Gamma-ray variability of radio-loud narrow-line Seyfert 1 galaxies

Similar documents
Gamma-ray emitting narrow-line Seyfert 1 galaxies and their place in the AGN zoo

Not only typical flaring blazars in the Fermi gamma-ray sky. The strange cases of SBS and PKS

PoS(NLS1)051. Global evlbi observations of the radio loud NLS1 PMN J

Active Galactic Nuclei in the MeV-GeV band (first results from Fermi)

Recent Results from VERITAS

Gamma-Rays from Radio Galaxies: Fermi-LAT

Flaring Active Galactic Nuclei: the view from Fermi-LAT

Introduction to AGN. General Characteristics History Components of AGN The AGN Zoo

The radio/gamma-ray connection in Active Galactic Nuclei in the Fermi era

The third Fermi LAT AGN catalogue and beyond

OVERVIEW OF A 3C279 s FLARE and SIMULATION OF AGNs

PoS(SWIFT 10)142. The Swift-XRT observations of HBL Source 1ES

Global evlbi observations of the first gamma-ray RL NLS1

Non-Blazar Gamma-ray Active Galactic Nuclei seen by Fermi-LAT. C.C. Teddy Cheung Naval Research Lab/NRC on behalf of the Fermi-LAT Collaboration

Galaxies with Active Nuclei. Active Galactic Nuclei Seyfert Galaxies Radio Galaxies Quasars Supermassive Black Holes

Bright gamma-ray sources observed by DArk Matter Particle Explorer

PoS(extremesky2009)018

Gamma-ray observations of millisecond pulsars with the Fermi LAT. Lucas Guillemot, MPIfR Bonn. NS2012 in Bonn 27/02/12.

The Narrow-Line Region of Narrow-Line Seyfert 1 Galaxies

Guiding Questions. Active Galaxies. Quasars look like stars but have huge redshifts

X-ray variability of AGN

POWERFUL RELATIVISTIC JETS IN SPIRAL GALAXIES

Hubble Space Telescope ultraviolet spectroscopy of blazars: emission lines properties and black hole masses. E. Pian, R. Falomo, A.

Lecture 9. Quasars, Active Galaxies and AGN

The Extragalactic Gamma-Ray View of AGILE and Fermi

Parsec-Scale Jet Properties of Fermi-detected AGN

Active Galactic Nuclei OIII

Active Galaxies & Quasars

A. Chen (INAF-IASF Milano) On behalf of the Fermi collaboration

Sources of GeV Photons and the Fermi Results

Gamma-ray Observations of Blazars with VERITAS and Fermi

arxiv: v1 [astro-ph.he] 2 Jul 2010

Black Holes and Active Galactic Nuclei

Status of the MAGIC telescopes

arxiv: v1 [astro-ph.he] 27 Sep 2016

ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

Optical Polarimetry and Gamma-Ray Observations of a Sample of Radio-Loud Narrow Line Seyfert 1 Galaxies

arxiv: v1 [astro-ph.he] 18 Dec 2017

Gamma-Ray-emitting Narrow-line Seyfert 1 Galaxies in the Sloan Digital Sky Survey

The extreme ends of the spectrum: the radio/gamma connection

Astr 2320 Thurs. April 27, 2017 Today s Topics. Chapter 21: Active Galaxies and Quasars

Quasars and Active Galactic Nuclei (AGN)

Doppler boosting as the generator of the blazar sequence

MERLIN 18cm observations of intermediate redshift NLS1 galaxies

Investigating the jet structure and its link with the location of the high-energy emitting region in radio-loud AGN

Active Galactic Nuclei

TEMA 6. Continuum Emission

A Unified Model for AGN. Ryan Yamada Astro 671 March 27, 2006

Gamma-ray observations of blazars with the Whipple 10 m telescope

The Broadband Emission Properties of AGN Jets

EBL Studies with the Fermi Gamma-ray Space Telescope

NuSTAR observation of the Arches cluster: X-ray spectrum extraction from a 2D image

Chapter 17. Active Galaxies and Supermassive Black Holes

Active galaxies. Some History Classification scheme Building blocks Some important results

VERITAS detection of VHE emission from the optically bright quasar OJ 287

On the Spectral Shape of Gamma-ray Pulsars Above the Break Energy

Diffuse Gamma-Ray Emission

Observations of the Crab Nebula with Early HAWC Data

OAGH NIR photometric and spectral monitoring program of AGNs. V. Chavushyan, A. Porras, E. Recillas, J. León-Tavares, V. Patiño, A.

Energy-dependent variability in blazars SSC simulations

Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation

High redshift blazars

PoS(NEUTEL2017)079. Blazar origin of some IceCube events

The gamma-ray source-count distribution as a function of energy

Science of Compact X-Ray and Gamma-ray Objects: MAXI and GLAST

arxiv: v1 [astro-ph.he] 28 Aug 2015

The γ-ray Milky Way above 10 GeV: Distinguishing Sources from Diffuse Emission

Markus Boettcher Centre for Space Research, North-West University, Potchefstroom, 2520, South Africa

Active Galaxies and Quasars

VERITAS detection of VHE emission from the optically bright quasar OJ 287

A zoo of transient sources. (c)2017 van Putten 1

Cherenkov Telescope Array ELINA LINDFORS, TUORLA OBSERVATORY ON BEHALF OF CTA CONSORTIUM, TAUP

Fermi: Highlights of GeV Gamma-ray Astronomy

Vera Genten. AGN (Active Galactic Nuclei)

Lecture Outlines. Chapter 24. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

The 2006 Giant Flare in PKS and Unidentified TeV Sources. Justin Finke Naval Research Laboratory 5 June 2008

Using Faraday rotation sign-reversals to study magnetic fields in AGN jets

Properties of Narrow line Seyfert 1 galaxies

Luminosity dependent covering factor of the dust torus around AGN viewed with AKARI and WISE

Ryosuke Itoh. Tokyo Institute of technology.

A hydrodynamical model for the Fermi-LAT γ-ray light curve of Blazar PKS

Radio counterparts of gamma-ray pulsars

AGILE and Blazars: the Unexpected, the Unprecedented, and the Uncut

Chapter 19 Galaxies. Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past. halo

Optical polarisation variability of narrow line Seyfert 1 galaxies

The overall uncertainty of single-epoch virial black hole mass estimates and its implication to the M BH -σ relation

Kinematics of AGN jets

Constraining Dark Matter annihilation with the Fermi-LAT isotropic gamma-ray background

Mattia Di Mauro Eric Charles, Matthew Wood

Quasars and AGN. What are quasars and how do they differ from galaxies? What powers AGN s. Jets and outflows from QSOs and AGNs

Galaxies. Galaxy Diversity. Galaxies, AGN and Quasars. Physics 113 Goderya

Multi-Wavelength Observations of PG

PoS(INTEGRAL 2010)012

Active Galactic Nuclei

M87 in context: the radio gamma-ray connection in misaligned AGNs

Radio-loud Narrow-Line Seyfert 1 Galaxies

Radio and gamma-ray emission in Faint BL Lacs

arxiv:astro-ph/ v1 6 May 2004

PoS(Extremesky 2011)055

Transcription:

Gamma-ray variability of radio-loud narrow-line Seyfert 1 galaxies Università di Milano - Bicocca, Dip. di Fisica G. Occhialini, Piazza della Scienza 3, I-20126 Milano, Italy E-mail: giorgio.calderone@mib.infn.it The variability of γ-ray emission from radio-loud narrow-line Seyfert 1 galaxies has been recently confirmed on a rather firm statistical basis [6]. In this work we extend the variability analysis by including data from Fermi/LAT up to june 2011 and by using the latest release of the ScienceTools software package and of the LAT instrument response function. Narrow-Line Seyfert 1 Galaxies and their place in the Universe - NLS1, April 04-06, 2011 Milan Italy Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

1. Introduction Narrow-line Seyfert 1 galaxies are a peculiar class of Type 1 AGN which shows unusually narrow permitted Balmer lines with FWHM 2000 km s 1, as well as a strong FeII bump, a soft X-ray excess and flux ratio [OIII]/Hβ <3 [12, 13]. These sources are usually weak radio emitters, although few of them ( 7%) are formally radio-loud [10, 14]. Such sources are dubbed radioloud narrow-line Seyfert 1 galaxies (RL-NLS1). Recently it has been shown that some radio-loud narrow-line Seyfert 1 galaxies are also γ-ray emitters [7, 1, 2, 3]. The radio properties of RL-NLS1 (namely variability, flat spectrum and high brightness temperature) suggests some similarities with blazars, i.e. the presence of a relativstic jet closely aligned to the line of sight, as speculated by several authors [16, 10, 15, 14, 8, 9]. The detection of γ-ray emission from these sources goes exactly in this direction. An important issue about γ-ray detection of RL-NLS1 galaxies is the variability of the emission. Steady γ-ray emission may be due to an intense star formation in the host galaxy [4], thus detection of variability allows us to exclude a starburst activity as the main origin of the γ-ray emission from RL-NLS1. Furthermore, the measure of a variability timescale allow to estimate an upper limit to the size of the region where γ-ray photons are emitted. These studies have been undertaken by Calderone et al. 2011 [6] (hereafter C11) using data from Fermi/LAT for the four sources PMN J0948+0022 (z=0.59), 1H 0323+342 (z=0.06), PKS 1502+036 (z=0.41) and PKS 2004-447 (z=0.24). It turned out that the γ-ray emission from the four analyzed RL-NLS1 is actually variable with a high level of significance and that the minimum variability timescale lie in the range 3 30 days. In this work we repeat the same analysis performed in C11, but using data covering a longer period, as well as the latest versions of the ScienceTools software package and of the instrument response function released by the LAT team. 2. Data analysis Here we will briefly review the data analysis process, for a deeper discussion see C11 and references therein. The ScienceTools software version used in this work is 9.23.1 and the LAT Instrument Response Function (IRF) is P6_V11. Analyzed data span a period of 34 months, from august 2008 to june 2011 and covers a Regions Of Interest (ROI) of 10 around each of the four source s catalog positions. The unbinned likelihood data analysis has been performed following the standard procedures described in the Fermi/LAT documentation: we modeled each source in the LAT 1-year point source catalog [5] inside the ROI with a power law in the range 0.1 100 GeV. We extracted light curves using time bins of 15 days (Fig. 1; time binning for PKS 2004-447 is 30 days) using a TS threshold of 10 (TS>10, roughly equivalent to 3σ, [11]). For non-significant detection (TS<10) we computed an upper limit to the flux by varying the source flux value (obtained through maximization of likelihood) until TS reaches a value of 4 [5]. Resulting fluxes corresponds to 2σ upper limits, and are denoted with arrows in the figure. If TS<1 we didn t compute the upper limit since it would be overestimated. Then we performed a chi-squared test against the null hypotesis of constant flux equal to a reference value. In C11 we used the flux estimate obtained with a single likelihood analysis over the entire period of 26 months as reference value. In this work we use a reference flux equal to the weighted mean of the fluxes measured in each time bin, thus we expect 2

Figure 1: Upper panels show light curves for detections with TS>10. Flux units are 10 6 ph cm 2 s 1 in the range 0.1 100 GeV. Vertical error bars correspond to 1σ errors, horizontal bars corresponds to the time binning (15 days for PMN J0948+0022, 1H 0323+342 and PKS 1502+036, 30 days for PKS 2004-447). Upper limits (TS<10) denoted by arrows are given 2σ significance level. Middle panels: photon indices. Vertical error bars correspond to 1σ errors. Horizontal dashed lines in upper and middle panels are the weighted mean flux over the period of 34 months and weigthed mean photon index respectively. Lower panels: TS values (plus symbols) and number of counts associated to the analyzed source (triangle symbols, values on the right axis). to find a smaller value of χ 2. Furthermore, in C11 the minimum binning interval was 6 hours, while in this work is 1 day. Results are given in Tab. 2 (col. 7 and 8). To estimate a minimum variability timescale we further proceed in analyzing data by recursively halving the time bin interval for each time bin with significant detection (TS>10). Then, we considered all combinations of non-overlapping time bins having a significant detection in both time bins, a flux difference greater than the greatest flux error involved at the 3σ level, a count difference significant at the 3σ level (assuming a Poisson statistic) and number of counts greater than 3 in both bins. For such pairs of bins we computed the e-folding timescale (that is the time needed to change the flux by a factor 2.7) and took the smaller value as the minimum variability timescale τ. Finally, we computed the associated error by error propagation (Eq. 1 and 2 in C11). Results are given in Tab. 2 (col. 9). Quantities involved in calculation of τ and τ are given in Tab. 2. 3. Discussion and conclusions We used data from Fermi/LAT in order to assess the variability of γ-ray emission of four RL- NLS1. The same analysis has been performed in C11 [6], the only differences being: the length 3

Source z D L R L γ Γ χ 2 DOF τ [Gpc] [10 45 erg s 1 ] [days] PMN J0948+0022 0.59 3.40 1000 308.00 2.872 148 42 4.6 ± 3.3 1H 0323+342 0.06 0.27 151 0.63 3.143 34 10 1.3 ± 0.7 PKS 1502+036 0.41 2.20 1549 49.57 2.486 201 24 53.5 ± 50.6 PKS 2004-447 0.24 1.20 6320 0.55 2.657 240 3 86.5 ± 44.4 Table 1: Data and results of the analysis on the four RL-NLS1 sources. Columns are: (1) name of the source; (2) redshift; (3) luminosity distance; (4) radio loudness; (5) γ-ray luminosity (0.1 100 GeV) corresponding to the weighted mean of fluxes in the light curves; (6) weighted mean of photon indices; (7) χ 2 and (8) DOF computed on the light curves in the null hypotesis of constant flux equal to the weighted mean flux; (9) minimum e-folding variability timescale with error at 3σ level. Source t 1 t 2 F 3 γ N / t TS [days] [days] [10 6 ph cm 2 s 1 ] [cts days 1 ] PMN J0948+0022 709.40 7.50 0.406 ±0.015 6.9 54 703.30 0.94 1.510 ±0.215 29.7 58 1H 0323+342 251.00 1.88 0.270 ±0.054 7.9 10 253.30 0.94 1.569 ±0.065 33.9 36 PKS 1502+036 255.70 30.00 0.085 ±0.032 2.0 16 334.40 7.50 0.369 ±0.079 5.6 22 PKS 2004-447 75.66 30.00 0.001 ±0.001 0.1 19 527.50 3.75 0.264 ±0.043 4.3 12 Table 2: Quantities involved in the computation of the minimum e-folding variability timescale. Figure 2: Detailed view on the bins (denoted by squares) involved in the computation of the minimum variability timescale. Units and meaning of symbols are the same as in Fig. 1 (upper and lower panels). Flux symbols have been changed to for a clearer visibility. See also Tab. 2. 4

of the period of analysis ( 34 months vs. 26 months), the version of the ScienceTools software package 4 (9.23.1 vs. 9.15.2), the LAT instrument response function (P6_V11 vs. P6_V3), the reference flux used in calculation of χ 2 (weighted mean of fluxes in light curve vs. flux computed in a single likelihood analysis covering the entire period), the minimum time binning interval ( 1 day vs. 6 hours). A statistically significant variability over the period of 34 months is present for all sources, although with a lower level of significance with respect to C11. This is mainly due to the choice of using the weighted mean of fluxes in the light curve as a reference, that is the value which minimizes the χ 2 by definition. Also, the new flux estimates show slightly greater errors than with previous releases of software and IRF, resulting in lower values of χ 2 and greater estimates of minimum variability timescales with respect to the result given in C11. An important exception is the minimum variability timescale for the source 1H 0323+342, which is significantly smaller in this work rather than in C11. This is because one of the bin involved in calculation has a TS value which is slightly greater than the threshold (see Tab. 2), while it was below the threshold in C11, thus it was excluded from our calculation. This example clearly highlights that our estimates of minimum variability timescale should actually be considered as upper limits, rather than measures, of the intrinsic variability timescale of the source. The case of 1H 0323+342, as well as PMN J0948+0022 in this work and C11, clearly shows that at least two RL-NLS1 are able to change their γ-ray flux significantly on timescales on the order of few days. This allows to set an upper limit to the size of the emitting region R blob δcτ/(1+z) 0.8 18 δ 1 10 17 cm, where δ 1 = δ/10 is the relativistic Doppler factor and z is the redshift. Thus we can rule out the possibility that the γ-ray emission is due to an intense star formation rate in the host galaxy, and support the hypotesis of the presence of a jet closely aligned to the line of sight. In summary, the results of C11 are confirmed in this work, where we used the new version of the software package and of the LAT instrument response function. The significance of the variability and the minimum variability timescales clearly depends on the way they are measured, but in any case we can be confident that the RL-NLS1 sources analyzed here are actually variable γ-ray emitters and that the minimum observed timescales are of the order of a few days for at least two sources. References [1] A. A. Abdo et al. (Fermi/LAT Collaboration): Fermi/Large Area Telescope Discovery of Gamma-Ray Emission from a Relativistic Jet in the Narrow-Line Quasar PMN J0948+0022. ApJ, 699 (2009) 976. [2] A. A. Abdo et al. (Fermi/LAT Collaboration): Multiwavelength Monitoring of the Enigmatic Narrow-Line Seyfert 1 PMN J0948+0022 in 2009 March-July. ApJ, 707 (2009) 727. [3] A. A. Abdo et al. (Fermi/LAT Collaboration): Radio-Loud Narrow-Line Seyfert 1 as a New Class of Gamma-Ray Active Galactic Nuclei. ApJ, 707 (2009) L142. [4] A. A. Abdo et al. (Fermi/LAT Collaboration): Detection of Gamma-Ray Emission from the Starburst Galaxies M82 and NGC 253 with the Large Area Telescope on Fermi. ApJ, 709 (2010) L152. [5] A. A. Abdo et al. (Fermi/LAT Collaboration): Fermi Large Area Telescope First Source Catalog. ApJS, 188 (2010) 405. 4 The discrepancies in results between versions are statistically compatible with zero, although there may be significant differences for low values of TS. 5

[6] et al.: γ-ray variability of radio-loud narrow-line Seyfert 1 galaxies. MNRAS, 413 (2011) 2365. [7] L. Foschini et al.: Fermi/LAT discovery of gamma-ray emission from a relativistic jet in the narrow-line Seyfert 1 quasar PMN J0948+0022. In: Accretion and Ejection in AGNs: a global view, L. Maraschi et al. eds, ASP Conference Series 427 (2010) 243. [8] L. Foschini et al.: Blazar nuclei in radio-loud narrow-line Seyfert 1? Advances in Space Research, 43 (2009) 889. [9] M. Gu and Y. Chen: The Compact Radio Structure of Radio-loud Narrow Line Seyfert 1 Galaxies. AJ, 139 (2010) 2612. [10] S. Komossa et al.: Radio-loud Narrow-Line Type 1 Quasars. AJ, 132 (2006) 531. [11] J. R. Mattox et al.: The Likelihood Analysis of EGRET Data. ApJ, 461 (1996) 396. [12] D. E. Osterbrock and R. W. Pogge: The spectra of narrow-line Seyfert 1 galaxies. ApJ, 297 (1985) 166. [13] R. W. Pogge: Narrow-line Seyfert 1s: 15 years later. New Astronomy Review, 44 (2000) 381. [14] W. Yuan et al.: A Population of Radio-Loud Narrow-Line Seyfert 1 Galaxies with Blazar-Like Properties? ApJ, 685 (2008) 801. [15] H. Zhou et al.: A Narrow-Line Seyfert 1-Blazar Composite Nucleus in 2MASX J0324+3410. ApJ, 658 (2007) L13. [16] H.-Y. Zhou et al.: SDSS J094857.3+002225: A Very Radio Loud, Narrow-Line Quasar with Relativistic Jets? ApJ, 584 (2003) 147. 6