What do we see? LHC lecture, Heidelberg, 1 Feb, Kai Schweda

Similar documents
(Some) Bulk Properties at RHIC

Space-time evolution of the Quark Gluon Plasma. Klaus Reygers / Kai Schweda Physikalisches Institut University of Heidelberg

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April

Exploring dense matter at FAIR: The CBM Experiment

Energy scan programs in HIC

The ALICE experiment at LHC. Experimental conditions at LHC The ALICE detector Some physics observables Conclusions

Beijing. Charmed hadron signals of partonic medium. Olena Linnyk

The Quark-Gluon Plasma and the ALICE Experiment

Event anisotropy at RHIC

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond

Status of Heavy-Ion Physics at the LHC

Ultra-Relativistic Heavy Ion Collision Results

Heavy Flavours in ALICE

Overview* of experimental results in heavy ion collisions

annihilation of charm quarks in the plasma

Production of Charmed Hadrons by Statistical Hadronization of a Quark Gluon Plasma as a proof of deconfinement

Quark Gluon Plasma Recent Advances

Hard probes to diagnose the QGP at the LHC

Introduction to Heavy Ion Physics at the LHC

Bulk matter formed in Pb Pb collisions at the LHC

Outline: Introduction and Motivation

Roberta Arnaldi INFN, Torino for the ALICE Collaboration. Quarkonia in deconfined matter Acitrezza, September 28 th -30 th

Identified particles in pp and Pb-Pb collisions at LHC energies with the ALICE Detector

Heavy-flavour meson production at RHIC

Shingo Sakai Univ. of California, Los Angeles

Outline: Open charm in heavy-ion collisions. A Heavy-Ion Seminar talk by Szymon Harabasz

Selected highlights from the STAR experiment at RHIC

Heavy Ions at the LHC: First Results

Selected highlights from RHIC

The Quark-Gluon plasma in the LHC era

Heavy Flavor Results from STAR

Overview of Quarkonium Production in Heavy-Ion Collisions at LHC

Review of Signals of Deconfinement

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s

Indications for the Onset of Deconfinement in Pb+Pb collisions at the SPS

Heavy quark results from STAR

Elliptic flow. p y. Non-central collision of spherical nuclei or central collision of deformed nuclei. Overlapping zone is of almond shape

arxiv:hep-ph/ v2 8 Aug 2002

Outlook: 1) Hard probes: definitions. 2) High p T hadrons. 3) Heavy Flavours

SMR/ International Workshop on QCD at Cosmic Energies III. 28 May - 1 June, Lecture Notes. E. Zabrodin University of Oslo Oslo, Norway

STAR Open Heavy Flavor Measurements

First results with heavy-ion collisions at the LHC with ALICE

The Flavors of the Quark-Gluon Plasma

Heavy flavor with

Quarkonium results in pa & AA: from RHIC to LHC

Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC

Open heavy-flavour production in pp, p Pb and Pb Pb collisions in ALICE

Heavy flavour production at RHIC and LHC

Hadronic equation of state and relativistic heavy-ion collisions

+ High p T with ATLAS and CMS in Heavy-Ion 2.76TeV

Exploring the Quark Gluon Plasma with ALICE at the LHC

arxiv: v1 [hep-ex] 14 Jan 2016

Phenomenology of Heavy-Ion Collisions

Lepton and Charm Measurements in the First Two Years of RHIC: An Experimental Overview

Heavy flavour measurements with ALICE. heavy ion collisions & QGP heavy flavours & QGP ALICE detector overview selected physics channels

Prospects with Heavy Ions at the LHC

Heavy quark(onium) at LHC: the statistical hadronization case

Resonance production in a thermal model

Lessons from RHIC and Potential Discoveries at LHC with Ions

Questions for the LHC resulting from RHIC Strangeness

Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN. = GeV at RHIC

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions

Exploring the Quark-Gluon Plasma with ALICE at the LHC

Charm production at RHIC

51st Rencontres de Moriond QCD and High Energy Interactions La Thiule, IT 25/Mar/2016. Manuel Calderón de la Barca Sánchez

Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC

Charmonium Production and the Quark Gluon Plasma

Space-time Evolution of A+A collision

The History and Lessons of the Hagedorn Model

Outline: Introduction

arxiv: v1 [nucl-ex] 12 May 2008

Light flavour hadron production in the ALICE experiment at LHC

Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned:

Experimental test of gauge theories: the QCD phase diagram at high temperature

Experimental summary: heavy-flavour production at the LHC

Strangeness production in relativistic heavy ion collisions

The Physics of RHIC Peter Jacobs Lawrence Berkeley National Laboratory

Comparing Initial Conditions in a (3+1)d Boltzmann + Hydrodynamics Transport Approach

Heavy Ion Physics Lecture 3: Particle Production

Creating a Quark Gluon Plasma With Heavy Ion Collisions

Heavy-flavor production in pp and Pb Pb collisions at LHC with ALICE

Jet Physics with ALICE

Penetrating probe of the hot, dense medium

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Hints of incomplete thermalization in RHIC data

Anisotropic Flow: from RHIC to the LHC

Quarkonium production in CMS

A Senior Honors Thesis

Perspectives for the measurement of beauty production via semileptonic decays in ALICE

Thermal dileptons as fireball probes at SIS energies

Hadronic Effects on T cc in Relativistic Heavy Ion Collisions

arxiv: v1 [nucl-ex] 22 Jan 2012

Further development of the hydrokinetic model and description of the RHIC and LHC A+A femtoscopic data

Heavy-Quark Transport in the QGP

Heavy Quarks in Heavy-Ion Collisions

Heavy-Quark Transport in the QGP

IKF. H-QM Quark Matter Studies. Quarkonia Measurements with ALICE. Frederick Kramer. WWND, Ocho Rios, Jan 8, IKF, Goethe-Universität Frankfurt

arxiv: v1 [nucl-ex] 10 Feb 2012

arxiv: v1 [nucl-ex] 7 Jan 2019

Quarkonia and open heavy-flavour production in high multiplicity pp collisions

Transcription:

What do we see? 1/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

Hadron spectra from RHIC p+p and Au+Au collisions at 200 GeV Full kinematic reconstruction of (multi-) strange hadrons in large acceptance of STAR White papers - STAR: Nucl. Phys. A757, p102. 2/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

Outline Introduction Collectivity at RHIC - transverse radial flow - tranverse elliptic flow - extracting η/s Heavy quark dynamics Outlook 3/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

HI - Collision History T c(ritical) : quarks and gluon hadrons, T c(ritical) = 160 MeV T ch(emical) : hadron abundancies freeze out T fo : particle spectra freeze out Plot: R. Stock, arxiv:0807.1610 [nucl-ex]. 4/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

Chemical Freeze-out Model Hadron resonance ideal gas Density of particle i Refs. J.Rafelski PLB(1991)333 P. Braun-Munzinger et al., nucl-th/0304013 µ B = 3µ q µ S = µ q -µ s Q i s i g i m i : 1 for u and d, -1 for u and d : 1 for s, -1 for s : spin-isospin freedom : particle mass T ch : Chemical freeze-out temperature µ q : light-quark chemical potential µ s : strange-quark chemical potential V : volume term, drops out for ratios! : strangeness under-saturation factor All resonances and unstable particles are decayed γ s Compare particle ratios to experimental data 5/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

Example At RHIC, Au+Au @ 200 GeV: T ch = 160 MeV, µ B = 20 MeV Anti-proton to proton ratio: Volume drops out Pbar/p = exp[(-20 MeV - 20 MeV)/160 MeV] = 0.77 ψ /J/ψ = (m ψ /m J/ψ ) 2 * K 2 (m ψ /160 MeV)/ K 2 (m J/ψ /160 MeV) = 3% Experimentally: measure particle yields and ratio to extract T ch and µ B 6/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

Hadron Yield Ratios 1) At RHIC: T ch = 160 ± 10 MeV µ B = 25 ± 5 MeV 2) γ S = 1. The hadronic system is thermalized at RHIC. 3) Short-lived resonances show deviations. There is life after chemical freeze-out. RHIC white papers - 2005, Nucl. Phys. A757, STAR: p102; PHENIX: p184; Statistical Model calculations: P. Braun-Munzinger et al. nucl-th/0304013. LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

Chemical Freeze-Out vs Energy With increasing energy: T ch increases and saturates at T ch = 160 MeV Coincides with Hagedorn temperature Coincides with early lattice results limiting temperature for hadrons, T ch 160 MeV! µ B decreases, µ B = 1MeV at LHC Nearly net-baryon free! A. Andronic et al., NPA 772 (2006) 167. 8/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

QCD Phase Diagram 9/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

Baryon Ratios With increasing energy: Baryon ratios approach unity At LHC, pbar / p 0.95 with increasing collision energy, production of matter and anti-matter gets closer Compilation: N. Xu 10/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

Elementary p+p Collisions Low multiplicities use canonical ensemble: Strangeness locally conserved! particle yields are well reproduced Strangeness not equilibrated! (γ s = 0.5) Statistical Model Fit: F. Becattini and U. Heinz, Z. Phys. C 76, 269 (1997). 11/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

HI - Collision History T c(ritical) : quarks and gluon hadrons, T c(ritical) = 160 MeV T ch(emical) : hadron abundancies freeze out, T ch(emical) = 160 MeV T fo : particle spectra freeze out Plot: R. Stock, arxiv:0807.1610 [nucl-ex]. 12/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

Collective Flow LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

Pressure, Flow, Thermodynamic identity σ entropy p pressure U energy V volume τ = k B T, thermal energy per dof " d! = du + pdv In A+A collisions, interactions among constituents and density distribution lead to: pressure gradient collective flow number of degrees of freedom (dof) Equation of State (EOS) cumulative partonic + hadronic 14/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

Momentum Distributions* ] c) -1 [(GeV/ dy d N dp T π π π K (de/dx) p K (de/dx) p K (kink) K (kink) T th =107±8 [MeV] <β t >=0.55±0.08 [c] n=0.65±0.09 χ 2 /dof=106/90 solid lines: fit range Typical mass ordering in inverse slope from light π to heavier Λ Two-parameter fit describes yields of π, K, p, Λ T th = 90 ± 10 MeV <β t > = 0.55 ± 0.08 c Disentangle 2 2 Λ Λ collective motion from thermal random walk p T [GeV/c] *Au+Au @130 GeV, STAR 15/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

(anti-)protons From RHIC Au+Au@130GeV More central collisions Centrality dependence: 2 T = pt + mass - spectra at low momentum de-populated, become flatter at larger momentum stronger collective flow in more central coll.! STAR: Phys. Rev. C70, 041901(R). 16/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda m 2

Thermal Model + Radial Flow Source is assumed to be: Fit in local thermal equilibration: T fo boosted in transverse radial direction: ρ = f(β s ) E.Schnedermann, J.Sollfrank, and U.Heinz, Phys. Rev. C48, 2462(1993) E d 3 N dp! $ µ 3 e"(u p µ )/T fo pd# µ % # dn R ' m! rdrm T K T cosh &* ' p $ 1 m T dm 0 ) T ( T, I T sinh& * 0 ) fo + ( T, fo + ' r * & = tanh "1 - T - T = - S ), ( R+.. = 0.5, 1, 2 boosted random 17/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

D-meson collective flow Large collective flow velocity Spectrum moves to larger momentum 18/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

HI - Collision History T c(ritical) : quarks and gluon hadrons, T c(ritical) = 160 MeV T ch(emical) : hadron abundancies freeze out, T ch(emical) = 160 MeV T fo : particle spectra freeze out, T fo 100 MeV :π, K, p Plot: R. Stock, arxiv:0807.1610 [nucl-ex]. 19/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

Kinetic Freeze-out at RHIC 1) Multi-strange hadrons φ and Ω freeze-out earlier than (π, K, p) Collectivity prior to hadronization STAR Preliminary 2) Sudden single freeze-out*: Resonance decays lower T fo for (π,( K, p) Collectivity prior to hadronization Partonic Collectivity? STAR Data: Nucl. Phys. A757, (2005 102), *A. Baran, W. Broniowski and W. Florkowski, Acta. Phys. Polon. B 35 (2004) 779. 20/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

Anisotropy Parameter v 2 coordinate-space-anisotropy momentum-space-anisotropy y p y x p x! = "y 2 # x 2 $ "y 2 + x 2 $ v 2 = cos2%, % = tan #1 ( p y p x ) Initial/final conditions, EoS, degrees of freedom

v 2 in the Low-p T Region P. Huovinen, private communications, 2004 - v 2 approx. linear in p T, mass ordering from light π to heavier Λ characteristic of hydrodynamic flow! sensitive to equation of state 22/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

Non-ideal Hydro-dynamics! s < 6 /4" finite shear viscosity η reduces elliptic flow many caveats, e.g.: - initial eccentricity ε (Glauber, CGC, ) - equation of state - hadronic contribution to η/s M.Luzum and R. Romatschke, PRC 78 034915 (2008); P. Romatschke, arxiv:0902.3663. String theory predicts: η/s > 1/4π 23/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

Elliptic Flow vs Collision Energy Glauber initial conditions Centrality dependence: - initial eccentricity ε - overlap area S Collision energy dep.: - multiplicity density dn ch /dy in central collisions at RHIC, hydro-limit seems reached! NA49, Phys. Rev. C68, 034903 (2003); STAR, Phys. Rev. C66, 034904 (2002); Hydro-calcs.: P. Kolb, J. Sollfrank, and U. Heinz, Phys. Rev.C62, 054909 (2000). 24/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

v 2 of φ and multi-strange Ω Strange-quark flow - partonic collectivity at RHIC! QM05 conference: M. Oldenburg; nucl-ex/0510026. 25/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

Collectivity, Deconfinement at RHIC - v 2, spectra of light hadrons and multi-strange hadrons - scaling with the number of constituent quarks At RHIC, it seems we have: Partonic Collectivity Deconfinement Thermalization? PHENIX: PRL91, 182301(03) STAR: PRL92, 052302(04) S. Voloshin, NPA715, 379(03) Models: Greco et al, PRC68, 034904(03) X. Dong, et al., Phys. Lett. B597, 328(04).. 26/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

Collectivity Energy Dependence Collectivity parameters <β T > and <v 2 > increase with collision energy strong collective expansion at RHIC! <β T > RHIC 0.6 expect strong partonic expansion at LHC, <β T > LHC 0.8, T fo T ch K.S., ISMD07, arxiv:0801.1436 [nucl-ex]. 27/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

Partonic Collectivity at RHIC 1) Copiously produced hadrons freeze-out π,k,p: T fo = 100 MeV, β T = 0.6 (c) > β T (SPS) 2) Multi-strange hadrons freeze-out: T fo = 160-170 MeV (~ T ch ), β T = 0.4 (c) 3) Multi-strange v 2 : φ and multi-strange hadrons Ξ and Ω do flow! 4) Model - dependent η/s: (0?),1-10 x 1/4π Deconfinement & Partonic (u,d,s) Collectivity! 28/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

Heavy Quarks LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

Heavy flavor: a unique probe m c,b >> Λ QCD : new scale m c,b const., m u,d,s const. Q 2 initial conditions: σ cc, σbb test pqcd, µ R, µ F probe gluon distribution X. Zhu, M. Bleicher, S.L. Huang, K.S., H. Stöcker, N. Xu, and P. Zhuang, PLB 647 (2007) 366. time early partonic stage: diffusion (γ), drag (α), flow probe thermalization hadronization: chiral symmetry restoration confinement statistical coalescence J/ψ enhancement / suppression LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

Limitations in PDFs Most charm created from gluons, e.g. g+g c + cbar increasing uncertainties in gluon distribution at smaller Bjorken x: Assume y=0, p T =0, x 1 =x 2 2 x m charm 3 GeV RHIC ( s=0.2tev): x = 0.015 LHC ( s=14tev): x = 2x10-4 31/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

Heavy Quark Production Heavy-quark production at LHC, compared to RHIC expect factors Charm 10 Beauty 100 (i) Heavy-quarks abundantly produced at LHC energies! (ii) Large theoretical uncertainties energy scan (LHC,FAIR) will help! Plots: R. Vogt,Eur. Phys. J. C, s10052-008-0809-x (2008). 32/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

Heavy quark Correlations PYTHIA: p + p @ 14 TeV c-cbar mesons are correlated Pair creation: back to back Gluon splitting: forward Flavor excitation: flat Exhibits strong correlations! Baseline at zero: clear measure of vanishing correlations! probe thermalization X. Zhu, M. Bleicher, S.L. Huang, K.S., H. Stöcker, N. Xu, and P. Zhuang, PLB 647 (2007) 366. G. Tsildeakis, H. Appelshäuser, K.S., J. Stachel, arxiv: 0908.0427. among partons! 33/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

How to measure Heavy- Quark Production e.g., D 0, cτ = 123 µm displaced decay vertex is signature of heavy-quark decay need precise pointing to collision vertex 34/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

Heavy Flavor production at RHIC large discrepancy between STAR and PHENIX: factor > 2 (!) need Si-vertex upgrades (> 2011) large theoretical uncertainties (factor > 10) Plot: J. Dunlop (STAR), QM2009, Open Heavy-flavor in heavy-ion collisions, Calcs: R. Vogt,Eur. Phys. J. C, s10052-008-0809-x (2008), M. Cacciari, 417th Heraeus Seminar, Bad Honnef (2008). Measure charm production at RHIC, LHC, FAIR and provide input to theory: - gluon distribution, - scales µ R, µ F 35/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

Where does all the charm go? J/ψ D s Λ c D ± D 0 Total charm cross section: open charm hadrons, e.g. D 0, D *, Λ c, or c,b e(µ) + X Hidden-charm mesons, e.g. J/ψ carry ~ 1 % of total charm Statistics plot: H. Yang and Y. Wang, U Heidelberg. 36/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

D 0 π + + K - Reconstruction π + D 0, cτ = 123 µm K - Plot: A. Shabetai 37/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

Open Charm Performance Measure secondary decay vertex Direct reconstruction of D 0 address heavy-quark production with 1 st year of data taking Many other channels, e.g. D +, D* Also: single-electrons from heavy-flavor decays ALICE: PPR.vol.II, J. Phys. G 32 (2006) 1295. Simulation: 10 9 p+p, 10 8 p+pb, 10 7 Pb+Pb collisions 38/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

D* meson Identification D* + D 0 + π D* + Δ D* + - D 0 ] Subtract resonance decay to D 0 Two different methods to address total charm production D* ± analysis: Yifei Wang, Ph.D. thesis, University of Heidelberg, in preparation. 39/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

Viele neue interessante Signale in ALICE bei LHC: z.b. Hadronen mit schweren Quarks (charm und beauty) D 0, D +, D *, D s, J/ψ, ψ, Λ c, Λ b, ϒ,... 40/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

Quarkonia LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

Charmonium Bound state of charm- and anti-charm quark Hidden-charm meson m J/ψ = 3.1 GeV, r J/ψ = 0.45 fm, m J/ψ' = 3.6 GeV, J P = 1 - states Minimum formation time τ = r J/ψ / c = 0.45 fm Charm-quark production at time scale t c ~ 1/2m c 0.08 fm Separation between initial production and hadronization (factorization) 42/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

Debye Screening 43/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

Quarkonia as a Thermometer Check for melting of bottomonium (b-bbar) at T deconfined 2 T c Check for melting of charmonium (c-cbar) at T deconfined 1.2 T c Absolute numbers model-dependent T fo : 44/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

J/ψ Production P. Braun-Munzinger and J. Stachel, Nature 448 (2007) 302. (SPS) suppression, compared to scaled p+p regeneration, enhancement Low energy (SPS): High energy (LHC): few ccbar quarks in the system suppression of J/ψ many ccbar pairs in the system enhancement of J/ψ Signal of de-confinement + thermalization of light quarks! 45/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

Statistical Hadronization of Charm large charm production at LHC strong generation of J/ψ σ cc striking centrality dependence Signature for QGP formation! Initial conditions at LHC? Need to measure total charm production in PbPb! Assumes kinetic equilbration of charm! A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Phys. Lett. B 652 (2007) 259. 46/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

Charmonium production In central Pb+Pb collisions at top SPS energy: J/ψ to J/ψ ratio approaches thermal limit Indicates kinetic equilibration of charm 47/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

Examples of the ALICE physics potential - Open charm: D 0 K - + π + (already shown) - Quarkonia: J/ψ, ϒ - Global event properties Will be addressed in first year of pp collisions 48/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

First Physics with ALICE Results from simulations 1 day of data taking Address: - multiplicity - mean transverse momentum - hadro-chemistry 49/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

Charmonia via Di-Electron Measurement electron ID with TPC and TRD expect 2500 ϒ mesons per Pb+Pb year with good mass resolution and S/B Simulation: pp coll. χ c1 χ c2 J/ψ Simulation: 2 10 8 central PbPb collisions 50/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

Heavy Flavor in Muon Channel muon channel: J/ψ, Υ µ+µ- (2.5 <η< 4) 60000 J/ψ and 2000 Υ initial sample sufficient to study production rates of J/ψ and Υ states in muon channel J/ψ b µ Υ 51/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

LHC: Schedule Nov 2009: Dec 2009: first pp collisions at 900 GeV pp collisions at 2.36 TeV Mar 2010: end of 2010: Long run of pp collisions at 7 TeV 3-4 weeks Pb+Pb collisions at 2.8-3.9 TeV 52/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda

ALICE Ready for Physics! 53/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda