Methoden moderner Röntgenphysik I. Coherence based techniques II. Christian Gutt DESY, Hamburg

Similar documents
General theory of diffraction

Methoden moderner Röntgenphysik II: Streuung und Abbildung

Diffraction Imaging with Coherent X-rays

Methoden moderner Röntgenphysik II: Streuung und Abbildung

4. Other diffraction techniques

Methoden moderner Röntgenphysik II: Streuung und Abbildung

DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY. Regents' Professor enzeritus Arizona State University

X-Ray Scattering Studies of Thin Polymer Films

Partial coherence effects on the imaging of small crystals using coherent x-ray diffraction

High-Resolution. Transmission. Electron Microscopy

research papers 90 # 2002 International Union of Crystallography Printed in Great Britain ± all rights reserved J. Synchrotron Rad. (2002).

Observation of ferroelectric domains in bismuth ferrite using coherent diffraction techniques

Fourier Syntheses, Analyses, and Transforms

Coherent X-ray Diffraction on Quantum Dots

Lecture 9: Indirect Imaging 2. Two-Element Interferometer. Van Cittert-Zernike Theorem. Aperture Synthesis Imaging. Outline

Spatial coherence measurement

Handout 7 Reciprocal Space

GBS765 Electron microscopy

Methoden moderner Röntgenphysik: Streuung und Abbildung

X-ray Photon Correlation Spectroscopy (XPCS) at Synchrotron and FEL sources

Phase Retrieval with Random Illumination

CS273: Algorithms for Structure Handout # 13 and Motion in Biology Stanford University Tuesday, 11 May 2003

Femtosecond time-delay holography Henry Chapman Centre for Free-Electron Laser Science - DESY Lawrence Livermore National Laboratory

Coherence measurements and coherent diffractive imaging at FLASH

Applications of scattering theory! From the structure of the proton! to protein structure!

Roger Johnson Structure and Dynamics: X-ray Diffraction Lecture 6

Protein Crystallography

Scattering Lecture. February 24, 2014

Methoden Moderner Röntgenphysik II - Vorlesung im Haupt-/Masterstudiengang, Universität Hamburg, SoSe 2016, S. Roth

Neutron and x-ray spectroscopy

INVERSE PROBLEMS IN X-RAY SCIENCE STEFANO MARCHESINI

Phys 531 Lecture 27 6 December 2005

Interaction X-rays - Matter

3.012 Fund of Mat Sci: Structure Lecture 18

Diffraction Geometry

Transmission Electron Microscopy

Resolution: maximum limit of diffraction (asymmetric)

Introduction to crystallography The unitcell The resiprocal space and unitcell Braggs law Structure factor F hkl and atomic scattering factor f zθ

Disordered Materials: Glass physics

Beam Breakup, Feynman and Complex Zeros

Toward a single mode Free Electron Laser for coherent hard X-ray experiments

Imaging & Microscopy

Crystals, X-rays and Proteins

V 11: Electron Diffraction

Small Angle Neutron Scattering in Different Fields of Research. Henrich Frielinghaus

Keble College - Hilary 2012 Section VI: Condensed matter physics Tutorial 2 - Lattices and scattering

Scattering by two Electrons

X-ray, Neutron and e-beam scattering

Structure analysis: Electron diffraction LEED TEM RHEED

Hidden Symmetry in Disordered Matter

Part 3 - Image Formation

4 Classical Coherence Theory

A Brief Introduction to Medical Imaging. Outline

The science of light. P. Ewart

Road map (Where are we headed?)

Crystal planes. Neutrons: magnetic moment - interacts with magnetic materials or nuclei of non-magnetic materials. (in Å)

X-ray Crystallography. Kalyan Das

X-ray crystallography has a record of extraordinary achievement

Ultrafast XPCS. Gerhard Grübel

X-Ray Diffraction as a key to the Structure of Materials Interpretation of scattering patterns in real and reciprocal space

The Basic of Transmission Electron Microscope. Text book: Transmission electron microscopy by David B Williams & C. Barry Carter.

Theory of Nonlinear Harmonic Generation In Free-Electron Lasers with Helical Wigglers

홀로그램저장재료. National Creative Research Center for Active Plasmonics Applications Systems

Molecular Biology Course 2006 Protein Crystallography Part I

Solid State Physics Lecture 3 Diffraction and the Reciprocal Lattice (Kittel Ch. 2)

Multilayer Optics, Past and Future. Eberhard Spiller

The laser oscillator. Atoms and light. Fabry-Perot interferometer. Quiz

Main Notation Used in This Book

The laser oscillator. Atoms and light. Fabry-Perot interferometer. Quiz

Solid State Physics 460- Lecture 5 Diffraction and the Reciprocal Lattice Continued (Kittel Ch. 2)

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I

Surface Sensitive X-ray Scattering

Quantitative phase measurement in coherent diffraction imaging

Methoden moderner Röntgenphysik II Streuung und Abbildung

USPAS course on Recirculated and Energy Recovered Linacs Ivan Bazarov, Cornell University Geoff Krafft, JLAB. ERL as a X-ray Light Source

2. Passage of Radiation Through Matter

How can x-ray intensity fluctuation spectroscopy push the frontiers of Materials Science. Mark Sutton McGill University

Coherent x-rays: overview

Chapter 2. X-ray X. Diffraction and Reciprocal Lattice. Scattering from Lattices

Experimental Determination of Crystal Structure

This is a topic I encountered a number of years ago while at LBNL, when I came across the following statement [1]:

The BESSY - FEL Collaboration

Applications of Coherent X-Rays at the LCLS

Materials 286C/UCSB: Class VI Structure factors (continued), the phase problem, Patterson techniques and direct methods

Quantum Condensed Matter Physics Lecture 5

X-ray Diffraction. Diffraction. X-ray Generation. X-ray Generation. X-ray Generation. X-ray Spectrum from Tube

Overview - Macromolecular Crystallography

Protein crystallography. Garry Taylor

Image definition evaluation functions for X-ray crystallography: A new perspective on the phase. problem. Hui LI*, Meng HE* and Ze ZHANG

X-ray Intensity Fluctuation Spectroscopy. Mark Sutton McGill University

Application of optimization technique to noncrystalline x-ray diffraction microscopy: Guided hybrid input-output method

Magnetic Neutron Reflectometry. Moses Marsh Shpyrko Group 9/14/11

High-Resolution Imagers

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

Imaging Self-Organized Domains at the Micron Scale in Antiferromagnetic Elemental Cr Using Magnetic X-ray Microscopy

What use is Reciprocal Space? An Introduction

Methoden moderner Röntgenphysik II Streuung und Abbildung

Wigner distribution measurement of the spatial coherence properties of FLASH

X-ray analysis. 1. Basic crystallography 2. Basic diffraction physics 3. Experimental methods

3D Image Reconstruction Hamiltonian Method for Phase Recovery 1

Transcription:

Methoden moderner Röntgenphysik I Coherence based techniques II Christian Gutt DESY Hamburg christian.gutt@desy.de 8. January 009

Outline 18.1. 008 Introduction to Coherence 8.01. 009 Structure determination techniques Oversampling Coherent Diffractive Imaging Fourier transform Holography 15.01.009 Correlation Spectroscopy

Last lecture

Longitudinal coherence Nλ = N + 1 λ λ N N + 1 λ = λ λ λ longitudinal coherence depends on bandwidth

Transverse coherence transverse coherence depends on distance and source size

1 1 τ + + = t r AV t r AV t r V r1 r Re 1 * 1 1 1 τ τ r r A A t r V A t r V A t r I Γ + + + = > + =< Γ 1 * 1 τ τ t r V t r V r r Field amplitude Intensity Mutual Coherence Function MCF 1 1 * 1 t r I t r I t r V t r V r r > + < = τ τ µ Complex degree of coherence Mutual Coherence Function = Visibility µ

van Cittert Zernike Theorem + + = S q p ik S q p ik i d d e I d d e I e P η ξ η ξ η ξ η ξ µ η ξ η ξ ψ 0 complex degree of coherence Fourier Transform of the source intensity distribution! = 0 0 0 0 ρ ρ ρ ρ ρ ρθ ρ µ ψ d I d k J I e P i R Y X k R Y q R X p + = = = ψ Axial symmetry z r = θ

Speckle Pattern Everything interferes with everything ξ T I q d q~ S q ~ R q q~ R q exp q / q ξ L q π / ξ T

Scattering from a Crystal William Henry Bragg 186-194 William Lawrence Bragg 1890-1971 Nobelpreis 1915 Bragg's Law: a r mλ = d sin θ a r 1 r N F q = f q e j e i q Rn crystal j j= 1 n= 1 Unit Cell Structure Factor F uc q i r r q M r r r Lattice Sum

Elastic Scattering from a Crystal Differential Scattering Cross Section dσ dω dσ = dω Intrinsic Cross Section Coupling Beam Sample 0 crystal r S q r r S q = F q Properties of the Sample without Beam Phase problem

Solution to the phase problem for periodic objects classical crystallography direct methods using the fact that the density is real and positive anomalous X-ray scattering MAD heavy atoms... + atomic resolution - need for crystals - x-ray damage Structure determination of non-periodic objects a zoo of scanning x-ray techniques scanning transmission x-ray microscope tomography medical imaging... + no need for crystals -+ 0-30 nm resolution - limited dynamics

Coherence based techniques for structure determination Ultrafast femtoseconds imaging techniques for non-periodic objects Coherent diffractive imaging Fourier transform holography Holographic imaging Ptychography and all combinations thereof...

Structure Determination from Oversampled Speckle Pattern 50 100 λ θ 150 00 50 300 50 100 150 00 50 300 iterative algorithm max. resolution λ sin θ J. Miao et al. Nature 400 34 1999

Phase retrieval and oversampling M ρ x y z L x M x N unknown variables measured quantity F ^ sampled at Bragg peak frequency L Friedel s law L x M x N / independent equations No inversion possible

Intensity continuous intensity distribution for non periodic objects Bragg peaks for periodic objects k Idea: sample k finer than Bragg frequency e.g. 3 Number of independent equations = number of unknown variables 3 3 L x M x N / = L x M x N

Shannon s theorem in X-ray scattering If a diffraction pattern is sampled at spatial frequencies at least twice that corresponding to the size of the sample the phases can be recovered by means of iterative algorithms. = 1 λd W sampling in reciprocal space W d

oversampling parameter σ = speckle size pixel size = λd WP 4 6 4 8 5 0 5 σ = 1 5 4 5 6 6 6 6 8 7 0 7 7 4 7 6 1 500 1 550 1 600 1 650 1 700 1 750 σ = 770 1 800 1 850 155 0 160 0 165 0 170 0 1 750 1800

The iterative algorithm due to Gerchberg-Saxton-Fienup

The hybrid-input-output HIO algorithm get some a priori knowledge about the support i.e. shape of your object area inside support S x in support x not in support 0 < β HIO < 1 measure of convergence

50 100 150 00 50 300 50 100 150 00 50 300

The Object Claude Monet Seerosenteich II 1899

and its reconstruction... 6 0 60 8 0 80 1 0 0 1 00 1 0 1 0 1 4 0 1 40 1 6 0 1 60 1 8 0 1 80 0 0 00 0 0 4 0 6 0 8 0 1 0 0 1 0 1 40 1 60 1 8 0 0 0 0 4 0 40 6 0 8 0 1 0 0 1 0 1 4 0 1 6 0 18 0 0 0 0 40 1 0 0 1 0-1 50 1 0-1 00 1 0-3 1 50 1 0-4 1 0-5 00 1 0-6 50 1 0-7 0 0 0 0 4 0 0 0 6 0 0 0 8 0 00 1 00 0 0 1 0 0 0 1 4 0 0 0 3 00 5 0 1 0 0 1 5 0 0 0 5 0 30 0

an unknown object 1 00 00 3 00 4 00 5 00 6 00 7 00 1 0 0 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 00 1 0 0 1 0-1 1 0-0 5 00 1 00 0 1 5 0 0 00 0 50 0

and it s reconstruction 50 300 350 400 450 100 150 00 50 300 350 400 450 500 550 600

Experiment using 8 kev Photonen microns Resolution 30 nm

The beamstop problem ccd camera sample intense direct beam

Missing Data 1 50 100 150 00 50 300 50 100 150 00 50 300

First experimental realization at a synchrotron source

First experimental realization at an FEL source H. Chapman et al. Nature Physics 839 006

pulse #1 pulse # H. Chapman et al. Nature Physics 839 006

Reconstruction H. Chapman et al. Nature Physics 839 006

Fourier Transform Holography

x 1 x y 1 y Fresnel-Kirchhoff Theory Object o a Reference r z 0 o x r x y i = λz o e i π λ z x + y 0 η Oˆ ξ π i i x + y λ z y = e Rˆ ξ η λz0 e 0 iπξ a ξ = η = x λ z y λ z 0 0 O ˆ ξ η = FT[ o x 1 y 1 ] R ˆ ξ η = FT[ r x 1 y 1 ]

y x o y x r y x I + = * * y x o y x r y x o y x r y x o y x r y x I + + + = ξ π ξ π η ξ η ξ η ξ η ξ η ξ η ξ a i a i e O R e O R O R y x I + + + ˆ ˆ ˆ ˆ ˆ ˆ * * ] [ ] [ * y a x o y x r FT y a x o y x r FT + + a ˆ ˆ * η ξ η ξ = O O Convolution with the reference objects limits the resolution

Small reference hole 100 150 00 50 300 100 150 00 50 300

50 100 150 00 50 300 350 400 450 500 50 100 150 00 50 300 350 400 450 500

50 100 150 00 50 300 350 400 450 500 50 100 150 00 50 300 350 400 450 500

Large reference hole 50 100 150 00 50 300 350 400 450 500 50 100 150 00 50 300 350 400 450 500

50 100 150 00 50 300 350 400 450 500 50 100 150 00 50 300 350 400 450 500

50 100 150 00 50 300 350 400 450 500 50 100 150 00 50 300 350 400 450 500

More than one reference hole 50 100 150 00 50 300 350 400 450 500 50 100 150 00 50 300 350 400 450 500

50 100 150 00 50 300 350 400 450 500 50 100 150 00 50 300 350 400 450 500

50 100 150 00 50 300 350 400 450 500 50 100 150 00 50 300 350 400 450 500

50 100 150 00 50 300 350 400 450 500 50 100 150 00 50 300 350 400 450 500

First experimental FTH realization using hard X-rays

Experiment with 0.15 nm Photonen

1 micron

Combination of Holography and Phase Retrieval Resolution 0 nm L.-M. Stadler C. Gutt T. Autenrieth O. Leupold S. Rehbein G. Grübel