summary of statistical physics

Similar documents
Quantum Grand Canonical Ensemble

(i) T, p, N Gibbs free energy G (ii) T, p, µ no thermodynamic potential, since T, p, µ are not independent of each other (iii) S, p, N Enthalpy H

i=1 n i, the canonical probabilities of the micro-states [ βǫ i=1 e βǫn 1 n 1 =0 +Nk B T Nǫ 1 + e ǫ/(k BT), (IV.75) E = F + TS =

Grand Canonical Formalism

9.1 System in contact with a heat reservoir

5. Systems in contact with a thermal bath

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble

Introduction Statistical Thermodynamics. Monday, January 6, 14

Solutions to Problem Set 8

Part II Statistical Physics

We already came across a form of indistinguishably in the canonical partition function: V N Q =

13. Ideal Quantum Gases I: Bosons

Solution to the exam in TFY4230 STATISTICAL PHYSICS Wednesday december 21, 2011

Introduction. Statistical physics: microscopic foundation of thermodynamics degrees of freedom 2 3 state variables!

5. Systems in contact with a thermal bath

Physics 112 The Classical Ideal Gas

Physics 607 Exam 2. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

PHYS 352 Homework 2 Solutions

Chapter 3. Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc.

4.1 Constant (T, V, n) Experiments: The Helmholtz Free Energy

Thermodynamic equilibrium

Physics 607 Final Exam

Phys Midterm. March 17

The Second Virial Coefficient & van der Waals Equation

Thermal and Statistical Physics Department Exam Last updated November 4, L π

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term Solutions to Problem Set #10

Monatomic ideal gas: partition functions and equation of state.

( ) Lectures on Hydrodynamics ( ) =Λ Λ = T x T R TR. Jean-Yve. We can always diagonalize point by point. by a Lorentz transformation

2. Thermodynamics. Introduction. Understanding Molecular Simulation

Nanoscale simulation lectures Statistical Mechanics

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

4. Systems in contact with a thermal bath

Statistical Mechanics I

Part II: Statistical Physics

A Brief Introduction to Statistical Mechanics

Exam TFY4230 Statistical Physics kl Wednesday 01. June 2016

An Outline of (Classical) Statistical Mechanics and Related Concepts in Machine Learning

Today s Lecture: Atmosphere finish primitive equations, mostly thermodynamics

1 The fundamental equation of equilibrium statistical mechanics. 3 General overview on the method of ensembles 10

Physics 408 Final Exam

ChE 210B: Advanced Topics in Equilibrium Statistical Mechanics

Lecture Notes, Statistical Mechanics (Theory F) Jörg Schmalian

Recitation: 10 11/06/03

Part II: Statistical Physics

I.G Approach to Equilibrium and Thermodynamic Potentials

Statistical Mechanics Notes. Ryan D. Reece

The properties of an ideal Fermi gas are strongly determined by the Pauli principle. We shall consider the limit:

Thermal & Statistical Physics Study Questions for the Spring 2018 Department Exam December 6, 2017

Advanced Thermodynamics. Jussi Eloranta (Updated: January 22, 2018)

2m + U( q i), (IV.26) i=1

Chapter 3. Entropy, temperature, and the microcanonical partition function: how to calculate results with statistical mechanics.

Physics 576 Stellar Astrophysics Prof. James Buckley. Lecture 14 Relativistic Quantum Mechanics and Quantum Statistics

I. BASICS OF STATISTICAL MECHANICS AND QUANTUM MECHANICS

Thus, the volume element remains the same as required. With this transformation, the amiltonian becomes = p i m i + U(r 1 ; :::; r N ) = and the canon

21 Lecture 21: Ideal quantum gases II

Supplement: Statistical Physics

Chapter 14. Ideal Bose gas Equation of state

01. Equilibrium Thermodynamics I: Introduction

1 Garrod #5.2: Entropy of Substance - Equation of State. 2

Table of Contents [ttc]

A.1 Homogeneity of the fundamental relation

Quantum statistics: properties of the Fermi-Dirac distribution.

PH4211 Statistical Mechanics Brian Cowan

I.G Approach to Equilibrium and Thermodynamic Potentials

( ) ( )( k B ( ) ( ) ( ) ( ) ( ) ( k T B ) 2 = ε F. ( ) π 2. ( ) 1+ π 2. ( k T B ) 2 = 2 3 Nε 1+ π 2. ( ) = ε /( ε 0 ).

Microcanonical Ensemble

INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI Department of Physics MID SEMESTER EXAMINATION Statistical Mechanics: PH704 Solution

1. Thermodynamics 1.1. A macroscopic view of matter

Grand-canonical ensembles

Thermodynamics part III.

Thermodynamics of phase transitions

Suggestions for Further Reading

Solution to the exam in TFY4230 STATISTICAL PHYSICS Friday december 19, 2014

Thermodynamics of the nucleus

Physics 4230 Final Examination 10 May 2007

V.C The Second Virial Coefficient & van der Waals Equation

1 Foundations of statistical physics

Potential Descending Principle, Dynamic Law of Physical Motion and Statistical Theory of Heat

List of Tables. List of Figures. 4 Statistical Ensembles The microcanonical distribution function... 2

Thermal and Statistical Physics

Minimum Bias Events at ATLAS

Imperial College London BSc/MSci EXAMINATION May 2008 THERMODYNAMICS & STATISTICAL PHYSICS

Concepts for Specific Heat

Lecture 9 Overview (Ch. 1-3)

Assignment 8. Tyler Shendruk December 7, 2010

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013 Notes on the Microcanonical Ensemble

Thermodynamics & Statistical Mechanics

Identical Particles. Bosons and Fermions

Equilibrium Statistical Mechanics

30 Photons and internal motions

Part II: Statistical Physics

UNIVERSITY OF SOUTHAMPTON

Theoretical Statistical Physics

2 Statistical Mechanics of Non-Interacting Particles

Physics 607 Final Exam

14. Ideal Quantum Gases II: Fermions

Noninteracting Particle Systems

Statistical Mechanics

First Problem Set for Physics 847 (Statistical Physics II)

Outline Review Example Problem 1 Example Problem 2. Thermodynamics. Review and Example Problems. X Bai. SDSMT, Physics. Fall 2013

Transcription:

summary of statistical physics Matthias Pospiech University of Hannover, Germany Contents 1 Probability moments definitions 3 2 bases of thermodynamics 4 2.1 I. law of thermodynamics.......................... 4 2.2 entropy................................... 4 2.2.1 partial differentials of S(E, V, N)................. 4 2.2.2 maximum of S........................... 5 2.3 extensive, intensive variable........................ 5 2.4 homogeneous systems............................ 5 2.5 thermodynamic potentials......................... 5 2.5.1 thermodynamic force........................ 5 2.5.2 Definition.............................. 6 2.5.3 Differentials............................. 6 2.5.4 partial differentials......................... 6 3 statistic ensembles 7 3.1 definitions.................................. 7 3.2 partition functions............................. 7 3.3 thermodynamic potentials......................... 8 3.4 entropy................................... 9 4 classical statistics 10 4.1 equipartition theorem............................ 10 4.2 Maxwell-Boltzmann-distribution...................... 10 5 one-atomic ideal gas 11 5.1 General properties............................. 11 5.2 partition functions............................. 11 5.3 phase volume................................ 11 6 ideal quantum gases 12 6.1 Bose particles................................ 12 6.2 Fermi particles............................... 13 6.3 variables in terms of generalised zeta function.............. 14 6.4 ideal Fermi gas (g2)............................ 15 1

6.5 ideal Bose gas (photon gas)........................ 15 6.5.1 Planck s law............................. 16 6.6 phonon gas................................. 16 6.7 paramagnetism............................... 17 7 Thermodynamics (Phenomenological) 19 7.1 I. law of thermodynamics.......................... 19 7.2 Equations of state.............................. 19 7.3 Thermodynamic coefficients........................ 19 7.4 Thermodynamic relations......................... 20 7.4.1 consequences of the I. law..................... 20 7.4.2 consequences of the integrebility conditions Maxwell-relations 20 7.4.3 consequences of the homogeneity properties........... 21 7.4.4 change of thermodynamic variables................ 21 8 Thermodynamic processes 22 8.1 quasistatic processes............................ 22 2

1 Probability moments definitions with the probability distribution f(n) we find the generating function: F (x) N f(n)x n n0 then the moments of statistics are 1. moment n x F (x) x1 mean value 2. moment ( n) 2 2 xf (x) x1 x n variance 3. moment m 3 3 xf (x) x1 x ( n) 2 1. moment of the square value: n 2 2 xf (x) x1 + x F (x) x1 then we find for the variance (2. moment) ( n) 2 n 2 n 2 example: energy F (β) ρ c β n e βe β n 1 e βe β n Z c Z c mean value E β ln Z c internal energy (1) variance ( n) 2 β 2 ln Z c (2) 3. moment m 3 β 3 ln Z c (3) 3

2 bases of thermodynamics 2.1 I. law of thermodynamics de T ds p dv + µ dn δq + δa + δ N E it follows ( ) E T S ( ) E p ( ) E µ V,N S,N S,V T ( ) S E,V (4) (5) (6) chemical potential (7) 2.2 entropy common definition S k B ρ n ln ρ n (8) n S k B Tr(ˆρ n ln ˆρ n ) with ρ n : probability to find the system in state n 2.2.1 partial differentials of S(E, V, N) By rearranging the I. law of thermodynamics we find the full differential ds 1 T de + p T dv µ T dn it follows 1 T p T ( ) S E ( ) S µ T ( S ) V,N E,N V,E (9) (10) (11) 4

2.2.2 maximum of S The entropy S is maximum if all ρ n s are equal. In a spin system for example, if all spins are aligned. Maximum Value: S max k B ln g (12) 2.3 extensive, intensive variable Quantities are called extensive if the enlargement of the system enlarges the quantity too (mass), and intensive if the quantity stays the same if the system is enlarged (temperature, pressure, densities). So for one state-variable applies, if the system is enlarged by a factor λ: examples: x is extensive, if x λx i.e. f(λx) λf(x) x is intensive, if x x extensive {energy, mass, number of particles, heat capacity, entropy, volume} intensive {energy-density, density of particles, specific heat capacity, temperature, pressure } 2.4 homogeneous systems from the extensivity of the entropy S(λE, λv, λn) λs(e, V, N) follows S 1 T E + p T V µ T N which is called the Duham-Gibbs relation in this way E T S pv + µn (13) For the grand canonical ensemble J E T S µn we derive then J(T, V, µ) p(t, µ)v (14) and for the Gibbs potential G(T, p, µ) µ(p, T )N (15) 2.5 thermodynamic potentials 2.5.1 thermodynamic force The temperature T is the driving force for the heat and entropy exchange and the pressure p is the driving force for the volume exchange. Thus T and p are thermodynamic forces which lead to a change in state E(S, V, N). 5

2.5.2 Definition of thermodynamic potentials energy E (16) free energy F E T S (17) enthalpy H E + pv (18) free enthalpy G E T S + pv (19) grand canonical potential J E T S µn (20) 2.5.3 Differentials of thermodynamic potentials From de T ds p dv + µ dn d(t S) T ds + S dt d(pv ) p dv + V dp we get de(s, V, N) T ds p dv + µ dn (21) df (T, V, N) S dt p dv + µ dn (22) dh(s, p, N) T ds + V dp + µ dn (23) dg(t, p, N) S dt + V dp + µ dn (24) dj(t, V, µ) S dt p dv N dµ (25) 2.5.4 partial differentials of thermodynamic potentials ( ) E T S ( ) F S ( ) H T S ( ) G S ( ) J S V,N V,N p,n p,n V,µ ( ) E p ( ) F p ( ) H V ( ) G V ( ) J p S,N T,N S,N T,N T,µ ( ) E µ ( ) F µ ( ) H µ ( ) G µ ( ) J N µ S,V T,V p,s T,p T,V (26) (27) (28) (29) (30) 6

3 statistic ensembles 3.1 definitions microcanonical ensemble totally isolated system with fixed: E, V, N canonical ensemble isolated system in thermal contact (energy exchange) with fixed: T, V, N grandcanonical ensemble system with particle and energy exchange with fixed: T, V, µ 3.2 partition functions The partition functions describe the System in equilibrium state: microcanonical Ω(E, V, N) canonical Z c (T, V, N) grand canonical Z gc (T, V, µ) The probability P for being in a micro state: ρ(e, V, N) { 1 Ω(E,V,N) 0 otherwise E δe E(V, N) E (31) ρ c (T, V, N) 1 Z c e βe Gibbs/Boltzm. distr. (32) ρ gc (T, V, µ) 1 Z gc e β(e µn) (33) with Ω(E) : Number of states with energy E more precise: Ω(E) dφ(e). φ(e) is de the number of states between 0 and E we call it the phase volume. Then Ω(E) φ(e + δe) φ(e). The probabilities inhibit the normalisation conditions ρj 1 microcanonical, canonical, grand canonical (34) ρj E j E canonical, grand canonical (35) ρj N j N grand canonical (36) 7

the equivalent statistical operator is ˆρ j 1 j j (37) Ω(E) ˆρ c 1 Z c e βĥ ˆρ gc 1 β(ĥ µ ˆN) e Z gc (38) (39) with the first normalisation condition follow the partition functions Ω(E, V, N) 1 (40) E δe E(V,N) E Z c (T, V, N) g j e βe j (41) j Z gc (T, V, µ) j g j e β(e j µn) (42) j e βµn Z c (T, V, N) for classical gas (N i N) 3.3 thermodynamic potentials All partition functions are determined by the eigenvalues E j of an Hamiltonian. The relation to the macroscopic thermodynamics is as follows: S k B ln Ω k B ln φ (43) F k B T ln Z c (44) J k B T ln Z gc (45) From the full differentials can by partial differentiation the variables E, p, µ, N be found: ds 1 T de p T dv µ dn (46) T df S dt p dv + µ dn (47) dj S dt p dv N dµ (48) So the derivation of the macroscopic structure from the microscopic structure, can be schematised as follows Ω(E, V, N) S(E, V, N) all thermodynamic (49) H(V, N) E j (V, N) Z c (T, V, N) F (T, V, N) Z gc (T, V, µ) J(T, V, µ) relations 8

The variables E, p, β, µ, N in terms of the partition functions: microcanonical p β 1 ln Ω β ln Ω E (50) (51) canonical p 1 β E ln Z c ln Z c β (52) (53) grand canonical N p 1 ln Z gc β µ 1 ln Z gc β E ln Z gc β 3.4 entropy In general the entropy is S k B n ρ n ln ρ n with these values for the probabilities ρ we get ρ 1/Ω(E) 1/g ρ c e βe /Z c ρ gc e β(e µn) /Z gc (54) (55) + µn (56) S k B ln Ω k B ln g (57) S c E T + k B ln Z c (58) S gc E T µn T + k B ln Z c (59) 9

4 classical statistics 4.1 equipartition theorem We find p iα H iα H x iα x iα cl cl from which follows piα 1 2m 2 k BT k B T (60) k B T (61) Theorem: each degree of freedom, on which the Hamiltonian depends quadratically contributes the amount 1 2 k BT to the total internal energy E. 4.2 Maxwell-Boltzmann-distribution ρ MB d 3 p (2πmk B T ) 3/2 e 3/2 exp ( 1 k B T (62) ) p 2 d 3 p (63) 2m 10

5 one-atomic ideal gas 5.1 General properties pv Nk B T E 3 2 Nk BT ( ) NV µ k B T ln λ 3 (64) (65) 5.2 partition functions For an ideal gas there is no interaction between the particles, so that Z N Z1 N We find by inserting values for the energy in the general terms the following partition functions ) N ( ) 3N/2 E ( V Ω(E, V, N) c N N Z c (T, V, N) 1 ( V N! Z gc (T, V, µ) N0 λ 3 N ) N λ 1 N! eβµn ( ) N V λ 3 2π 2 mk B T (66) 5.3 phase volume φ(e, V, N) 1 N! ( ) N V 1 8π 3 3 N! 2 ( 2mπE 2 ) 3N 2 (67) 11

6 ideal quantum gases 6.1 Bose particles We have noninteracting, indistinguishable particles. To proceed we define their variables: number of particles N states λ set of occupation {n λ } total energy of set {n λ } E{n λ } eigenvalues ε λ (energy of particle in state λ) occupation number n λ 0, 1, 2,... (particles in state λ) with N λ n λ (68) E{n λ } λ ε λ n λ (69) Example: {n λ } {1, 0, 3, 2, 4, 0, 1, 0, 0, 0,...} E{n λ } 1ε 1 + 3ε 3 + 2ε 4 + 4ε 5 + 1ε 7 In order to determine the partition function we sum over all possible configurations of occupation numbers {n λ }. According to the definition of the canonical ensemble the number of particles are fixed: Z c (N) P {nλ} λ n λn e βe{n λ} This is difficult do evaluate because N is not necessarily known and of a very high magnitude, which makes the constrain hard to satisfy. To overcome this problem one usually employs the Grand Canonical partition function, where the particle number is not fixed. Thus we have to sum over the number of particles. ( Zc (N) e βµn) (70) Z B gc N N P {n λ } λ n λn e β(e{n λ} µn) 12

by replacing E{n λ } and N by their sums where goes the first sum?? e β(p λ ε λn λ µ P λ n λ) e β(p λ (ε λ µ)n λ) N {nλ} {n λ } λ e β(ε λ µ)n λ This is the sum over all possible configurations of occupation numbers, summed over all states. This way each occupation number will change its number from zero to infinity. Thus we can rearrange the summation {n λ } ( ) e β(ε λ µ) n λ λ e β(ε λ µ)n λ λ n λ 0 n λ 0 by using the rule of geometrical sum we get finally the grand canonical partition function Zgc B ( ) 1 e β(ε λ µ) 1 (71) λ potential J B (T, V, µ) k B T ln Zgc B k B T ln ( 1 e β(εn µ)) (72) n mean occupation number n B µ J B (T, V, µ) 1 e β(εn µ) 1 (73) 6.2 Fermi particles partition function Zgc F e β(ε λ µ)n λ λ n λ 0,1 ( ) 1 + e β(ε n µ) (74) n potential J F (T, V, µ) k B T ln Zgc F k B T ln ( 1 + e β(εn µ)) (75) n 13

mean occupation number n F µ J F (T, V, µ) density of states 1 e β(εn µ) + 1 (76) ρ(ε) i δ(ε ε i ) (77) With dispersion relation ε k k 2 /2m we get exact numbers for density of states 3D : ρ(ε) gv m3/2 2π2 3 ε gv 2π 2 2D : 1D : ( ) 3/2 2m ε (78) 2 ρ(ε) Am 2π 2 (79) ρ(ε) Lm1/2 1 2 3/2 π ε (80) 6.3 variables in terms of generalised zeta function Define: n N V v V N z e βµ particle density specific volume fugacity generalised zeta function } f ν (z) g ν (z) 1 Γ(ν) 0 x ν 1 e x z ± 1 dx mean occupation number / particle density 1D : n π 2λ 2D : n 1 λ 2 3D : n g λ 3 { f 1 2 { g 1 2 f 1 g 1 { f 3 2 g 3 2 Fermi Bose Fermi Bose Fermi Bose (81) (82) (83) 14

grand canonical potential { f 5 2 J gv k BT λ 3 g 5 2 Fermi Bose (84) J pv 2 3 E (85) 6.4 ideal Fermi gas (g2) Mean number of particles N 2 dε ρ(ε)n(ε) (86) Internal energy E 2 dε ρ(ε) ε n(ε) (87) Fermi-momentum p F k F (88) Fermi-wave-vector 1D : k F 2πn (89) 2D : k F (4πn) 1/2 (90) 3D : k F (3π 2 n) 1/3 (91) Fermi-energy ε F 2 2m (3π2 n) 2/3 (92) 6.5 ideal Bose gas (photon gas) Total Energy (in quantisation) E K ω K N K (93) mean occupation number (µ 0!) N 1 e βω K 1 (94) 15

partition function Z Phot k (1 e β ω k ) 1 (95) with Stefan Boltzmann constant b π2 45( c) 3 we find Free energy F k B T ln Z V b(k B T ) 4 (96) entropy S ( T F ) V 4k B V b(k B T ) 3 (97) internal energy E F + T S 3bV (k B T ) 4 (98) pressure p ( V F ) T b(k B T ) 4 E (99) 3V mean number of photons N 2 k N k (100) 6.5.1 Planck s law spektral density of the energy in black-body radiation u(ω) dω D(ω) with mode density ω dω (101) e β ω 1 D(ω) ω2 π 2 c 3 6.6 phonon gas dispersion relation f ω k 2 m sin(1 ka) (102) 2 Free energy F Phon (T, V ) W 0 + k ω k 2 + k k B T ln(1 e β ω k ) (103) 16

density of states g(ω) 1 3N δ(ω ω k ) V N k ω 2 ( 1 6π 2 c 3 l + 2 c 3 t ) (104) internal energy E Phon W 0 + E 0 + 3N W 0 + E 0 + 3N 6.7 paramagnetism energy states 0 W 0 + E 0 + V π2 k 4 B 30 2 0 g(ω) ω N B ω g(ω) e β ω 1 ( 1 + 2 c 3 t c 3 l (105) ) T 4 (106) E MJ g J µ B M J B (107) partition function: Z N (T, B, N) Z N N J n1 M J J e βe M J (noninteracting, distinguishable) with define Z(T, B) J M J J J M J J e βe M J e xm J J with x βg J BJ (108) sinh ( 2J+1 sinh ( ) (109) x 2J 2J x) f(t, B) k B T 1 N ln Z N (110) 17

magnetisation m B f(t, B) g j µ B JB J (x) (111) Brillouin function B(J, x) ( 1 + 1 2J ) [( coth 1 + 1 ) ] x 1 ( x ) 2J 2J coth 2J (112) 18

7 Thermodynamics (Phenomenological) 7.1 I. law of thermodynamics follows from full differential of entropy with de T ds p dv + µ dn (113) δq + δa + δ N E (114) δq T ds change in heat δa p dv work done on the system δ N E µ dn 7.2 Equations of state chemical energy E k B T 2 T ln Z c E caloric equation of state (115) ( ) F p p thermal equation of state (116) T,N ( ) F µ µ chemical equation of state (117) T,V 7.3 Thermodynamic coefficients heat capacity ( ) S C V T ( ) S C p T E,V E,p compressibility κ T 1 ( ) V κ S 1 ( ) V expansion coefficient α T 1 ( ) V E,p E,T ( ) E ( ) H E,S E,V E,p (118) (119) (120) (121) (122) 19

stress coefficient β 1 ( ) p E,V 7.4 Thermodynamic relations 7.4.1 consequences of the I. law ( ) S p T T,N (123) (124) 7.4.2 consequences of the integrebility conditions Maxwell-relations with the condition of twice continuously differentiable functions f(x, y): 2 f(x, y) x y 2 f(x, y) y x we obtain the Maxwell-relations by differentiating by the natural variables: ( ) ( ) (3.23) S V,N S,N ( ) ( ) µ energy E V,S S V,N ( ) ( ) µ S,V ( ) S ( ) S ( ) ( ) S ( ) ( ) µ S E,T T,V T,V p,n p,s E,p ( ) ( ) µ ( ) µ ( ) ( ) µ ( ) S,N V,N V,N E,T S,N E,S p,s (3.24) (3.24) free energy F enthalpy H 20

( ) µ ( ) µ ( ) E,T E,p p,n ( ) ( ) S ( ) S Application of Maxwell relations ( ) ( ) CV 2 p T T 2 V ( ) ( ) Cp 2 V T 2 T p T,p T,p E,T (3.25) free enthalpy G (125) (126) 7.4.3 consequences of the homogeneity properties p, µ intensive: p(t, V, N) p(t, λv, λn) µ(t, V, N) µ(t, λv, λn) leads to ( ) µ T,V V ( ) 2 N 2 T,N 7.4.4 change of thermodynamic variables ( ) α κ T V N V 2 1 κ T (127) (128) C p C V T V α 2 1 0 (129) κ T ( ) V (αt 1) (130) H C p ( ) T V α (131) C p S 21

8 Thermodynamic processes Definitions isobaric p const isochoric V const isothermal T const adiabatic δq 0 8.1 quasistatic processes we assume ideal gas: pv Nk B T, C p 5Nk 2( ) B, C V 3Nk 2 B S We use the total differential of S : ds dp + ( ) S V,N Q T ds in each process. p,n dv in the intergral of isobaric : p const ( ) S Q T W p dv p p,n dv C p dt C p (T f T i ) 5 2 Nk B(T f T i ) (132) dv p(v f V i ) Nk B (T f T i ) (133) isochoric : V const ( ) S Q T dp V,N C V dt C V (T f T i ) 3 2 Nk B(T f T i ) (134) W p dv 0 (135) isothermal : T const Q T ds T (S f S i ) W p dv pv κ t dp Nk B T 1 p dp ( Vf Nk B T ln Nk BT ln V ( i Vf V i ) ) (136) (137) adiabatic : δq 0 or S const Q δq 0 (138) W p dv E 3 2 Nk B(T i T f ) C V (T i T f ) (139) 22