Generalized Hermite-Hadamard-Fejer type inequalities for GA-convex functions via Fractional integral

Similar documents
On New Inequalities of Hermite-Hadamard-Fejer Type for Harmonically Quasi-Convex Functions Via Fractional Integrals

arxiv: v1 [math.ca] 28 Jan 2013

Hermite-Hadamard type inequalities for harmonically convex functions

Hermite-Hadamard and Simpson-like Type Inequalities for Differentiable p-quasi-convex Functions

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity

Hermite-Hadamard Type Inequalities for the Functions whose Second Derivatives in Absolute Value are Convex and Concave

The Hadamard s inequality for quasi-convex functions via fractional integrals

f (a) + f (b) f (λx + (1 λ)y) max {f (x),f (y)}, x, y [a, b]. (1.1)

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir

Some Hermite-Hadamard type inequalities for functions whose exponentials are convex

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

Research Article Fejér and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions

Hermite-Hadamard-Fejér type inequalities for harmonically convex functions via fractional integrals

ON COMPANION OF OSTROWSKI INEQUALITY FOR MAPPINGS WHOSE FIRST DERIVATIVES ABSOLUTE VALUE ARE CONVEX WITH APPLICATIONS

A Companion of Ostrowski Type Integral Inequality Using a 5-Step Kernel with Some Applications

New general integral inequalities for quasiconvex functions

Parametrized inequality of Hermite Hadamard type for functions whose third derivative absolute values are quasi convex

NEW INEQUALITIES OF SIMPSON S TYPE FOR s CONVEX FUNCTIONS WITH APPLICATIONS. := f (4) (x) <. The following inequality. 2 b a

INEQUALITIES FOR TWO SPECIFIC CLASSES OF FUNCTIONS USING CHEBYSHEV FUNCTIONAL. Mohammad Masjed-Jamei

Bulletin of the. Iranian Mathematical Society

Integral inequalities for n times differentiable mappings

Some new integral inequalities for n-times differentiable convex and concave functions

GENERALIZED OSTROWSKI TYPE INEQUALITIES FOR FUNCTIONS WHOSE LOCAL FRACTIONAL DERIVATIVES ARE GENERALIZED s-convex IN THE SECOND SENSE

Research Article On New Inequalities via Riemann-Liouville Fractional Integration

SOME INTEGRAL INEQUALITIES OF GRÜSS TYPE

Generalized Hermite-Hadamard Type Inequalities for p -Quasi- Convex Functions

Research Article On The Hadamard s Inequality for Log-Convex Functions on the Coordinates

Calculus of variations with fractional derivatives and fractional integrals

Improvement of Grüss and Ostrowski Type Inequalities

NEW HERMITE HADAMARD INEQUALITIES VIA FRACTIONAL INTEGRALS, WHOSE ABSOLUTE VALUES OF SECOND DERIVATIVES IS P CONVEX

Some Improvements of Hölder s Inequality on Time Scales

LOGARITHMIC INEQUALITIES FOR TWO POSITIVE NUMBERS VIA TAYLOR S EXPANSION WITH INTEGRAL REMAINDER

A Generalized Inequality of Ostrowski Type for Twice Differentiable Bounded Mappings and Applications

ON THE HERMITE-HADAMARD TYPE INEQUALITIES FOR FRACTIONAL INTEGRAL OPERATOR

AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

Some inequalities of Hermite-Hadamard type for n times differentiable (ρ, m) geometrically convex functions

GENERALIZATIONS OF WEIGHTED TRAPEZOIDAL INEQUALITY FOR MONOTONIC MAPPINGS AND ITS APPLICATIONS. (b a)3 [f(a) + f(b)] f x (a,b)

On new Hermite-Hadamard-Fejer type inequalities for p-convex functions via fractional integrals

Journal of Inequalities in Pure and Applied Mathematics

An inequality related to η-convex functions (II)

Research Article On Hermite-Hadamard Type Inequalities for Functions Whose Second Derivatives Absolute Values Are s-convex

QUADRATURE is an old-fashioned word that refers to

ON A CONVEXITY PROPERTY. 1. Introduction Most general class of convex functions is defined by the inequality

WENJUN LIU AND QUÔ C ANH NGÔ

On the Generalized Weighted Quasi-Arithmetic Integral Mean 1

The Modified Heinz s Inequality

Journal of Inequalities in Pure and Applied Mathematics

ON SOME NEW INEQUALITIES OF HADAMARD TYPE INVOLVING h-convex FUNCTIONS. 1. Introduction. f(a) + f(b) f(x)dx b a. 2 a

S. S. Dragomir. 2, we have the inequality. b a

0 N. S. BARNETT AND S. S. DRAGOMIR Using Gruss' integrl inequlity, the following pertured trpezoid inequlity in terms of the upper nd lower ounds of t

Improvements of some Integral Inequalities of H. Gauchman involving Taylor s Remainder

GENERALIZED ABSTRACTED MEAN VALUES

RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL APPROXIMATION OF CSISZAR S f DIVERGENCE

INEQUALITIES FOR GENERALIZED WEIGHTED MEAN VALUES OF CONVEX FUNCTION

Keywords : Generalized Ostrowski s inequality, generalized midpoint inequality, Taylor s formula.

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-1 Yıl:

INEQUALITIES OF HERMITE-HADAMARD S TYPE FOR FUNCTIONS WHOSE DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX

The Hadamard s Inequality for s-convex Function

S. S. Dragomir. 1. Introduction. In [1], Guessab and Schmeisser have proved among others, the following companion of Ostrowski s inequality:

A basic logarithmic inequality, and the logarithmic mean

Set Integral Equations in Metric Spaces

Journal of Inequalities in Pure and Applied Mathematics

Ostrowski Grüss Čebyšev type inequalities for functions whose modulus of second derivatives are convex 1

Geometrically Convex Function and Estimation of Remainder Terms in Taylor Series Expansion of some Functions

On Hermite-Hadamard type integral inequalities for functions whose second derivative are nonconvex

HERMITE-HADAMARD TYPE INEQUALITIES OF CONVEX FUNCTIONS WITH RESPECT TO A PAIR OF QUASI-ARITHMETIC MEANS

The Shortest Confidence Interval for the Mean of a Normal Distribution

Improvements of the Hermite-Hadamard inequality

ON PERTURBED TRAPEZOIDAL AND MIDPOINT RULES. f (t) dt

Integral inequalities

New Expansion and Infinite Series

Improvement of Ostrowski Integral Type Inequalities with Application

Journal of Inequalities in Pure and Applied Mathematics

RGMIA Research Report Collection, Vol. 1, No. 1, SOME OSTROWSKI TYPE INEQUALITIES FOR N-TIME DIFFERENTIA

A General Dynamic Inequality of Opial Type

DEFINITION The inner product of two functions f 1 and f 2 on an interval [a, b] is the number. ( f 1, f 2 ) b DEFINITION 11.1.

ON AN INTEGRATION-BY-PARTS FORMULA FOR MEASURES

Journal of Inequalities in Pure and Applied Mathematics

CERTAIN NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR CONVEX FUNCTIONS VIA FRACTIONAL INTAGRALS

Bounds for the Riemann Stieltjes integral via s-convex integrand or integrator

New Integral Inequalities for n-time Differentiable Functions with Applications for pdfs

On some inequalities for s-convex functions and applications

CHEBYSHEV TYPE INEQUALITY ON NABLA DISCRETE FRACTIONAL CALCULUS. 1. Introduction

Revista Colombiana de Matemáticas Volumen 41 (2007), páginas 1 13

A unified generalization of perturbed mid-point and trapezoid inequalities and asymptotic expressions for its error term

Hadamard-Type Inequalities for s Convex Functions I

KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION

Journal of Inequalities in Pure and Applied Mathematics

RIEMANN-LIOUVILLE FRACTIONAL SIMPSON S INEQUALITIES THROUGH GENERALIZED (m, h 1, h 2 )-PREINVEXITY

FRACTIONAL DYNAMIC INEQUALITIES HARMONIZED ON TIME SCALES

A Convergence Theorem for the Improper Riemann Integral of Banach Space-valued Functions

Communications inmathematicalanalysis Volume 6, Number 2, pp (2009) ISSN

Journal of Inequalities in Pure and Applied Mathematics

ASYMPTOTIC BEHAVIOR OF INTERMEDIATE POINTS IN CERTAIN MEAN VALUE THEOREMS. II

Research Article Moment Inequalities and Complete Moment Convergence

NON-NEWTONIAN IMPROPER INTEGRALS

Research Article On Existence and Uniqueness of Solutions of a Nonlinear Integral Equation

Asymptotic behavior of intermediate points in certain mean value theorems. III

On some refinements of companions of Fejér s inequality via superquadratic functions

Transcription:

DOI 763/s4956-6-4- Moroccn J Pure nd Appl AnlMJPAA) Volume ), 6, Pges 34 46 ISSN: 35-87 RESEARCH ARTICLE Generlized Hermite-Hdmrd-Fejer type inequlities for GA-conve functions vi Frctionl integrl I mdt I s cn nd Sercn Turhn Astrct In this pper, we give new identity for differentile nd GA-conve functions As result of this identity, we otin some new frctionl integrl inequlities for differentile GA-conve functions Mthemtics Suject Clssifiction Primry 6D5; Secondry 6A5, Third 6D, Fourth 6A5 Key words nd phrses GA-conve, Hermite-Hdmrd-Fejer type inequlities, Frctionl Integrl Introduction The clssicl or the usul conveity is defined s follows: A function f : = 6 I R R, is sid to e conve on I if the inequlity f t t) y) tf ) t) f y) holds for ll, y I nd t, ] A numer of ppers hve een written on inequlities using the clssicl conveity nd one of the most fscinting inequlities in mthemticl nlysis is stted s Received Ferury 6, 6 - Accepted My, 6 c The Authors) 6 This rticle is pulished with open ccess y Sidi Mohmed Ben Adllh University Deprtment of Mthemtics, Fculty of Arts nd Sciences, Giresun University, 8, Giresun, TURKEY e-mil: imdti@yhoocom, imdtiscn@giresunedutr Dereli Voctionl High School, Giresun University, 8, Giresun, TURKEY e-mil: sercnturhn8@gmilcom, sercnturhn@giresunedutr 34

follows: ON GA-CONVEX FUNCTIONS VIA FRACTIONAL INTEGRAL 35 ) f f)d f) f), ) where f : I R R e conve mpping nd, I with < Both the inequlities in ) hold in reversed direction if f is concve The inequlities stted in ) re known s Hermite-Hdmrd inequlities For more results on ) which provide new proof, significnt etensions, generliztions, refinements, counterprts, new Hermite-Hdmrd-type inequlities nd numerous pplictions, we refer the interested reder to ]-5],7,,, 4] nd the references therein The usul notion of conve functions hve een generlized in diverse mnners One of them is clled GA-conve functions nd is stted in the definition elow Definition, ]A function f : I R =, ) R is sid to e GA-conve function on I if f λ y λ) λf ) λ) f y) holds for ll, y I nd λ, ], where λ y λ nd λf ) λ) f y) re respectively the weighted geometric men of two positive numers nd y nd the weighted rithmetic men of f) nd fy) The definition of GA-conveity is further generlized s GA-s-conveity in the second sense s follows Definition 4] A function f : I R =, ) R is sid to e GA-s-conve function on I if f λ y λ) λ s f ) λ) s f y) holds for ll, y I nd λ, ] nd for some s, ] For the properties of GA-conve functions nd GA-s-conve function, we refer the reder to 6, 9,, 4, 5, 6] nd the references therein Most recently, numer of findings hve een seen on Hermite-Hdmrd type integrl inequlities for GA-conve nd for GA-s-conve functions Zhng et ll in 5] estlished the following Hermite-Hdmrd type integrl inequlities for GA-conve function Theorem 5] Let f : I R =, ) R e differentile on I, nd, I with < nd f L, ] If f q is GA-conve on, ] for q, then /q f) f) f)d ) A, )] ) /q { L, ) ] f ) q L, ) ] f ) q} /q

36 İMDAT İŞCAN AND SERCAN TURHAN Theorem 5] Let f : I R =, ) R e differentile on I, nd, I with < nd f L, ] If f q is GA-conve on, ] for q >, then f) f) f)d ln ln ) 3) L q/q), q/q) ) q/q)] /q A f ) q, f ) q)] /q Theorem 3 5] Let f : I R =, ) R e differentile on I, nd, I with < nd f L, ] If f q is GA-conve on, ] for q > nd q > p >, then /q f) f) f)d ln ln ) 4) p /q L qp)/q), qp)/q) ) ] /q { L p, p ) p ] f ) q p L p, p )] f ) q} /q Theorem 4 6] Suppose tht f : I R =, ) R is GA-s-conve function in the second sense, where s, ) nd let,, ), < If f L, ], then the following inequlities hold the constnt k = s ) s f ln ln f) d f) f), 5) s is the est possile in the second inequlity in ) If f is GA-conve function in Theorem 4, then we get the following inequlities ) f ln ln f) d f) f) 6) For more results on GA-conve function nd GA-s-conve function see eg 6, 9, 4] Definition 3 9] A function f : I R =, ) R is sid to e geometriclly symmetric with respect to if the inequlity ) g = g ) holds for ll, ] Definition 4 8] Let f L, ] The right-hnd side nd left-hnd side Hdmrd frctionl integrls J α f nd J α f of order α > with > re defined y J α f) = Γα) ln ) α dt ft) t t, >

ON GA-CONVEX FUNCTIONS VIA FRACTIONAL INTEGRAL 37 J α f) = Γα) ln t ) α ft) dt t, < respectively where Γα) is the Gmm function defined y Γα) = J f) = J f) = f) Lemm 3] For < θ nd < we hve θ θ ) θ e t t α dt nd In 4], D Y Hwng estlished new identity for conve functions In this study, we will prove similr identity nd will otin Hermite-Hdmrd-Fejér inequlity for GA-conve functions vi frctionl integrls sed on this new identity Min Results Throughout in this section, we will use the nottions L t) = t G t, U t) = t G t nd G = G, ) = Lemm Let f : I R =, ) R e differentile function on I o,, I o with < If h :, ], ) is differentile function nd f L, ]), the following inequlity holds: = h) h)] f) h) f) f)h )d 7) ln ln h t G t) h) ] f t G t) t G t dt 4 h t G t) h) ] f t G t) t G t dt Proof We clculte the integrls on the right side of 7), s follows I = h t G t) h) ] d f t G t)) = h t G t) h) ] f t G t) ) ln f t G t) h t G t) t G t dt G

38 İMDAT İŞCAN AND SERCAN TURHAN nd I = h t G t) h) ] d f t G t)) Therefore = h t G t) h) ] f t G t) ) ln f t G t) h t G t) t G t dt G I I This completes the proof of the lemm = h) h)] f) h) f) ln ln f t G t) h t G t) t G t dt f t G t) h t G t) t G t dt 8) Theorem Let f : I R =, ) R e differentile function on I o nd, I o with < If h :, ], ) is differentile function nd f is GA-conve on, ], the following inequlity holds f) h) h)] h) f) f)h )d 9) where ln ln 4 ζ, ) f ) ζ, ) f G) ζ 3, ) f ) ], ζ, ) = ζ, ) = t t G t h t G t) h) dt, ) t) t G t h t G t) h) dt )

ON GA-CONVEX FUNCTIONS VIA FRACTIONAL INTEGRAL 39 t) t G t h t G t) h) dt nd ζ 3, ) = t t G t h t G t) h) dt Proof We get the following inequlity y tking the solute vlue on oth sides of the equlity in 7): f) h) h)] ln ln 4 h) f) f)h )d h t G t) h) f t G t) t G t dt h t G t) h) f t G t) t G t dt Since f is GA-conve on, ] in ), we hve for ll t, ] tht f) h) h)] ln ln 4 h) f) f)h )d h t G t) h) t f ) t) f G) ] t G t dt h t G t) h) t f ) t) f G) ] t G t dt This completes the proof of the theorem Corollry Suppose tht g :, ], ) is continuous positive mpping nd geometriclly symmetric with respect to ie g ) = g) holds for ll, ] ln ) α ) ] with < ) Choosing h) = t ln t α gt) dt for ll, ] nd t α > in Theorem 5, we otin ) f) f) J α g) J α g)] J α fg) ) J α fg) )] 4) ) 3)

4 İMDAT İŞCAN AND SERCAN TURHAN where ln ln )α α Γ α ) g C α) f ) C α) f G) C 3 α) f ) ], C α) = C α) = t) α t) α ] t t G t dt, t) t) α t) α ] t G t t G t] dt nd C 3 α) = t) α t) α ] t t G t dt Specilly, if we use Lemm in 4), for < α, we hve ) f) f) J α g) J α g)] J α fg) ) J α fg) )] 5) where ln ln )α Γ α ) g D α) f ) D α) f G) D 3 α) f ) ] D α) = D α) = t α t G t, t) t α t G t t) t α t G t] dt nd D 3 α) = t α t G t Proof If we tke h) = ) ] α gt) dt for ll, ] in the in- t equlity 9), we hve ln t ) α ln t ) f) f) Γ α) J α g) J α g)] Γ α) J α fg) ) J α fg) )] 6)

ON GA-CONVEX FUNCTIONS VIA FRACTIONAL INTEGRAL 4 ln ln 4 t G t ln ) α ) ] ln α g) d ln ) α ) ] ln α g) d t f ) t) f G) ] t G t dt t G t ln ) α ) ] ln α g) d ln ) α ) ] ln α g) d t f ) t) f G) ] t G t dt Since g) is geometriclly symmetric with respect to =, we hve nd = t G t ln ) ] α ln ) α g) d 7) ln ) ] α ln ) α g) d t G t ln ) ] α ln ) α g) d t G t = t G t ln ) ] α ln ) α g) d 8) ln ) ] α ln ) α g) d t G t ln ) ] α ln ) α g) d t G t for ll t, ] By using 7)-8) in 6), we hve ) f) f) J α g) J α g)] J α fg) ) J α fg) )] 9)

4 İMDAT İŞCAN AND SERCAN TURHAN ln ln 4Γ α) ln ln 4Γ α) t G t ln ) α ) ] ln α g) d t G t t f ) t) f G) ] t G t dt t G t ln ) α ) ] ln α g) d t G t t f ) t) f G) ] t G t dt ] t G t ln ) α ) ] ln α d g t G t t f ) t) f G) ] t G t dt ] t G t ln ) α ) ] ln α d t G t t f ) t) f G) ] t G t dt In the lst inequlity, we clculte integrls simply s follows: = t G t t G t t G t t G t ln ) ] α ln ) α ln ) α d t G t t G t ln ln )α = t) α t) α ] α α By Lemm, for < α, we hve = t G t t G t t G t t G t ln ) ] α ln ) α d ln ) α d t G t t G t d ) ln ) α d ln ) α d ln ln )α t α α A comintion of 9) nd ), we hve 4) nd 5) Thus the proof is completed Corollry )If we tke α =, we otin the following Hermite-Hdmrd-Fejer type inequlity for GA-conve functions relted to 5):

ON GA-CONVEX FUNCTIONS VIA FRACTIONAL INTEGRAL 43 ] f) f) g) d f) g) d ln ln ) g 4 D ) f ) D ) f G) D 3 ) f ) ], where for, >, we hve ) D ) = D ) = t t G t dt = t t) t G t dt { ln ln 4 ln ln t t) t G t dt } 8 8G ln ln ), = D 3 ) = ln ln t t G t dt = { G) ln ln { ln ln } 8 ) ln ln ), 4 ln ln )If we tke g) = in 4), we otin the following inequlity } 8 8G ln ln ) ) f) f) Γα ) ln ln ) J α α f ) J α f )] ) ln ln ) C α α) f ) C α) f G) C 3 α) f ) ], α > 3)If we tke g) = nd α = in 5), we otin the following inequlity ) f) f) ln ln ) ln ln ) 4 f) d D ) f ) D ) f G) D 3 ) f ) ] Theorem Let f : I R =, ) R e differentile function on I o,, I o with < If h :, ], ) is differentile function nd f q is GA-conve on, ] for q, the following inequlity holds f) h) h)] h) f) f)h )d 3) 4)

44 İMDAT İŞCAN AND SERCAN TURHAN ln ln 4 ) h t G t q ) h) dt ) h t G t ) h) dt) q t qt G qt) f ) q t) qt G qt) f G) q) ) h t G t q ) h) dt ) h t G t ) h) dt) q t qt G qt) f ) q t) qt G qt) f G) q) Proof Continuing from 3) in proof of Theorem 5, the power men inequlity nd using the fct tht f q is GA-conve on, ], we get the required result This completes the proof of the theorem Corollry 3 Let g :, ], ) e positive continuous mpping nd geometriclly symmetric with respect to ie g ) = g) holds for ll, ] with ln ) α ) ] < ) If h) = t ln t α gt) dt for ll, ], α > in Theorem t 6, we otin ) f) f) J α g) J α g)] J α fg) ) J α fg) )] 5) ln ln )α g α α Γ α ) α ) q C α, q) f ) q C α, q) f G) q C 3 α, q) f ) q] q where for q, α >, C α, q) = C α, q) = t) α t) α ] t qt G qt) dt, t) α t) α ] t) qt G qt) qt G qt)) dt nd C 3 α, q) = t) α t) α ] t qt G qt) dt Proof When we use the equlity ) in 4), we otin ) f) f) J α g) J α g)] J α fg) ) J α fg) )] 6)

ON GA-CONVEX FUNCTIONS VIA FRACTIONAL INTEGRAL 45 ln ln )α g α Γ α ) ) t) α t) α q ] dt t) α t) α ] t qt G qt) f ) q t) qt G qt) f G) q) dt ) t) α t) α q ] dt t) α t) α ] t qt G qt) f ) q t) qt G qt) f G) q) dt ln ln )α g α α Γ α ) α ) q ) q t) α t) α ] t qt G qt) f ) q t) qt G qt) f G) q] dt ) q ) q ) t) α t) α ] q t qt G qt) f ) q t) qt G qt) f G) q] dt By using the inequlity r r r ) r for, >, r, we hve ) f) f) J α g) J α g)] J α fg) ) J α fg) )] 7) ln ln )α g α α Γ α ) α ) q t) α t) α ] t qt G qt) f ) q t) α t) α ] t) qt G qt) qt G qt) t) α t) α ] t qt G qt) f ) q Corollry 4 When α = nd g) = ln ln ) f G) q dt re tken in Corollry 3, we otin ) f) f) f) ln ln d ln ln ) C, q) f ) q C, q) f G) q C 3, q) f ) q] q q q 8)

46 İMDAT İŞCAN AND SERCAN TURHAN References ] SS Drgomir, Hermite-Hdmrd s type inequlities for conve funtions of selfdjoint opertors in Hilert spces, Liner Alger Appl 436 ), no 5, 53-55 ] SS Drgomir nd CEM Perce, Selected topics on Hermite-Hdmrd type inequlities nd pplictions, RGMIA Monogrphs, Aville online t http://rgmivueduu/monogrphs/hermite hdmrdhtml 3] J Hu, B-Y Xi, nd F Qi, Hermite-Hdmrd type inequlities for geometriclly s-conve functions, CommunKoren MthSoc9 4), No, pp5-63 4] D-Y Hwng, Some inequlities for differentile conve mpping with ppliction to weighted trpezoidl formul nd higher moments of rndom vriles, Applied Mthemtics nd Computtion, 7 ), 9598-965 5] İ İşcn, New estimtes on generliztion of some integrl inequlities for s-conve functions nd their pplictions, Interntionl Journl of Pure nd Applied Mthemtics, 86, No4 3) 6] İ İşcn, Hermite-Hdmrd type inequlities for GA-s-conve functions, Le Mtemtiche, LXIX 4)-Fsc II, pp 9-46 7] A P Ji, T Y Zhng, F Qi, Integrl Inequlities of Hermite Hdmrd Type α, m)-ga conve Functions, Journl of Function Spce nd Applictions, 3 3), Article ID 83856, 8 pges 8] A A Kils H M Srivstv, J J Trujillo, Theory nd pplictions of frctionl differentil equtionselsevier, Amsterdm 6) 9] MA Ltif, S S Drgomir, E Momonit, Some Fejér type integrl inequlities relted with geometriclly-rithmeticlly-conve functions with pplictions, Sumitted) ] MA Ltif, New Hermite Hdmrd type integrl inequlities for GA-conve functions with pplictions Volume 34, Issue 4 Nov 4) ] C P Niculescu, Conveity ccording to the geometric men, Mth Inequl Appl 3 ) ), 55 67 Aville online t http://ddoiorg/753/mi-3-9 ] C P Niculescu, Conveity ccording to mens, Mth Inequl Appl 6 4) 3), 57 579 Aville online t http://ddoiorg/753/mi-6-53 3] A P Prudnikov, Y A Brychkov, O J Mrichev, Integrl nd series, Elementry Functions, Vol,Nuk, Moscow, 98 4] Y Shung, H-P Yin, nd F Qi, Hermite-Hdmrd type integrl inequlities for geometricrithmeticlly s-conve functions, Anlysis Munich) 33 ) 3), 97-8 Aville online t http://ddoiorg/54/nly39 5] T-Y Zhng, A-P Ji nd F Qi, Some inequlities of Hermite-Hdmrd type for GA-conve functions with pplictions to mens, Le Mtemtiche, Vol LXVIII 3) Fsc I, pp 9 39 doi: 448/3687 6] X-M Zhng, Y-M Chu, nd X-H Zhng, The Hermite-Hdmrd Type Inequlity of GA- Conve Functions nd Its Appliction, Journl of Inequlities nd Applictions, Volume, Article ID 5756, pges doi:55//5756