Hadamard and Caputo-Hadamard FDE s with Three Point Integral Boundary Conditions

Similar documents
defined on a domain can be expanded into the Taylor series around a point a except a singular point. Also, f( z)

About Some Inequalities for Isotonic Linear Functionals and Applications

Math 4318 : Real Analysis II Mid-Term Exam 1 14 February 2013

Dynamics and stability of Hilfer-Hadamard type fractional differential equations with boundary conditions

Lyapunov-type inequality for the Hadamard fractional boundary value problem on a general interval [a; b]; (1 6 a < b)

Qualitative Analysis for Solutions of a Class of. Nonlinear Ordinary Differential Equations

EXISTENCE OF THREE SOLUTIONS FOR A KIRCHHOFF-TYPE BOUNDARY-VALUE PROBLEM

Topics for Review for Final Exam in Calculus 16A

On Natural Partial Orders of IC-Abundant Semigroups

Research Article Hermite-Hadamard-Type Inequalities for r-preinvex Functions

This immediately suggests an inverse-square law for a "piece" of current along the line.

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts.

Right-indefinite half-linear Sturm Liouville problems

ARCHIVUM MATHEMATICUM (BRNO) Tomus 47 (2011), Kristína Rostás

Integrals and Polygamma Representations for Binomial Sums

Previously. Extensions to backstepping controller designs. Tracking using backstepping Suppose we consider the general system

FI 2201 Electromagnetism

Several new identities involving Euler and Bernoulli polynomials

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s:

Week 8. Topic 2 Properties of Logarithms

Michael Rotkowitz 1,2

Chapter 19 Webassign Help Problems

STABILITY and Routh-Hurwitz Stability Criterion

Answers to test yourself questions

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity

Mark Scheme (Results) January 2008

A comparison principle for nonlinear heat Rockland operators on graded groups

APPENDIX 2 LAPLACE TRANSFORMS

The Solution of Volterra Integral Equation of the Second Kind by Using the Elzaki Transform

Math 2142 Homework 2 Solutions. Problem 1. Prove the following formulas for Laplace transforms for s > 0. a s 2 + a 2 L{cos at} = e st.

Solution of fuzzy multi-objective nonlinear programming problem using interval arithmetic based alpha-cut

The Formulas of Vector Calculus John Cullinan

Optimization. x = 22 corresponds to local maximum by second derivative test

Data Structures. Element Uniqueness Problem. Hash Tables. Example. Hash Tables. Dana Shapira. 19 x 1. ) h(x 4. ) h(x 2. ) h(x 3. h(x 1. x 4. x 2.

2. The Laplace Transform

On the Quasi-inverse of a Non-square Matrix: An Infinite Solution

Introductions to ArithmeticGeometricMean

U>, and is negative. Electric Potential Energy

20.2. The Transform and its Inverse. Introduction. Prerequisites. Learning Outcomes

Lectures # He-like systems. October 31 November 4,6

( ) D x ( s) if r s (3) ( ) (6) ( r) = d dr D x

EXISTENCE OF SOLUTIONS TO INFINITE ELASTIC BEAM EQUATIONS WITH UNBOUNDED NONLINEARITIES

An iterative method for solving nonlinear functional equations

Chapter Direct Method of Interpolation More Examples Mechanical Engineering

Chaos and bifurcation of discontinuous dynamical systems with piecewise constant arguments

Lecture 10. Solution of Nonlinear Equations - II

9.4 The response of equilibrium to temperature (continued)

Satellite Orbits. Orbital Mechanics. Circular Satellite Orbits

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by

ASYMPTOTIC BEHAVIOR OF INTERMEDIATE POINTS IN CERTAIN MEAN VALUE THEOREMS. II

Inference for A One Way Factorial Experiment. By Ed Stanek and Elaine Puleo

Fourier-Bessel Expansions with Arbitrary Radial Boundaries

M. A. Pathan, O. A. Daman LAPLACE TRANSFORMS OF THE LOGARITHMIC FUNCTIONS AND THEIR APPLICATIONS

1 Using Integration to Find Arc Lengths and Surface Areas

The Hadamard s inequality for quasi-convex functions via fractional integrals

Schwarzschild Geodesics in Terms of Elliptic Functions and the Related Red Shift

Estimation and Confidence Intervals: Additional Topics

KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION

Deterministic simulation of a NFA with k symbol lookahead

Second Order Fuzzy S-Hausdorff Spaces

Electronic Companion for Optimal Design of Co-Productive Services: Interaction and Work Allocation

Multiple positive solutions of nonlinear third-order boundary value problems with integral boundary conditions on time scales

Multiple Positive Solutions for the System of Higher Order Two-Point Boundary Value Problems on Time Scales

EECE 260 Electrical Circuits Prof. Mark Fowler

RELATIVE KINEMATICS. q 2 R 12. u 1 O 2 S 2 S 1. r 1 O 1. Figure 1

Fluids & Bernoulli s Equation. Group Problems 9

ODE: Existence and Uniqueness of a Solution

New Expansion and Infinite Series

arxiv: v1 [math.cv] 7 Nov 2018

Existence and Uniqueness of Solution for a Fractional Order Integro-Differential Equation with Non-Local and Global Boundary Conditions

On the quadratic support of strongly convex functions

ELECTROSTATICS. 4πε0. E dr. The electric field is along the direction where the potential decreases at the maximum rate. 5. Electric Potential Energy:

Gravity. David Barwacz 7778 Thornapple Bayou SE, Grand Rapids, MI David Barwacz 12/03/2003

General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface

Radial geodesics in Schwarzschild spacetime

EXTREMAL PROPERTIES OF LOGARITHMIC SPIRALS. 1. Introduction

INITIAL VALUE PROBLEMS OF FRACTIONAL ORDER HADAMARD-TYPE FUNCTIONAL DIFFERENTIAL EQUATIONS

3.1 Magnetic Fields. Oersted and Ampere

On New Inequalities of Hermite-Hadamard-Fejer Type for Harmonically Quasi-Convex Functions Via Fractional Integrals

Theorem 2: Proof: Note 1: Proof: Note 2:

On Polynomials Construction

ULAM STABILITY AND DATA DEPENDENCE FOR FRACTIONAL DIFFERENTIAL EQUATIONS WITH CAPUTO DERIVATIVE

Effective stiffness of reinforced thin-webbed timber beams

Physics 604 Problem Set 1 Due Sept 16, 2010

Passive Pressure on Retaining Wall supporting c-φ Backfill using Horizontal Slices Method

Fredholm Integral Equations of the First Kind Solved by Using the Homotopy Perturbation Method

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

Improper Integrals, and Differential Equations

Positive Solutions of Operator Equations on Half-Line

Friedmannien equations

On Caputo type sequential fractional differential equations with nonlocal integral boundary conditions

Set Integral Equations in Metric Spaces

ON THE OSCILLATION OF FRACTIONAL DIFFERENTIAL EQUATIONS

one primary direction in which heat transfers (generally the smallest dimension) simple model good representation for solving engineering problems

FI 2201 Electromagnetism

AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

Research Article On Alzer and Qiu s Conjecture for Complete Elliptic Integral and Inverse Hyperbolic Tangent Function

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

Some Solutions to the Fractional and Relativistic Schrödinger Equations

Uncertain Dynamic Systems on Time Scales

Transcription:

Nonline Anlyi nd Diffeentil Eqution, Vol. 5, 07, no. 6, 7-8 HIKARI Ltd, www.m-hiki.com http://doi.og/0.988/nde.07.796 Hdmd nd Cputo-Hdmd FDE with hee Point Integl Boundy Condition N.I. Mhmudov, M. Awdll nd K. Abub Deptment of Mthemtic Eten Meditenen Univeity Gzimgu, Mein 0, ukey Copyight c 07 N.I. Mhmudov, M. Awdll nd K. Abub. hi ticle i ditibuted unde the Cetive Common Attibution Licene, which pemit uneticted ue, ditibution, nd epoduction in ny medium, povided the oiginl wok i popely cited. Abtct In thi ticle, bed on Bnch nd Schude fixed point theoem, the exitence nd uniquene condition of nonline Hdmd H) / Cputo-Hdmd CH)) fctionl diffeentil eqution of ode < α with thee point integl boundy condition e obtined. Some exmple e intoduced to illutte the pplicbility of the obtined eult. Mthemtic Subject Clifiction: 34A08, 34A60, 34B0, 34B5 Keywod: Hdmd fctionl integl, Cputo deivtive, fixed point Intoduction One of the impotnt chcteitic of fctionl opeto i thei nonlocl ntue. ccounting fo the heedity popetie of mny phenomen nd pocee involved. Duing the lt decde, fctionl clculu h gined emkble impotnce due to the ppliction in lmot ll pplied cience. It hould be pointed tht fctionl opeto e moe convenient fo decibing ome phyicl poblem. On the othe hnd mot of the wok on fctionl diffeentil eqution e bed on Riemnn-Liouville nd Cputo type fctionl opeto. Anothe kind of fctionl opeto tht ppe in the litetue i the

7 N.I. Mhmudov, M. Awdll nd K. Abub fctionl deivtive due to Hdmd. Hdmd deivtive diffe fom the peceding one in the ene tht the kenel of the integl contin logithmic function of bity exponent. Detil nd popetie of the Hdmd fctionl deivtive nd integl cn be found in [], [8], [9], [0], [], [3]. Howeve, diffeentil eqution with Hdmd deivtive i till tudied le thn tht of Riemnn-Liouville nd Cputo fcionl diffeentil eqution, ee [7]-[8], nd efeence theein. In thi ppe, we popoe the exitence nd uniquene of olution fo nonline Hdmd H) / Cputo-Hdmd CH)) fctionl diffeentil eqution of ode < q with thee point integl boundy condition of the fom. Nonline Hdmd fctionl diffeentil eqution nd H D q u t) = g t, u t)), < q, 0 < t, ) ocited with thee point integl boundy condition u ) = 0, u ) = β η u ) d, < η <, β R, ) Nonline Cputo-Hdmd fctionl diffeentil eqution CH D q x t) = g t, x t)), < q, 0 < t, 3) ocited with thee point integl boundy condition x ) = 0, x ) = β η x ) d, < η <, β R. 4) Hee H D q, CH D q denote the Hdmd nd the Cputo-Hdmd fctionl deivtive of ode < q, epectively, g : [, ] R R i continuou function, β i given contnt. Peliminie In thi ection we intoduce ome definition, lemm nd nottion of fctionl clculu Definition he Hdmd fctionl integl of ode q fo continuou function g : [, ) R i defined H I q g t) = t t ) q g ) d, q > 0, Γ q) povided tht the integl exit.

Hdmd nd Cputo-Hdmd FDE 73 Definition he Hdmd fctionl deivtive of ode q fo continuou function g : [, ) R i defined H D q g t) = δ n H I q g ) t) = t d ) n dt Γ n q) t t ) n q g ) d, n < q < n, n = [q] +, δ = t d, [q] denote the intege pt of q. dt Definition 3 Fo t let n-time diffeentible function g : [, ) R, the Cputo-Hdmd fctionl deivtive of ode q i defined CH D q g t) = Lemm 4 Let u, x C n δ Γ n q) t [, ], R). hen H I q H D q u ) t) = u t) t ) n q δ n g ) d. n j= j=0 c j t ) n j, H I q CH D q u ) n t) = u t) c j ) t j. Hee C n δ [, ], R) = {u : [, ] R : δn u C [, ], R)}. Lemm 5 Let h C [, ], R) nd u Cδ [, ], R). he line Hdmd F.D.E given by { H D q u t) = h t), < q, 0 < t, u ) = 0, u ) = β η u ) d, < η <, β R, 5) i equivlent to the integl eqution given by: u t) = Γ q) β whee A = η t η t ) q h ) d + ) q d. Γ q) ) q h ) dd ) t q ) ) q βa ) ) q h ) d, 6) Poof. We conide the Hdmd ce, pplying H I q to both ide of 5) u t) = H I q h t) + c t ) q + c t q. )

74 N.I. Mhmudov, M. Awdll nd K. Abub he fit boundy condition u 0) = 0, implie tht c = 0. hen u t) = H I q h t) + c t ) q. 7) he econd boundy condition u ) = β η H I q h ) + c ) q η η = β H I q h ) d + βc c = ) q β βa u ) d, implie η ) q d, ) H I q h ) d H I q h ). Subtitute 8) in 7) nd expnd the Hdmd fctionl integl we get eqution 6). By diect computtion the convee ttement cn be eily obtined. hi complete the poof. Lemm 6 Let h C [, ], R) nd u Cδ [, ], R). he line Cputo- Hdmd F.D.E given by { CH D q u t) = h t), < q, 0 < t, u ) = 0, u ) = β η u ) d, < η <, β R, 9) i equivlent to the integl eqution given by: u t) = Γ q) β t η t ) q h ) whee A = η η ) +. 8) d + t Γ q) βa ) ) ) q h ) d, 0) ) q h ) dd 3 Exitence eult fo the poblem )-) We define n opeto G H : C [, ], R) C [, ], R) follow G H u) t) = Γ q) β t η t ) q g, u )) d + ) q g, u )) dd Γ q) ) q t ) ) q βa ) ) q g, u )) d.

Hdmd nd Cputo-Hdmd FDE 75 It hould be noticed tht poblem )-) h olution if nd only if the opeto G H h fixed point. Fo the ke of convenience, we et Q = Γ q + ) ) q + ) q β η ) ) Γ q + ) ) q, βa Q = ) q β η ) ) Γ q + ) ) q. βa heoem 7 Let g : [, ] R R be continuou function tifying A) thee exit L g > 0 uch tht g t, u) g t, v) L g u v, t [, ], u, v R. hen the poblem )-) h unique olution on [, ] povided tht QL g <. Poof. Conide the et ω := {u C [, ], R) : u } with MgQ LQ, whee M g = up t g t, 0). It i cle tht g, u )) L g + M g, u ω. Fit we how tht G H ω ω. Fo u ω, t [, ] we hve G H u) t) t t ) q ) g, u )) t q d + Γ q) Γ q) ) q βa η β ) q g, u )) dd + ) ) q g, u )) d L g + M g ) Q, whcih implie tht G H u ω. Next we how tht the opeto G H i contction. Indeed, fo ny u, v ω we hve G H u) t) G H v) t) t t ) q ) g, u )) g, v )) t q d + Γ q) Γ q) ) q βa η β ) q g, u )) g, v )) dd + ) ) q g, u )) g, v )) d L g Q u v.

76 N.I. Mhmudov, M. Awdll nd K. Abub hu G H i contction nd by the Bnch contction mpping theoem the B.V.P h unique olution on [, ]. hi complete the poof. heoem 8 Let g : [, ] R R be continuou function tifying A) nd A) g t, u) y t), t, u) [, ] R, y C [, ], R + ). If L g Q <, then thee i t let one olution fo BVP )-) on [, ]. Poof. We define the opeto G H nd G H on ω, with Q y, follow: G H u ) t) = t t ) q g, u )) d, Γ q) G H u ) ) t q t) = ) ) q Γ q) βa β η Fo u, v ω we hve ) q g, u )) dd G Hu + G Hv Q y, ) ) q g, u )) d tht i G H u + G H v ω. By ou umption, one cn eily how tht G H u G Hv Lg Q u v, which implie tht G H i contction. In ddition, the opeto G H i continuou eult of the continuity of g. Alo, it i unifomly bounded G Hu ) t) y ) q. Γ q + ) Moeove, fo t, t [, ], t < t we hve G Hu ) t ) G Hu ) t ) up { g t, u) : t [, ], u } Γ q) t t ) q t ) ) q d + t t ) q d) t ppoche zeo t t. Note tht G H u) t ) G H u) t ) i independent of u implie tht G H i eltively compct, by Azel-Acoli theoem we conclude tht G H i compct. Hence, the exitence of the olution of the B.V.P hold by Knoelkii fixed point theoem. Next we ue Ley Shude ltentive to pove the exitence of the olution of the BVP.

Hdmd nd Cputo-Hdmd FDE 77 heoem 9 Let g : [, ] R R be continuou function tifying A) nd A3) thee exit function w C [, ], R + ) nd nondeceing function µ : R + R + uch tht g t, u) w t) µ u ), t, u) [, ] R, A4) thee exit contnt M > 0 uch tht M > w µ M) Q. hen thee i t let one olution fo BVP )-) on [, ]. Poof. Fit tep we how tht the opeto mp bounded et into bounded et of. t t ) q w ) µ u ) d + G H u) t) Γ q) η β ) q w ) µ u ) dd + w µ ) Q ) t q ) q βa Γ q) ) ) q w ) µ u ) d Poof. Next we how tht the opeto mp bounded et into equicontinuou et of. fo t, t [, ], t < t we hve G Hu ) t ) G Hu ) t ) w µ ) Γ q) t t ) q t ) ) q t d + ) t q ) t q + Γ q) ) q βa η β ) q w ) µ u ) dd + t t ) q d) ) ) q w ) µ u ) d ppoche zeo t t. Note tht the ight hnd ide of the bove inequlity i independent of u,by Azel-Acoli theoem we conclude tht i completely continuou. he lt tep to complete the umption of Ley-Schude nonline ltentive theoem i to how the boundedne of the et of ll olution to

78 N.I. Mhmudov, M. Awdll nd K. Abub eqution u = δg H u, 0 δ. Aume tht u i olution, then by me mnne befoe we how the opeto i bounded: u t) = δ G H u) t) w µ u ) Q, u w µ u ) Q. But by A4) thee exit contnt M > 0 uch tht M u. Contuct the et Ω = {u C [, ], R) : u < M}, it i obviou tht the opeto G H : Ω C [, ], R) i continuou nd completely continuou. By the contucted Ω, thee i no u Ω uch tht u = δg H u fo ome 0 < δ <. Conequently, by the nonline ltentive of Ley-Schude type, we deduce tht G H h fixed point u Ω which i olution of the BVP. hi complete the poof. 4 Exitence eult fo the poblem 3)-4) In thi ection, ome exitence eult e intoduced fo the poblem 3)- 4). he poof e omitted ince they e imil to the one employed in the peviou ection. We define fixed point opeto G CH : C [, ], R) C [, ], R) ocited with the poblem 3)-4) follow G CH u) t) = t t ) q g, u )) t d + Γ q) Γ q) βa ) η β ) q g, u )) dd ) ) q g, u )) d. Fo computtionl convenience, we let R = ) q ) q+ β η ) ) + Γ q + ) Γ q + ) βa, ) q+ R β η ) ) = Γ q + ) βa. Uing the method of poof fo the theoem obtined by the peviou ection nd the opeto we cn intoduce the following theoem. heoem 0 Let g : [, ] R R be continuou function tifying A) thee exit L g > 0 uch tht g t, u) g t, v) L g u v, t [, ], u, v R. hen the poblem 3)-4) h unique olution on [, ] povided tht RL g <.

Hdmd nd Cputo-Hdmd FDE 79 heoem Let g : [, ] R R be continuou function tifying A) nd A) g t, u) y t), t, u) [, ] R, y C [, ], R + ). If L g R <, then thee i t let one olution fo BVP )-) on [, ]. heoem Let g : [, ] R R be continuou function tifying A) nd A3) thee exit function w C [, ], R + ) nd nondeceing function µ : R + R + uch tht g t, u) w t) µ u ), t, u) [, ] R, A4) thee exit contnt M > 0 uch tht M > w µ M) R. hen thee i t let one olution fo BVP )-) on [, ]. 5 Exmple Exmple : Conide the following non line fctionl Hdmd diffeentil eqution { H D 3/ u t) = g t, u t)), t e, u ) = 0, u e) = β η u ) d, η =, β = 3. ) Fo the pplicbility of heoem 7 conide the function g t, u) = t u e t t + 4) 3 u +, t e. It i cle tht the function g i jointly continuou nd Lipchitzin wtih L g = 5e. One cn eily compute Q =.079. hu L gq < nd ll condition of the heoem 7 tified which how the exitence of uniquene olution of BVP. given by ). Exmple : o illutte theoem 9 conide It i jointly continuou nd g t, u) = e t tn u π t + 44, t e. g t, u) e t t + 44 = w t), Q =.07 4. king M > 0.0,we obeve tht ll the condition of heoem 9 e tified, which implie the exitence of the olution of the BVP )

80 N.I. Mhmudov, M. Awdll nd K. Abub Refeence [] B. Ahmd, S.K. Ntouy, Boundy vlue poblem of Hdmd-type fctionl diffeentil eqution nd incluion with nonlocl condition, Vietnm J. Mth., 45 07), 409 43. http://doi.og/0.007/003-06-03-z [] B. Ahmd, S.K. Ntouy, Exitence nd uniquene of olution fo Cputo-Hdmd equentil fctionl ode neutl functionl diffeentil eqution, Electon. J. Diffeentil Eqution, 07 07), no. 36, -. [3] B. Ahmd, S.K. Ntouy, J. iboon, Exitence eult fo mixed Hdmd nd Riemnn-Liouville fctionl intego-diffeentil incluion, J. Nonline Sci. Appl., 9 06), 6333 6347. [4] B. Ahmd, S.K. Ntouy, J. iboon, Exitence eult fo mixed Hdmd nd Riemnn-Liouville fctionl intego-diffeentil eqution, Adv. in Diffeence Eqution, 05 05), -0. http://doi.og/0.86/366-05-065- [5] A. Aledi, S.K. Ntouy, B. Ahmd, A. Hobiny, Nonline Hdmd fctionl diffeentil eqution with Hdmd type nonlocl nonconeved condition, Adv. in Diffeence Eqution, 05 05), -3. http://doi.og/0.86/366-05-0589- [6] S. Abb, M. Benchoh, J-E. Lzeg, Y. Zhou, A uvey on Hdmd nd Hilfe fctionl diffeentil eqution: nlyi nd tbility, Cho Soliton Fctl, 0 07), 47 7. http://doi.og/0.06/j.cho.07.03.00 [7] M. Benchoh, S. Bouih, J.R. Gef, Boundy Vlue Poblem fo Nonline Implicit Cputo Hdmd-ype Fctionl Diffeentil Eqution with Impule, Medite. J. Mth., 4 07), 06-6. http://doi.og/0.007/00009-07-0-9 [8] P.L. Butze, A.A. Kilb, J.J. ujillo, Compoition of Hdmd-type fctionl integtion opeto nd the emigoup popety, J. Mth. Anl. Appl., 69 00), 387-400. http://doi.og/0.06/00-47x0)00049-5 [9] P.L. Butze, A.A. Kilb, J.J. ujillo, Fctionl clculu in the Mellin etting nd Hdmd-type fctionl integl, J. Mth. Anl. Appl., 69 00), -7. http://doi.og/0.06/00-47x0)0000-x

Hdmd nd Cputo-Hdmd FDE 8 [0] P.L. Butze, A.A. Kilb, J.J. ujillo, Mellin tnfom nlyi nd integtion by pt fo Hdmd-type fctionl integl, J. Mth. Anl. Appl., 70 00), -5. http://doi.og/0.06/00-47x0)00066-5 [] A.A. Kilb, H.M. Sivtv, J.J. ujillo, heoy nd Appliction of Fctionl Diffeentil Eqution, Vol. 04, Noth-Hold Mthemtic Studie, Elevie Science B.V., Amtedm, 006. [] A.A. Kilb, Hdmd-type fctionl clculu, J. Koen Mth. Soc., 38 00), 9-04. [3] A.A. Kilb, J.J. ujillo, Hdmd-type integl G-tnfom, Integl nfom Spec. Funct., 4 003), 43-47. http://doi.og/0.080/0654603000074443 [4] M.M. Mt, O.A. Al-Slmy, Exitence nd Uniquene of Solution fo Hdmd Fctionl Sequentil Diffeentil Eqution, IUG Jounl of Ntul Studie, 07), Specil Iue, 4-47. [5] S.K. Ntouy, J. iboon, P. himnu, Mixed poblem of fctionl coupled ytem of Riemnn-Liouville diffeentil eqution nd Hdmd integl condition, J. Comput. Anl. Appl., 06), 83 88. [6] S.K. Ntouy, J. iboon, C. hipyoon, Nonlocl boundy vlue poblem fo Riemnn-Liouville fctionl diffeentil incluion with Hdmd fctionl integl boundy condition, iwnee J. Mth., 0 06), 9 07. http://doi.og/0.650/tjm.0.06.5654 [7] J. iboon, S.K. Ntouy, C. hipyoon, Nonline Lngevin eqution of Hdmd-Cputo type fctionl deivtive with nonlocl fctionl integl condition, Adv. Mth. Phy., 04 04), At. ID 37749, -5. http://doi.og/0.55/04/37749 [8] W. Yukunthon, S. Sunti, S.K. Ntouy, J. iboon, Boundy vlue poblem fo impulive multi-ode Hdmd fctionl diffeentil eqution, Bound. Vlue Pobl., 48 05), -3. http://doi.og/0.86/366-05-044-5 [9] X. Zhng,. Shu, H. Co, Z. Liu, W. Ding, he genel olution fo impulive diffeentil eqution with Hdmd fctionl deivtive of ode α,), Adv. in Diffeence Eqution, 06 06), -36. http://doi.og/0.86/366-06-0744-3

8 N.I. Mhmudov, M. Awdll nd K. Abub [0] X. Zhng, On impulive ptil diffeentil eqution with Cputo- Hdmd fctionl deivtive, Adv. in Diffeence Eqution, 8 06), -. http://doi.og/0.86/366-06-008-y Received: Octobe, 07; Publihed: Octobe 3, 07