Integration of an Active Brake Pedal Simulator in the CarMaker Environment for Design and Evaluation of Haptic Driver Assistance Systems

Similar documents
ELEC4631 s Lecture 2: Dynamic Control Systems 7 March Overview of dynamic control systems

A Physically-Based Fault Detection and Isolation Method and Its Uses in Robot Manipulators

Virtual Passive Controller for Robot Systems Using Joint Torque Sensors

University of Bristol - Explore Bristol Research. Publisher's PDF, also known as Version of record

Overview of motors and motion control

Product description. Compact Modules. Characteristic features. Further highlights

Lecture 12. Upcoming labs: Final Exam on 12/21/2015 (Monday)10:30-12:30

Dynamic Characterization Results. Table of Contents. I. Introduction

Introduction to Haptic Systems

Controlling the Apparent Inertia of Passive Human- Interactive Robots

HIL SIMULATION TECHNIQUE FOR NON-MODEL-BASED CONTROL OF DC SERVO-DRIVE WITH FRICTION. Teodor Dumitriu, Mihai Culea, Traian Munteanu, Emil Ceangă

Lab 3: Quanser Hardware and Proportional Control

MEAM 510 Fall 2012 Bruce D. Kothmann

Motion Control of Passive Haptic Device Using Wires with Servo Brakes

DESIGN AND REALIZATION OF PROGRAMMABLE EMULATOR OF MECHANICAL LOADS. Milan Žalman, Radovan Macko

Aalborg Universitet. Disturbance Control of the Hydraulic Brake in a Wind Turbine Jepsen, Frank ; Søborg, Anders ; Yang, Zhenyu

Satellite Attitude Control System Design Using Reaction Wheels Bhanu Gouda Brian Fast Dan Simon

Index. Index. More information. in this web service Cambridge University Press

MEAM 510 Fall 2011 Bruce D. Kothmann

VISUAL PHYSICS ONLINE DYNAMICS TYPES OF FORCES FRICTION

Vehicle longitudinal speed control

AIRCRAFT BRAKING DYNAMICS AND BRAKE SYSTEM MODELING FOR FAULT DETECTION AND ISOLATION

Verification of an Automotive Headlight Leveling Circuit and Application Using Smart Component Property Extraction

THE REACTION WHEEL PENDULUM

Quanser NI-ELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control. DC Motor Control Trainer (DCMCT) Student Manual

Video 5.1 Vijay Kumar and Ani Hsieh

Chapter 7 Control. Part Classical Control. Mobile Robotics - Prof Alonzo Kelly, CMU RI

Speed Control of PMSM Drives by Using Neural Network Controller

Design, realization and modeling of a two-wheeled mobile pendulum system

Motion Control. Laboratory assignment. Case study. Lectures. compliance, backlash and nonlinear friction. control strategies to improve performance

Automatic Control Systems. -Lecture Note 15-

BMS. comemso. Battery Cell Simulator. Battery Cell Simulation virtual Battery. BCS Generation 6. Battery. Battery Management System (BMS)

DSCC PASSIVE CONTROL OF A HYDRAULIC HUMAN POWER AMPLIFIER USING A HYDRAULIC TRANSFORMER

557. Radial correction controllers of gyroscopic stabilizer

Modeling and control design for a semi-active suspension system with magnetorheological rotary brake

Mechatronics Engineering. Li Wen

Overview of the Seminar Topic

dw dt T (w ( )) i =

«Energetic Macroscopic Representation for organization of HIL simulation»

Easily Adaptable Model of Test Benches for Internal Combustion Engines

Implementation Issues for the Virtual Spring

ROBUST FRICTION COMPENSATOR FOR HARMONIC DRIVE TRANSMISSION

Chapter 2 SDOF Vibration Control 2.1 Transfer Function

Belt Tension Clamp. Drive Motor. Friction Brake. Load. Encoder 2. Drive. (4000 lines/rev incremental) Encoder 1. (4000 lines/rev incremental)

FAULT DETECTION for SPACECRAFT ATTITUDE CONTROL SYSTEM. M. Amin Vahid D. Mechanical Engineering Department Concordia University December 19 th, 2010

Modeling and Simulation of Cigarette Weight Control System

Linear Control Systems Solution to Assignment #1

Joints Workshop Technical Talk

Funnel control in mechatronics: An overview

Balancing of an Inverted Pendulum with a SCARA Robot

Lecture 6: Control Problems and Solutions. CS 344R: Robotics Benjamin Kuipers

WHAT A SINGLE JOINT IS MADE OF RA

Rigid Manipulator Control

Design and Control of Compliant Humanoids. Alin Albu-Schäffer. DLR German Aerospace Center Institute of Robotics and Mechatronics

Industrial Servo System

Mechatronic System Case Study: Rotary Inverted Pendulum Dynamic System Investigation

Experimental analysis and modeling of transmission torsional vibrations

MODELLING ANALYSIS & DESIGN OF DSP BASED NOVEL SPEED SENSORLESS VECTOR CONTROLLER FOR INDUCTION MOTOR DRIVE

Robust Control of an Electronic Throttle System Via Switched Chattering Control: Benchmark Experiments

Examples of Applications of Potential Functions in Problem Solving (Web Appendix to the Paper)

Kinematics, Dynamics, and Vibrations FE Review Session. Dr. David Herrin March 27, 2012

Modeling of Dynamic Systems: Notes on Bond Graphs Version 1.0 Copyright Diane L. Peters, Ph.D., P.E.

q 1 F m d p q 2 Figure 1: An automated crane with the relevant kinematic and dynamic definitions.

Trigonometric Saturated Controller for Robot Manipulators

Application of Adaptive Thresholds in Robust Fault Detection of an Electro- Mechanical Single-Wheel Steering Actuator

FEEDBACK CONTROL SYSTEMS

LQ Control of a Two Wheeled Inverted Pendulum Process

(Refer Slide Time: 00:01:30 min)

Introduction to Control (034040) lecture no. 2

Parameter Prediction and Modelling Methods for Traction Motor of Hybrid Electric Vehicle

Control of Mobile Robots

Q-Motion Precision Linear Stage

UNIVERSITY OF WASHINGTON Department of Aeronautics and Astronautics

Application Note #3413

Exponential Controller for Robot Manipulators

Speed Control of Torsional Drive Systems with Backlash

A Novel Method on Disturbance Analysis and Feed-forward Compensation in Permanent Magnet Linear Motor System

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors

Linear Systems Theory

Stable Limit Cycle Generation for Underactuated Mechanical Systems, Application: Inertia Wheel Inverted Pendulum

Stepping Motors. Chapter 11 L E L F L D

Non-Linear Swing-Up and Stabilizing Control of an Inverted Pendulum System

Tutorial 1 - Drive fundamentals and DC motor characteristics

Lab 6a: Pole Placement for the Inverted Pendulum

Lecture «Robot Dynamics»: Dynamics 2

MODELLING ANALYSIS & DESIGN OF DSP BASED NOVEL SPEED SENSORLESS VECTOR CONTROLLER FOR INDUCTION MOTOR DRIVE

EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION

Robot Manipulator Control. Hesheng Wang Dept. of Automation

Chapter 3. State Feedback - Pole Placement. Motivation

Simple Car Dynamics. Outline. Claude Lacoursière HPC2N/VRlab, Umeå Universitet, Sweden, May 18, 2005

Laboratory 11 Control Systems Laboratory ECE3557. State Feedback Controller for Position Control of a Flexible Joint

MECH 3140 Final Project

18.12 FORCED-DAMPED VIBRATIONS

Robust Control of Cooperative Underactuated Manipulators

Manufacturing Equipment Control

National Quali cations 2018

Product Description. Further highlights. Outstanding features. 4 Bosch Rexroth Corporation Miniature Linear Modules R310A 2418 (2009.

2002 Prentice Hall, Inc. Gene F. Franklin, J. David Powell, Abbas Emami-Naeini Feedback Control of Dynamic Systems, 4e

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67

Control. CSC752: Autonomous Robotic Systems. Ubbo Visser. March 9, Department of Computer Science University of Miami

Transcription:

Integration of an Active Brake Pedal Simulator in the CarMaker Environment for Design and Evaluation of Haptic Driver Assistance Systems IPG apply & innovate 2014, September 23/24 Simon Rothfuss, Michael Flad, Sören Hohmann Karlsruhe Institute of Technology (KIT) / Institute of Control Systems (IRS) KIT University of the state of Baden-Württemberg and National Laboratory of the Helmholtz Association www.kit.edu

Research Fields of the IRS Automation Solutions Cooperative Assistance Systems Alternative Energy Storage Solutions Haptic Cooperative Advanced Driving Assistance System (ADAS) Sources: http://people.tuke.sk/ivo.petras/rld.gif cdn.redmondpie.com/wp-content/uploads/2012/11/ios-battery-logo.png bosch-kraftfahrzeugtechnik.de/media/ubk_europe/db_application/stage_funktion/bilder/esp_function_w982.jpg 2 09/24/2014

Haptic Cooperative ADAS Direct Perception Direct Integration Instant Communication Intuitive Cooperative System Source: http://commons.wikimedia.org/wiki/file:american_shepherd3.jpg 3 09/24/2014

Cooperative ADAS Development Cooperative ADAS development requires test environment Virtual Car Simulation HW-in-the-loop Human 4 09/24/2014

Overview Driving Simulator Brake Simulator HiL Integration Overview Mechanics Overview Components Electronics Concepts Control Validation 5 09/24/2014

Advanced Driving Simulator Steering Wheel Realtime System Sound Throttle Screen Brake Sources: pk-soundandmusic.com/imagebase/7-1417505.gif sensodrive.de/ we_thumbs /1035_5_s-pr-wheelHT-1.jpg autosieger.de/images/articles/continental_gaspedal_3.jpg bosch-automotivetechnology.com/media/en/ubk_europe/db_application/......downloads/pdf/antrieb/de_5/gs_datenbl_apm_de.pdf dspace.com/files/jpg2/px4_px10_px20-de-002_desktopversion_schraeg......_refl_dp_300dpi_200x250mm_cmyk_081218.jpg 6 09/24/2014

Overview Driving Simulator Brake Simulator HiL Integration Overview Mechanics Overview Components Electronics Concepts Control Validation 7 09/24/2014

Requirements Conventional Hybrid Human car perception characteristic pedal force characteristic Recuperation only Recuperation & Conventional Brake Nonlinear force characteristic Nonlinear dynamic Accuracy according perception Short response time 8 09/24/2014

New Concept Requirements Accuracy according perception Nonlinear force characteristic Short response time Nonlinear dynamic Basic concepts for pedal force simulator Passive Active New Concept: Brake Feedback Force Generation by Electric Drive 9 09/24/2014

Brake Pedal Simulator - Mechanics Gearbox Connector Synchronous Motor Torque Sensor Pedal 10 09/24/2014

Brake Pedal Simulator - Mechanics Spring Limit Stops Incremental Encoder 11 09/24/2014

Electrical System Torque Sensor A/ D DSP CAN Interface Incremental Encoder QEI PWM CAN Bus Pedal Control Unit Gate SM Converter µc Unit QEI Drive Control Unit 12 09/24/2014

Software Architecture Sensor Input Filtering System State Estimation Reference Calculation Control Algorithm Emergency Stop Failure Detection System Supervision Output Enable & Limit Pedal Control Unit (DSP) Gate Signals Field-Oriented Control PWM Signal Drive Control Unit (μc) 13 09/24/2014

System Model Mechanics φ i Shaft Angle left/right side J M/G Inertia of Motor/Gearbox J 1 Inertia of connecting elements left J 2 Inertia right k DK Spring Constant of Torque Sensor & Connector Damping Rate d DK M M M F M P M G M Ri i Motor Torque Spring Torque Pedal Torque Pedal Mass Torque Friction Torque Gear Ratio 14 09/24/2014

System Equations Coupled nonlinear differential equations J ( t) k ( t) ( t) d ( t) ( t) i M ( t) M ( () t ) 1 1 DK 1 2 DK 1 2 M R1 1 J ( t) k ( t) ( t) d ( t) ( t) M ( t) M ( ( t) )... 2 2 DK 1 2 DK 1 2 p R2 2 M G ( ( t) ) M ( ( t) ) 2 F 2 with J J i J J 2 1 1' ( M G) Constraints 0 ( t) : Angle of Limit Stops 2-120 Nm i M ( t) 120 Nm M 15 09/24/2014

Software Architecture Sensor Input Filtering System State Estimation Reference Calculation Control Algorithm Emergency Stop Failure Detection System Supervision Output Enable & Limit Pedal Control Unit Gate Signals Field-Oriented Control PWM Signal Drive Control Unit 16 09/24/2014

PI-State Feedback Control V M S - ʃ K p K i - u z System M P x K x M P M S x u z Pedal torque Reference torque System states Command input torque to motor Disturbances 17 09/24/2014

System State Estimation Measurement equation ( t) 0 0 1 0 () t 1 2 1() t 2( t) 0 0 0 1 2() t MMes( t) kdk 0 kdk 0 2() t Problem: Not all system states x and pedal torque M P can be measured Use of Extended Kalmanfilter for estimation Estimated quantities System states ˆ 1( t) ˆ 1( t) ˆ 2( t) ˆ 2( t) T Pedal torque ˆM P 18 09/24/2014

PI-State Feedback Control V K p z M S - ʃ K i - u System y K x ˆx ˆM P Kalmanfilter z k ˆM P M S ˆx z k Pedal torque, estimated Command input torque System states, estimated Disturbances, known, used in Kalmanfilter 19 09/24/2014

Measurement Results Deviations Root-Mean-Square-Error below human perception < 12N 20 09/24/2014

Summary Brake Pedal Simulator System Model Control Algorithm 0 1 0 0 1( t) k 1 1( ) DK ddk d kdk d DK t d 1( t) J1 J1 J1 J 1 1( t)... dt 2( t) 0 0 0 1 2( t) 2( t) k DK S F ( 2) 2 2( t) DK ddk k g k ddk d J2 J2 J2 J2 0 0 0 0 1 i 0 0 sign( 1) M R10 J1 J1 MM () t ( 2) 20 0 0 0 sign MR 0 MP( t) Mg 0( 2) MF 0( 2) 1 1 0 0 J2 J2 M S - ʃ V K p K i - x' Kalmanfilter M P ' K x z u System z k y System control and state estimation designed Simulator emulates arbitrary nonlinear force characteristics Required accuracy of pedal force achieved 21 09/24/2014

Overview Driving Simulator Brake Simulator HiL Integration Overview Mechanics Overview Components Electronics Concepts Control Validation 22 09/24/2014

Brake Pedal Simulator Integration CAN Brake Pedal Simulator CarMaker Source: duden.de/_media_/small/p/pc-201100281327.jpg dspace.com/files/jpg2/px4_px10_px20-de-002_desktopversion_schraeg......_refl_dp_300dpi_200x250mm_cmyk_081218.jpg 23 09/24/2014

Integration Concepts Concept 1 Brake pedal simulation in CarMaker Feedback force command to brake simulator Pedal position used in CarMaker Complex brake pedal simulation possible Concept 2 Brake pedal characteristic implemented on brake pedal simulator CarMaker selects characteristic Pedal position returned to CarMaker Higher torque / time resolution Brake Pedal Simulator CarMaker CAN 24 09/24/2014

Conclusion Advanced Driving Simulator presented Haptic interfaces available Test bench for cooperative ADAS 25 09/24/2014

Result 26 09/24/2014

Thank you for your attention 27 09/24/2014

Appendix 28 09/24/2014

Pedal Feedback Force Characteristic Real brake pedal force introduced by braking system Modelling with pedal force characteristic F ( ( )) Static s t F ( s( t), s( t)) F ( s( t)) Pedal Static F ( s( t), s( t)) Hysteresis F ( s( t), s( t)) Damping st ( ): Pedal Travel 29 09/24/2014

Pedal Feedback Force Characteristic F ( s( t)) F ( s( t), s( t)) d( s( t)) Static Hysteresis 30 09/24/2014

Pedal Feedback Force Characteristic Idealized pedal force characteristic for 2 different pedal velocities 31 09/24/2014

Software Architecture Emergency Stop Failure Detection System Supervision Drive Control Unit Sensor Input Filtering Output Enable & Limit PWM Signal CAN Signal Internal Signal System State Estimation Reference Calculation Pedal Control Unit Control Algorithm Field- Oriented Control Gate Signals 32 09/24/2014

System Equations Coupled differential equations J ( t) k ( t) ( t) d ( t) ( t) i M ( t) M ( () t ) 1 1 DK 1 2 DK 1 2 M R1 1 J ( t) k ( t) ( t) d ( t) ( t) M ( t) M ( () t )... 2 2 DK 1 2 DK 1 2 p R2 2 M G ( ( t)) M ( ( t)) 2 F 2 Friction model M ( ) sign( ) M d Ri i i Ri 0 Ri i 33 09/24/2014

System Equations Coupled differnetial equations Non-Linearities l MG( 2) mp g sin 2( t) 2 Linearization through 0 and l sin MG( 2) mp g sin 2( t) 2 g g () t O t t J ( t) k ( t) ( t) d ( t) ( t) im ( t) M ( ) 1 1 DK 1 2 DK 1 2 M R1 1 J ( t) k ( t) ( t) d ( ) ( ) M ( t) M ( ) M ( ) M ( ) 2 2 DK 1 2 DK 1 2 p R2 2 G 2 F 2 S 2 2 2 34 09/24/2014

System Equations Coupled differnetial equations J ( t) k ( t) ( t) d ( t) ( t) im ( t) M ( ) 1 1 DK 1 2 DK 1 2 M R1 1 J ( t) k ( t) ( t) d ( t) ( t) M ( t) M ( ) M ( ) M ( ) 2 2 DK 1 2 DK 1 2 p R2 2 G 2 F 2 Non-Linearities M k a sin t cos t ( ) ( ) ( ) F 2 2 2 Linearization through and cos sin MF ( 2) k a 2( t) M ( ) k ( ) ( t) F0 2 F 2 2 2 2 35 09/24/2014

Control Concepts Overview State Feedback SISO - Control H - Control Control Compensator Constant State Feedback Deadbeat Controller PI State Feedback 36 09/24/2014

Control Implementation with additional Spring V K p z M S -M F - ʃ K i - u System y ˆx K x ˆM P -M F Kalmanfilter z k 37 09/24/2014

Identification 38 09/24/2014

State Space Model for Kalmanfilter System equation 0 1 0 0 0 ˆ 1( t) k ˆ1( ) DK ddk d1 kdk d t DK 0 ˆ 1( t) J ˆ 1 J1 J1 J1 1( t) ˆ 2( t) 0 0 0 1 0 ˆ 2( t)... ˆ ( 2( t) kdk ddk kdk gs kf 2) ddk d2 1 ˆ 2( t) Mˆ ( ) J2 J2 J2 J2 J 2 ˆ P t MP( t) 0 0 0 0 0 39 09/24/2014 0 0 1 0 J1 i MM( t) sign( 1) MR10 0 0 Mg 0 MF 0( 2) sign( 2) M R20 1 0 J2 0 0

State Space Model for Kalmanfilter Measurement equation ˆ 1() t ˆ 2( t) 0 0 1 0 0 1() t ( t) 0 0 0 1 0 ˆ () t 2 2 MMes( t) k DK 0 kdk 0 0 ˆ 2() t ˆ MP () t 40 09/24/2014

Kalmanfilter - Simulation Time [s] 41 09/24/2014

Kalmanfilter - Simulation Time [s] 42 09/24/2014

Kalmanfilter - Measurement 43 09/24/2014

Measurement Setup Pedal force sensor attached to pedal Actuation via human foot Hence, no possibility to apply velocity profiles Record command input torque Used pedal characteristics: Quelle: http://www.kistler.co m/medias/sys_mast er/ celum_assets/88247 08071454_934-073_web_6407_png.jpg?2 44 09/24/2014