J) DJ ± J J J J Cay out th Gaussan ntgals (s Do and Edwads appndx.i) Dnomnato: Numato: J J DJ ± π DJ ± µ G J f J ( G + ) J DJ ± G µ π f G + µ G G + So Z Z N + + N +! N Z N! µ G µ G + wh G G ( ( G + ) G) G ( + G) o quvalntly, N + N Z Z Z + N +!N! v µ G µ + G / Fo pont patcls, Z, g () ± ±. So Z N + N N +! N! Π + G µ G µ To gt th f ngy, w can st µ 0. 3

βf β F ln Z n 0 + ln n 0 + +n 0 ln n 0 + Now ta th thmodynamc lmt: β f n + 0 ln n + 0 + n 0 ln n 0 + d ln + G ( π) 3 ln + G + G dt + 4π B n + 0 z + n + 0 z + z 4π B n 0 z + z 4π B + 4π B n 0 z + 4π B n 0 + z + +n 0 z + κ. So fo pont patcls, β f n 0 + ln n 0 + + n 0 ln n 0 + d 3 ln + κ ( π) 3 lt x κ subtact slf-ngy κ β f n 0 + ln n 0 + + n 0 ln n 0 + κ 3 d 3 x ln + ( π) 3 x x So th fnal answ s: βf n + 0 lnn + 0 +n 0 lnn 0 κ3 π 6π Sam answ as bfo fom standad appoach! Loo at colatons: n + ()n () δβf δµ + δµ µ 0 4

Th f ngy contbuton fom µ 0 tms s v wh G G ( + G). µ G µ Th advantag of ths appoach s that w can now wt down th Dby-Hücl f ngy fo patcls of abtay stuctu. Rcall β f n + 0 ln n + 0 + n 0 ln n 0 + wh + G dt () + G + κ + 4π B d 3 ln( + G) ( π) 3 n 0 + z + g + () n 0 4π z + z B g () () + 4π B n 0 z g () n + 0 z + z 4π B g + wh κ () 4π B n 0 + z + g + +n 0 z g Fo xampl, suppos th ons a sphs of damt a. Thn κ () κ g wh sna acosa g 3 ( a) 3 s th fom facto of a sph. So a mo gnal xpsson fo th f ngy s β f n 0 + ln n 0 + + n 0 ln n 0 + d 3 ln + κ ( π) 3 κ Fo th gnal cas, th FT of th chag colaton functon s ρ ρ +κ [ 0 g + ()+n 0 g () ] () n + 5

. Fld-thotcal dvaton of Posson-Boltzmann thoy Suppos th a fxd chags wth som dstbuton σ( )< 0. Assum that th N countons a pont chags of valncy z. Thn th patton functon s Z N N! wh D βh βh B z d d n() n ()+z B d d n() σ () + B d d σ() σ () dn()µ B d d [ zn ()+σ ]( )[ zn ( )+σ ( )] n ()µ()d () lt n () zn()+σ. thn βh B d d n () ( ) n ( ) dn ()µ Intoduc th Hubbad-Statanovch tansfomaton:. B n n n J DJ DJ B B J J J J So Z N! D N! N! DJ n J nµ DJ B DJ B J J J J B D ( zn+σ ) σ J wh µ () µ ()+zj (). J J J +nµ D n µ 6

Not that ( ) 4π δ Is th nvs opato fo th Coulomb ntacton. Why? By dfnton, th nvs opato satsfs d ( )( ) δ Fom Posson s quaton ε () 4π ε δ ( ) 4π ( ) δ So d ( )( ) 4π So ( ) 4π δ Now loo at Z [] µ d d dδ d µ ( ) so w hav n µ ( )d µ ( ) Z N N! DJ B J J σ ( ) J()d [ d µ ()+ zj( ) ] N Now loo at th gand canoncal patton functon: [] Ξ λ N Z N µ N J J DJ B σj N! λn Z µ +zj N ( [ ]) N 7

Ξ J J + σj DJ B Loo at λ µ + zj d J J d d J() δ ( )J 4π + 4π d d J () J ( J ()) 4π So th gand canoncal patton functon s Ξ DJ 4π B ( J) + σ J + λ µ +zj Fom th patton functon, w can fnd th avag local dnsty: n () δln Ξ δµ λ zj() () µ 0 Now cay out th saddl pont appoxmaton fo th ntgal ov J. (st µ 0) lt F 8π B Thn w hav Ξ DJ Fd ( J) σ ()J () λ z J( ) Th agumnt of th xponntal s xtmzd whn δf δj 0 F J F J 0 σ () zλ +z J() 4π B J. J 4π B [ σ () zλ z J( ) ] 4π B σ( ) z n() [ ] 8

But call that J() s th ffctv lctostatc potntal du to all of th oth chags. J+β Φ Φ 4π ε [ σ ()+ zn() ] 4 π ε [ σ()+z n ()] Ths s th Posson-Boltzmann quaton. 9