A Solution of Porous Media Equation

Similar documents
A Solution of the Harry-Dym Equation Using Lattice-Boltzmannn and a Solitary Wave Methods

The Solution of the Two-Dimensional Gross-Pitaevskii Equation Using Lattice-Boltzmann and He s Semi-Inverse Method

(Online First)A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate

Asymptotics of the Solution of a Boundary Value. Problem for One-Characteristic Differential. Equation Degenerating into a Parabolic Equation

International Conference on Advanced Computer Science and Electronics Information (ICACSEI 2013) equation. E. M. E. Zayed and S. A.

Quantum Particle Motion in Physical Space

The Jacobsthal and Jacobsthal-Lucas Numbers via Square Roots of Matrices

The Order Relation and Trace Inequalities for. Hermitian Operators

A Hybrid Variational Iteration Method for Blasius Equation

Existence of Two Conjugate Classes of A 5 within S 6. by Use of Character Table of S 6

Research Article A Multilevel Finite Difference Scheme for One-Dimensional Burgers Equation Derived from the Lattice Boltzmann Method

Research Article Green s Theorem for Sign Data

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method

DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM

A new Approach for Solving Linear Ordinary Differential Equations

Numerical Heat and Mass Transfer

New Exact Traveling Wave Solutions for Two Nonlinear Evolution Equations

Research Article Relative Smooth Topological Spaces

Solution of the Hirota Equation Using Lattice-Boltzmann and the Exponential Function Methods

Sharp integral inequalities involving high-order partial derivatives. Journal Of Inequalities And Applications, 2008, v. 2008, article no.

), it produces a response (output function g (x)

Georgia Tech PHYS 6124 Mathematical Methods of Physics I

Research Article Cubic B-Spline Collocation Method for One-Dimensional Heat and Advection-Diffusion Equations

The Exact Formulation of the Inverse of the Tridiagonal Matrix for Solving the 1D Poisson Equation with the Finite Difference Method

The Tangential Force Distribution on Inner Cylinder of Power Law Fluid Flowing in Eccentric Annuli with the Inner Cylinder Reciprocating Axially

Case Study of Markov Chains Ray-Knight Compactification

Statistical inference for generalized Pareto distribution based on progressive Type-II censored data with random removals

A PROCEDURE FOR SIMULATING THE NONLINEAR CONDUCTION HEAT TRANSFER IN A BODY WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY.

Entropy generation in a chemical reaction

Numerical Solution of Ordinary Differential Equations

Perfect Fluid Cosmological Model in the Frame Work Lyra s Manifold

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Group Analysis of Ordinary Differential Equations of the Order n>2

Magnetic Diffusion using Lattice-Boltzmann

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2015

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity

Implicit Integration Henyey Method

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS

SIMULATION OF SOUND WAVE PROPAGATION IN TURBULENT FLOWS USING A LATTICE-BOLTZMANN SCHEME. Abstract

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD

Application of B-Spline to Numerical Solution of a System of Singularly Perturbed Problems

The Two-scale Finite Element Errors Analysis for One Class of Thermoelastic Problem in Periodic Composites

Hongyi Miao, College of Science, Nanjing Forestry University, Nanjing ,China. (Received 20 June 2013, accepted 11 March 2014) I)ϕ (k)

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

One-sided finite-difference approximations suitable for use with Richardson extrapolation

Research Article A Combination Method of Mixed Multiscale Finite-Element and Laplace Transform for Flow in a Dual-Permeability System

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

Global Sensitivity. Tuesday 20 th February, 2018

Thermal-Fluids I. Chapter 18 Transient heat conduction. Dr. Primal Fernando Ph: (850)

Solving Fractional Nonlinear Fredholm Integro-differential Equations via Hybrid of Rationalized Haar Functions

NUMERICAL DIFFERENTIATION

Uniqueness of Weak Solutions to the 3D Ginzburg- Landau Model for Superconductivity

A boundary element method with analytical integration for deformation of inhomogeneous elastic materials

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

System in Weibull Distribution

A NUMERICAL COMPARISON OF LANGRANGE AND KANE S METHODS OF AN ARM SEGMENT

Convexity preserving interpolation by splines of arbitrary degree

Research Article Exact Partition Function for the Random Walk of an Electrostatic Field

EXACT TRAVELLING WAVE SOLUTIONS FOR THREE NONLINEAR EVOLUTION EQUATIONS BY A BERNOULLI SUB-ODE METHOD

Lecture 20: Noether s Theorem

Monotonic Interpolating Curves by Using Rational. Cubic Ball Interpolation

On the spectral norm of r-circulant matrices with the Pell and Pell-Lucas numbers

Significance of Dirichlet Series Solution for a Boundary Value Problem

New Exact Solutions of the Kawahara Equation using Generalized F-expansion Method

POLYNOMIAL BASED DIFFERENTIAL QUADRATURE FOR NUMERICAL SOLUTIONS OF KURAMOTO-SIVASHINSKY EQUATION

Primer on High-Order Moment Estimators

International Journal of Algebra, Vol. 8, 2014, no. 5, HIKARI Ltd,

Numerical Simulation of Lid-Driven Cavity Flow Using the Lattice Boltzmann Method

Comparative Studies of Law of Conservation of Energy. and Law Clusters of Conservation of Generalized Energy

An identification algorithm of model kinetic parameters of the interfacial layer growth in fiber composites

Homogenization of reaction-diffusion processes in a two-component porous medium with a non-linear flux-condition on the interface

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

Numerical Solutions of a Generalized Nth Order Boundary Value Problems Using Power Series Approximation Method

2 Finite difference basics

Canonical transformations

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 12

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Research Article The Solution of Two-Point Boundary Value Problem of a Class of Duffing-Type Systems with Non-C 1 Perturbation Term

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION

Electron-Impact Double Ionization of the H 2

Causal Diamonds. M. Aghili, L. Bombelli, B. Pilgrim

Application of the lattice Boltzmann method for solving conduction problems with heat flux boundary condition.

Lecture 12: Discrete Laplacian

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Problem Points Score Total 100

Septic B-Spline Collocation Method for the Numerical Solution of the Modified Equal Width Wave Equation

2-π STRUCTURES ASSOCIATED TO THE LAGRANGIAN MECHANICAL SYSTEMS UDC 531.3: (045)=111. Victor Blãnuţã, Manuela Gîrţu

Modelli Clamfim Equazione del Calore Lezione ottobre 2014

A note on almost sure behavior of randomly weighted sums of φ-mixing random variables with φ-mixing weights

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Research Article A Generalized Sum-Difference Inequality and Applications to Partial Difference Equations

Projective change between two Special (α, β)- Finsler Metrics

Chapter 4 The Wave Equation

Note: Please use the actual date you accessed this material in your citation.

SOME RESULTS ON TRANSFORMATIONS GROUPS OF N-LINEAR CONNECTIONS IN THE 2-TANGENT BUNDLE

Trees and Order Conditions

November 5, 2002 SE 180: Earthquake Engineering SE 180. Final Project

Binomial transforms of the modified k-fibonacci-like sequence

Transcription:

Internatonal Mathematcal Forum, Vol. 11, 016, no. 15, 71-733 HIKARI Ltd, www.m-hkar.com http://dx.do.org/10.1988/mf.016.6669 A Soluton of Porous Meda Equaton F. Fonseca Unversdad Naconal de Colomba Grupo de Cenca de Materales y Superfces epartamento de Físca Bogotá-Colomba Copyrght c 016 F. Fonseca. Ths artcle s dstrbuted under the Creatve Commons Attrbuton Lcense, whch permts unrestrcted use, dstrbuton, and reproducton n any medum, provded the orgnal work s properly cted. Abstract We solve the nonlnear porous meda equaton usng lattce Boltzmann for a d1q3 lattce velocty method. We fnd the equlbrum dstrbuton accordng to the porous meda equaton. Also, we use the tanh method n order to fnd several famles of soltary wave solutons. We present results for two colldng solutons, usng LB method, whch s n agreement wth the tanh soluton. Mathematcs Subject Classfcaton: 35-XX, 34-XX, 76xx Keywords: Porous Meda Equaton, Lattce-Boltzmann, Tanh Functon 1 Introducton ffuson s a common n many research felds n physcs, chemstry, bology, fnance and ngeneerng use ther methods and results [1]. A lot of nvestgaton has been made n the theory of nonlnear dffuson equatons such as classcal methods [], nonclasscal methods [3], generalzed condtonal symmetry [4] nonlocal symmetry method [5], and the truncated Panleve approach [6], etc. For a further and deep research on the mathematcal propertes of porous meda equaton should be consulted reference [7], and references theren. Also, n the search for solutons to these complex nonlnear equatons, we can fnd the so called soltary wave solutons. Among them, one of the most knwon and appled s the Tanh method [8], used n ths work.

7 F. Fonseca On the other hand, lattce-boltzmann LB) technque s the dscretzed verson of the Boltzmann equaton, who responses for the spato-temporal evoluton of the statstcal dstrbuton functon, whch s a qute complex ntegrodfferental equaton. LB over the years has proven ts effectveness and adaptablty to fnd solutons to a large number of problems n physcs [9]. The lattce Boltzmann model The lattce Boltzmann equaton s gven by: f x + e t, t + t) f x, t) = Ω x, t) The term Ω x, t)) represents the B.G.K. approxmaton, [10], s: Ω x, t)) = 1 τ f x, t) f eq x, t)) ) Where f x, t) s the dstrbuton functon for partcles wth velocty e at poston x and tme t, and t s the tme step. τ s a nondmensonal relaxaton tme, weghtng the approacng rate to the statstcal equlbrum, and f eq x, t) s equlbrum dstrbuton functon. Usng a unt tme gven by ɛ = δt/e, where e s the velocty dscretzed on a mesh. Then, the lattce-boltzmann equaton s: f x + e ɛ, t + ɛ) f x, t) = Ω x, t) 3) Expandng n a Taylor seres, the dstrbuton functon, up to order fourth, we have: f x + e ɛ, t + ɛ) f x, t) = ɛ + ɛ t + e x ) f + ɛ3 6 t + e x ) 3 t + e f + Oɛ 4 ) x ) f 4) ong a perturbatve expanson of the dervatves n tme n powers of ɛ, we get: And assumng: f = f 0) + ɛf + ɛ f ) + ɛ 3 f 3) 5) f 0) Where the temporal scales are defned as: = f eq) 6)

A soluton of porous meda equaton 73 t 0 = t t 1 = ɛt t = ɛt t 3 = ɛt 3 7) And the perturbatve expanson n parameter ɛ of the temporal dervatve operator t = + ɛ 1 + ɛ + ɛ 3 8) t 0 t 1 t t 3 Replacng eqs. 5) and 8) n eq. 4), we get at frst, second and thrd order n ɛ, respectvely, the next set of equatons: f 0 t 0 + e f 0 x = 1 τ f 1 9) f 0 τ1 1 ) t 1 τ ) + e f = 1 t 0 x τ f 10) f 0 t 1 τ τ + 1 6 ) f 0 + 1 τ) + e t t 0 x ) 3 + e f 0 t 0 x = 1 τ f 3 3 The moments of the dstrbuton Where φ, u are the macroscopc quanttes defned as: l f 0) = φ = ) + 1 f eq) 1) e f 0) = 0 13) e l, e l,j f 0) l = λφ m δ j 14) Where δ j s Kronecker s delta. ong some algebra, we get: ) ɛ φ ɛτ1 1 t 1 τ ) 0 + 0 + f x e e j = 1 f ) 15) τ Assumng f ) = βτφ n 16)

74 F. Fonseca Fgure 1: The lattce velocty scheme 1Q3. Then If we chose as: φ t = ɛλτ 1 ) φ m x + βφ n 17) = ɛλτ 1 ) 18) Then eq. 17) s the generalzed porous meda equaton [7]: 4 The dstrbuton functon φ t = φ m x + βφ n 19) We use a d1q3, see fgure ), one-dmensonal velocty scheme wth e α = {0, c, c}. Then, the one partcle equlbrum dstrbuton functon s defned as: f eq) = 5 Soltary wave soluton λ φ m = 0 c φ λ φ m = 1 c φ λ φ m = c We choose n eq. 19) wth m =, and n = 4, then: 0) Usng φ t = φ x + βφ4

A soluton of porous meda equaton 75 The dervatves change lke: ξ = x at + ξ 0 ) t = a ξ ; x = ξ ; x = ξ 3) Now, we apply the tanh method [8]. varable: Then, we ntroduce an ndependent The dervatves of ξ n terms of Y, are: Y x, t) = tanh ξ) 4) d dξ = 1 Y ) d dy, d dξ = Y 1 Y ) d dy + 1 Y ) d 5) dy The solutons are postulated [8] as: φξ) = m a Y 6) =1 Now, usng eqs. 3) and eq. 5) n eq., we get: a1 Y ) dφ dy = Y 1 Y ) dφ dy + 1 Y ) d φ dy + βφ4 7) The parameter m, n eq. 6), s obtaned by the balance of the hghest-order lnear term wth the nonlnear terms n the transformed equatons. So, we have: Then, eq. 6) s: Y 4 d φ dy φ4 4 + m = 4m m = 1 8) φξ) = a 0 + a 1 Y φξ) = a 0 + a 1 a 0 Y + a 1Y 9)

76 F. Fonseca Replacng a1 Y )a 1 = 4Y a 1 a 0 + a 1Y a 1 a 0 + a 1Y )Y ) 30) +a 11 Y + Y 4 ) + βa 4 0 + 4Y a 3 0a 1 + 6Y a 0a 1 +4Y 3 a 0 a 3 1 + Y 4 a 4 Groupng the coeffcents, n eq 30), n powers of Y and equatng ther coeefcents to zero, we get a set of nonlnear equatons. ong some algebra the solutons are: a 01, = ± β, a 1 1, = ± β, a 6 1 3,4 = ± β 3 a 15 = aβ β a β 8, a 16 = aβ + β a β 8 4β 4β 3) a 17 = a, a 0 3 = a + β ) 1/4 1/4, a 0 4 = a + β ) 1/4 1/4 33) a 05 = a + β ) 1/4 1/4, a 06 = a + β ) 1/4 1/4 34) a 07 = a β ) 1/4 1/4, a 0 8 = a β ) 1/4 1/4 35) a 09 = a β ) 1/4 1/4, a 010 = a β ) 1/4 1/4 36) a 011 = a + 1 ) 1/4 6 b b b 1/4 37)

A soluton of porous meda equaton 77 a + 1 ) 1/4 6 b b a 01 = 38) b 1/4 a 013 = a 014 = a + 1 ) 1/4 6 b b 39) b 1/4 a + 1 ) 1/4 6 b b b 1/4 40) a 015 = a + 1 + ) 1/4 6 b b b 1/4 4 a + 1 + ) 1/4 6 b b a 016 = 4) b 1/4 Usng a 11,,3,4 : a 017 = a 018 = a + 1 + ) 1/4 6 b b 43) b 1/4 a + 1 + ) 1/4 6 b b b 1/4 44) ong the next defntons: a 019,...,6 = ± a + 8a 1 6βa 1 45) l 1 = 187a 4 b 5 10368a b 4 3 + 3768b 3 6 46) +81 79a 8 b 10 5376a 6 b 9 3 + 16384a 4 b 8 6

78 F. Fonseca Fgure : Two colldng functons, eq. 5), usng LB method. l = 7a b 3 + 18b 4 47) l 3 = 16 7b + 4 l ) 7b 3 l 1 ) + l 1/3 48) 1/3 54b 3 l 4 = 3 7b 4 l ) 7b 3 l 1 ) l 1/3 a 1/3 54b 3 3b 49) l 3 We get: l 5 = 3 7b 4 l ) 7b 3 l 1 ) + l 1/3 a 1/3 54b 3 3b 50) l 3 a 031 = 3b + 1 l3 1 l4 5

A soluton of porous meda equaton 79 a 131 = a 4 + a 3b 4 l 3 3 l 3 9a b l3 3 l 1 ) 1/3 4 b l 3 ) 3/ + 18b4 l 3 + l 1/3 l 3 9a b l 4 + 18b4 3 l 1 ) 1/3 l 1 ) 1/3 3 l 1 ) 1/3 l4 5) + l 1/3 l 4 + b l 3 l4 + 3 4 b l 4 ) 3/ )/a) a 03 = 3b + 1 l3 1 l4 53) a 13 = a 4 + a 3b 4 l 3 3 l 3 9a b l3 3 l 1 ) 1/3 4 b l 3 ) 3/ + 18b4 l 3 + l 1/3 l 3 9a b l 4 + 18b4 3 l 1 ) 1/3 l 1 ) 1/3 3 l 1 ) 1/3 l4 54) + l 1/3 l 4 + b l 3 l4 + 3 4 b l 4 ) 3/ )/a) a 033 = 3b + 1 l3 + 1 l4 55) a 133 = a 4 + a 3b 4 l 3 3 l 9a b l3 3 l 1 ) 1/3 4 b l 4 ) 3/ 56) + l 1/3 l 3 l 1/3 l 4 l4 3 4 b l 3 ) 3/ + 9a b l 4 18b4 l 1 ) 1/3 3 l 1 ) 1/3 b l 3 l4 + 18b4 l 3 3 l 1 ) 1/3 )/a) a 034 = 3b + 1 l3 + 1 l4 57) a 134 = 4 3 l 3 9a b l 3 + 18b4 l3 58) l 1 ) 1/3 3 l 1 ) 1/3 3 4 b l 4 ) 3/ 3 4 b l 3 ) 3/ + 9a b l 4 18b4 l 1 ) 1/3 3 l 1 ) 1/3 a 4 + a 3b l 1/3 l4 l 3 l4 b l 3 l4 + l 1/3 l 3 )/a)

730 F. Fonseca a 035 = 3b 1 l3 1 l5 59) a 135 = + 4 3 l 3 + 9a b l 3 18b4 l3 60) l 1 ) 1/3 3 l 1 ) 1/3 l 1/3 l 3 + 3 4 b l 3 ) 3/ 9a b l 5 l 1 ) 1/3 + 18b4 l 5 + l 1/3 l 4 b l 3 l 1 ) 1/3 3 l5 + 3 4 b l 5 ) 3/ a 4 a 3b l 3 )/a) a 036 = 3b 1 l3 1 l5 6 a 136 = a 3b + 4 l 3 3 l 3 + 9a b l3 18b4 l3 6) l 1 ) 1/3 3 l 1 ) 1/3 a 4 l 1/3 l3 + 3 4 b l 3 ) 3/ 9a b l 5 + 18b4 l 1 ) 1/3 3 l 1 ) 1/3 l5 + l 1/3 l 5 b l 3 l5 + 3 4 b l 5 ) 3/ )/a) a 037 = 3b 1 l3 + 1 l5 63) a 137 = a 4 a 3b + 4 l 3 3 l 3 + 9a b l3 64) l 1 ) 1/3 l 1/3 l 3 3 l 1 ) 1/3 18b4 l 3 + 3 4 b l 3 ) 3/ + 9a b l 5 l 1 ) 1/3 18b4 l 5 l 1/3 l 5 + b l 3 l 1 ) 1/3 3 l5 3 4 b l 5 ) 3/ )/a)

A soluton of porous meda equaton 731 a 038 = 3b 1 l3 + 1 l5 65) a 138 = a 3b + 4 l 3 3 l 3 + 9a b l3 18b4 l3 66) l 1 ) 1/3 3 l 1 ) 1/3 l 1/3 l 3 l5 + 3 4 b l 3 ) 3/ + 9a b l 5 18b4 l 1 ) 1/3 3 l 1 ) 1/3 a 4 l 1/3 l5 + b l 3 l5 3 4 b l 5 ) 3/ )/a) We fnd thrty eght famles of solutons usng Tanh method. famles are: So, the φ 1 a 01, a 15 ), φ a 01, a 16 ), φ 3 a 0, a 15 ) 67) φ 4 a 0, a 16 ), φ 5 a 01, a 17 ), φ 6 a 0, a 17 ) 68) φ 7 a 03, a 11 ), φ 8 a 04, a 11 ), φ 9 a 05, a 11 ) 69) φ 10 a 06, a 11 ), φ 11 a 07, a 1 ), φ 1 a 08, a 1 ) 70) φ 13 a 09, a 1 ), φ 14 a 010, a 1 ), φ 15 a 011, a 13 ) 7 φ 16 a 01, a 13 ), φ 17 a 013, a 13 ), φ 18 a 014, a 13 ) 7) φ 19 a 015, a 14 ), φ 0 a 016, a 14 ), φ 1 a 017, a 14 ) 73) φ a 018, a 14 ), φ 3 a 019, a 11 ), φ 4 a 00, a 11 ) 74)

73 F. Fonseca φ 5 a 01, a 1 ), φ 6 a 0, a 1 ), φ 7 a 03, a 13 ) 75) φ 8 a 04, a 13 ), φ 9 a 05, a 14 ), φ 30 a 05, a 14 ) 76) φ 31 a 031, a 131 ), φ 3 a 03, a 13 ), φ 33 a 033, a 133 ) 77) φ 34 a 034, a 134 ), φ 35 a 035, a 135 ), φ 36 a 036, a 136 ) 78) 6 Conclusons φ 37 a 037, a 137 ), φ 38 a 038, a 138 ) 79) We solve the general nonlnear porous meda equaton usng lattce-boltzmann and the Tanh method. Also, we get thrty eght famles of solutons usng Tanh method. As far as we know, ths procedure s totally orgnal and stablshes a contrbuton to the soluton to the porous meda equaton. As a future work, the model could be extended to two and three dmensons. Acknowledgements. Ths research was supported by Unversdad Naconal de Colomba n Hermes project 350. References [1] J. Janssen, O. Manca and R. Manca, Appled ffuson Processes from Engneerng to Fnance, John Wley & Sons, 013. http://dx.do.org/10.100/9781118578339 [] V.A. orodntsyn, On nvarant solutons of the equatons on non-lnear heat conducton wth a source, USSR Computatonal Mathematcs and Mathematcal Physcs, 198), 115-1. http://dx.do.org/10.1016/0041-55538)9010-1 [3] W.I. Fushchch, W.M. Shtelen, N.I. Serov, Symmetry Analyss and Exact Solutons of Equatons of Nonlnear Mathematcal Physcs, Kluwer Academc, ordrecht, 1993. http://dx.do.org/10.1007/978-94-017-3198-0

A soluton of porous meda equaton 733 [4] R.Z. Zhdanov, Condtonal Le-Bäcklund symmetry and reducton of evoluton equatons, Journal of Physcs A: Mathematcal and General, 8 1995), 3841-3850. http://dx.do.org/10.1088/0305-4470/8/13/07 [5] G.W. Bluman, J.. Red, S. Kume, New classes of symmetres for partal dfferental equatons, J. Math. Phys., 9 1988), 806-81. http://dx.do.org/10.1063/1.57974 [6] F. Carello, M. Tabor, Panlevé expansons for nonntegrable evoluton equatons, Physca : Nonlnear Phenomena, 39 1989), 77-94. http://dx.do.org/10.1016/0167-78989)90040-7 [7] J.L. Vázquez, The Porous Medum Equaton: Mathematcal Theory, Oxford Mathematcal a Monographs, 006. http://dx.do.org/10.1093/acprof:oso/9780198569039.001.0001 [8] W. Malflet and W. Hereman, The Tanh Method: I. Exact solutons of Nonlnear Evoluton and Wave Equatons, Physca Scrpta, 54 1996), 563-568. http://dx.do.org/10.1088/0031-8949/54/6/003 [9] Sauro Succ, The Lattce Boltzmann Equaton for Flud ynamcs and Beyond, Numercal Mathematcs and Scentfc Computaton, Oxford Unversty Press, 001. [10] P.L. Bathnagar, E.P. Gross and M. Krook, A model for collson processes n gases. I. Small ampltude processes n charged and neutral onecomponent systems, Physcal Revew, 94 1954), 511-55. http://dx.do.org/10.1103/physrev.94.511 Receved: June, 016; Publshed: July 6, 016