Existence results for multi-term fractional differential inclusions

Similar documents
Boundary value problems for fractional differential equations with three-point fractional integral boundary conditions

ON A TWO-VARIABLES FRACTIONAL PARTIAL DIFFERENTIAL INCLUSION VIA RIEMANN-LIOUVILLE DERIVATIVE

FRACTIONAL BOUNDARY VALUE PROBLEMS WITH MULTIPLE ORDERS OF FRACTIONAL DERIVATIVES AND INTEGRALS

x(t)), 0 < t < 1, 1 < q 2, 0 < p < 1 x(1). x(0) = 0, x (1) = αi p 0

Existence and Uniqueness Results for Nonlinear Implicit Fractional Differential Equations with Boundary Conditions

On the existence of solution to a boundary value problem of fractional differential equation on the infinite interval

ON PERIODIC BOUNDARY VALUE PROBLEMS OF FIRST-ORDER PERTURBED IMPULSIVE DIFFERENTIAL INCLUSIONS

On boundary value problems for fractional integro-differential equations in Banach spaces

Approximating solutions of nonlinear second order ordinary differential equations via Dhage iteration principle

Fractional Differential Inclusions with Impulses at Variable Times

Solvability of Neumann boundary value problem for fractional p-laplacian equation

Research Article Existence Results for Boundary Value Problems of Differential Inclusions with Three-Point Integral Boundary Conditions

Existence and approximation of solutions to fractional order hybrid differential equations

Bull. Math. Soc. Sci. Math. Roumanie Tome 60 (108) No. 1, 2017, 3 18

Existence Results for Multivalued Semilinear Functional Differential Equations

Positive solutions for integral boundary value problem of two-term fractional differential equations

Existence Results on Nonlinear Fractional Differential Inclusions

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS 1. Yong Zhou. Abstract

Existence results for fractional differential inclusions arising from real estate asset securitization and HIV models

Nonlocal Cauchy problems for first-order multivalued differential equations

Existence of solutions of fractional boundary value problems with p-laplacian operator

INITIAL AND BOUNDARY VALUE PROBLEMS FOR NONCONVEX VALUED MULTIVALUED FUNCTIONAL DIFFERENTIAL EQUATIONS

Positive solutions of the three-point boundary value problem for fractional-order differential equations with an advanced argument

Existence results for nonlinear fractional differential equation with nonlocal integral boundary conditions

On three and four point boundary value problems for second order dierential inclusions. Mouak Benchohra and Sotiris K. Ntouyas

Existence, Uniqueness and Stability of Hilfer Type Neutral Pantograph Differential Equations with Nonlocal Conditions

A General Boundary Value Problem For Impulsive Fractional Differential Equations

SOME RESULTS FOR BOUNDARY VALUE PROBLEM OF AN INTEGRO DIFFERENTIAL EQUATIONS WITH FRACTIONAL ORDER

Oscillation results for certain forced fractional difference equations with damping term

Existence of triple positive solutions for boundary value problem of nonlinear fractional differential equations

Controllability of Fractional Nonlocal Quasilinear Evolution Inclusions with Resolvent Families

Ciric-type δ-contractions in metric spaces endowedwithagraph

Monotone Iterative Method for a Class of Nonlinear Fractional Differential Equations on Unbounded Domains in Banach Spaces

Existence results for rst order boundary value problems for fractional dierential equations with four-point integral boundary conditions

Solution of fractional differential equations via α ψ-geraghty type mappings

EXISTENCE OF SOLUTIONS FOR SECOND ORDER SEMILINEAR FUNCTIONAL INTEGRODIFFERENTIAL INCLUSIONS IN BANACH SPACES

EXISTENCE OF SOLUTIONS TO FRACTIONAL-ORDER IMPULSIVE HYPERBOLIC PARTIAL DIFFERENTIAL INCLUSIONS

A nonlocal three-point inclusion problem of Langevin equation with two different fractional orders

Existence of solutions for multi-point boundary value problem of fractional q-difference equation

EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS TO HIGHER-ORDER NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL BOUNDARY CONDITIONS

Iterative scheme to a coupled system of highly nonlinear fractional order differential equations

Advances in Difference Equations 2012, 2012:7

Partial Hadamard Fractional Integral Equations

FRACTIONAL BOUNDARY VALUE PROBLEMS ON THE HALF LINE. Assia Frioui, Assia Guezane-Lakoud, and Rabah Khaldi

Fractional Order Riemann-Liouville Integral Equations with Multiple Time Delays

EXISTENCE THEOREM FOR A FRACTIONAL MULTI-POINT BOUNDARY VALUE PROBLEM

Positive solutions for discrete fractional intiail value problem

Existence results for fractional order functional differential equations with infinite delay

EXISTENCE RESULTS FOR BOUNDARY-VALUE PROBLEMS WITH NONLINEAR FRACTIONAL DIFFERENTIAL INCLUSIONS AND INTEGRAL CONDITIONS

Fractional differential equations with integral boundary conditions

Fixed points of monotone mappings and application to integral equations

Upper and lower solutions method and a fractional differential equation boundary value problem.

Existence and stability of fractional implicit differential equations with complex order

On Monch type multi-valued maps and fixed points

ANALYSIS AND APPLICATION OF DIFFUSION EQUATIONS INVOLVING A NEW FRACTIONAL DERIVATIVE WITHOUT SINGULAR KERNEL

Multiplesolutionsofap-Laplacian model involving a fractional derivative

FUZZY SOLUTIONS FOR BOUNDARY VALUE PROBLEMS WITH INTEGRAL BOUNDARY CONDITIONS. 1. Introduction

MEASURE OF NONCOMPACTNESS AND FRACTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES

INITIAL VALUE PROBLEMS OF FRACTIONAL ORDER HADAMARD-TYPE FUNCTIONAL DIFFERENTIAL EQUATIONS

ULAM STABILITY OF BOUNDARY VALUE PROBLEM

MULTI-VALUED MAPPINGS AND FIXED POINTS II B. C. DHAGE. 1. Introduction

A multivalued version of Krasnoselskii s theorem in generalized Banach spaces

Someresultsonfixedpointsofα-ψ-Ciric generalized multifunctions

A fixed point problem under two constraint inequalities

Nonlocal Fractional Semilinear Delay Differential Equations in Separable Banach spaces

Degree theory and existence of positive solutions to coupled systems of multi-point boundary value problems

Tiziana Cardinali Francesco Portigiani Paola Rubbioni. 1. Introduction

Research Article On the Dimension of the Solution Set for Semilinear Fractional Differential Inclusions

FIXED POINT THEOREMS OF KRASNOSELSKII TYPE IN A SPACE OF CONTINUOUS FUNCTIONS

OPTIMAL SOLUTIONS TO STOCHASTIC DIFFERENTIAL INCLUSIONS

BOUNDARY VALUE PROBLEMS FOR FRACTIONAL INTEGRODIFFERENTIAL EQUATIONS INVOLVING GRONWALL INEQUALITY IN BANACH SPACE

EXISTENCE AND UNIQUENESS OF SOLUTIONS TO FUNCTIONAL INTEGRO-DIFFERENTIAL FRACTIONAL EQUATIONS

On the effect of α-admissibility and θ-contractivity to the existence of fixed points of multivalued mappings

Research Article Solvability for a Coupled System of Fractional Integrodifferential Equations with m-point Boundary Conditions on the Half-Line

NONLOCAL INITIAL VALUE PROBLEMS FOR FIRST ORDER FRACTIONAL DIFFERENTIAL EQUATIONS

On Systems of Boundary Value Problems for Differential Inclusions

MULTI-VALUED OPERATORS AND FIXED POINT THEOREMS IN BANACH ALGEBRAS I. B. C. Dhage 1. INTRODUCTION

Remark on a Couple Coincidence Point in Cone Normed Spaces

Some notes on a second-order random boundary value problem

A Numerical Scheme for Generalized Fractional Optimal Control Problems

Existence and uniqueness results for q-fractional difference equations with p-laplacian operators

Caristi-type Fixed Point Theorem of Set-Valued Maps in Metric Spaces

Applied Mathematics Letters. A reproducing kernel method for solving nonlocal fractional boundary value problems

On high order fractional integro-differential equations including the Caputo Fabrizio derivative

IMPROVEMENTS OF COMPOSITION RULE FOR THE CANAVATI FRACTIONAL DERIVATIVES AND APPLICATIONS TO OPIAL-TYPE INEQUALITIES

Best proximity problems for Ćirić type multivalued operators satisfying a cyclic condition

Existence of Minimizers for Fractional Variational Problems Containing Caputo Derivatives

Research Article Common Fixed Points of Weakly Contractive and Strongly Expansive Mappings in Topological Spaces

Positive solutions for a class of fractional 3-point boundary value problems at resonance

Existence of Solutions for Nonlocal Boundary Value Problems of Nonlinear Fractional Differential Equations

EXISTENCE OF POSITIVE SOLUTIONS OF A NONLINEAR SECOND-ORDER BOUNDARY-VALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR FOURTH-ORDER BOUNDARY-VALUE PROBLEMS IN BANACH SPACES

PATA TYPE FIXED POINT THEOREMS OF MULTIVALUED OPERATORS IN ORDERED METRIC SPACES WITH APPLICATIONS TO HYPERBOLIC DIFFERENTIAL INCLUSIONS

Correspondence should be addressed to Yagub A. Sharifov,

Nonlocal problems for the generalized Bagley-Torvik fractional differential equation

Strong convergence theorems for asymptotically nonexpansive nonself-mappings with applications

NONLINEAR THREE POINT BOUNDARY VALUE PROBLEM

CARISTI TYPE OPERATORS AND APPLICATIONS

A fixed point theorem for multivalued mappings

Existence of Ulam Stability for Iterative Fractional Differential Equations Based on Fractional Entropy

Transcription:

Ntouyas et al. Advances in Difference Equations 215) 215:14 DOI 1.1186/s13662-15-481-z R E S E A R C H Open Access Existence results for multi-term fractional differential inclusions Sotiris K Ntouyas 12 SinaEtemad 3 Jessada Tariboon 4* * Correspondence: jessadat@kmutnb.ac.th 4 Nonlinear Dynamic Analysis Research Center Department of Mathematics Faculty of Applied Science King Mongkut s University of Technology North Bangkok Bangkok 18 Thail Full list of author information is available at the end of the article Abstract In this paper we study the existence of solutions for a new class of boundary value problems for nonlinear multi-term fractional differential inclusions. Our main result relies on the multi-valued form of Krasnoselskii s fixed point theorem. An illustrative example is also presented. MSC: 34A8; 34A6; 34B1; 34B15 Keywords: fractional differential inclusion; boundary value problem; existence; fixed point theorem 1 Introduction preliminaries In this paper we study the existence of solutions for the following multi-term fractional differential inclusions: c D α ut) F t ut) u t) u t) c D q 1 ut)... c D q k ut) ) G t ut) u t) u t) c D q 1 ut)... c D q k ut) ) 1.1) supplemented with boundary conditions u) = u ) = u1) u 1) u ) = u 1) c D p u1) 1.2) where c D α c D q i denote the Caputo fractional derivatives 2 < α 3 1 < q i 2 i = 12...k t J := [ 1] 1 < p 2 k 1 F G : J R k3 PR) are multifunctions. Many of published papers about fractional differential equations inclusions apply the fixed point theory for proving the existence results. For instance one can find a lot of papers in this field see [1 25] the references therein). Let α >n 1<α < n n =[α]1u C[a b] R). The Caputo derivative of fractional of order α for the function u is defined by c D α 1 t ut)= Ɣn α) t τ)n α 1 u n) τ) dτ see for more details [11 23 25 27]). Also the Riemann-Liouville fractional order integral of the function u is defined by I α ut)= 1 uτ) dτ t > ) whenever the integral Ɣα) t τ) 1 α exists [11 23 25 27]. In [28] it has been proved that the general solution of the fractional differential equation c D α ut) =isgivenbyut) =c c 1 t c 2 t 2 c n 1 t n 1 where c...c n 1 are real constants n =[α] 1.AlsoforeachT >u C[ T]) we 215 Ntouyas et al.; licensee Springer. This article is distributed under the terms of the Creative Commons Attribution 4. International License http://creativecommons.org/licenses/by/4./) which permits unrestricted use distribution reproduction in any medium provided you give appropriate credit to the original authors) the source provide a link to the Creative Commons license indicate if changes were made.

Ntouyas etal. Advances in Difference Equations 215) 215:14 Page 2 of 15 have I αc D α ut)=ut)c c 1 t c 2 t 2 c n 1 t n 1 where c...c n 1 are real constants n =[α]1[28]. Now we review some definitions notations as regards multifunctions [29 3]. For a normed space X ) let P cl X) ={Y PX) :Y is closed P b X) ={Y PX) :Y is bounded P cp X) ={Y PX) :Y is compact P cpcv X) ={Y PX) : Y is compact convex P bclcv X) ={Y PX) :Y is bounded closed convex. A multi-valued map G : X PX) isconvexclosed)valuedifgx) isconvexclosed) for all x X. ThemapG is bounded on bounded sets if GB) = x B Gx) isbounded in X for all B P b X) i.e. sup x B {sup{ y : y Gx) < ). G is called upper semicontinuous u.s.c.) on X if for each x X thesetgx ) is a nonempty closed subset of X ifforeachopensetn of X containing Gx )thereexistsanopenneighborhood N of x such that GN ) N. G is said to be completely continuous if GB) is relatively compact for every B P b X). If the multi-valued map G is completely continuous with nonempty compact values then G is u.s.c. if only if G has a closed graph i.e. u n u y n y y n Gu n )implyy Gu ). G has a fixed point if there is x X such that x Gx). The fixed point set of the multi-valued operator G will be denoted by Fix G. A multi-valued map G : J P cl R) issaidtobemeasurableifforeveryy R the function t dy Gt)) = inf{ y z : z Gt) is measurable. Consider the Pompeiu-Hausdorff metric H d : PX) PX) R { given by { H d A B)=max sup a A da B) sup da b) b B where da b)=inf a A da; b)da B)=inf b B da; b). A multi-valued operator N : X P cl X) is called contraction if there exists γ 1) such that H d Nx) Ny)) γ dx y)for each x y X. We say that F : J R k3 PR) is a Carathéodory multifunction if t Ft u 1...u k3 ) is measurable for all u i R u 1...u k3 ) Ft u 1...u k3 ) is upper semi-continuous for almost all t J [29 31]. Also a Carathéodory multifunction F : J R k3 PR) is called L 1 -Carathéodory if for each ρ >thereexistsφ ρ L 1 J R )suchthat Ft u1...u k3 ) { = sup s : s Ft u1...u k3 ) φ ρ t) for all u 1... u k3 ρ for almost all t J [29 31]. Define the set of selections of F G at u CJ R)by S Fu := { v L 1 J R):vt) F t ut) u t) u t) c D q 1 ut)... c D q k ut) ) S Gu := { v 1 L 1 J R):v 1 t) G t ut) u t) u t) c D q 1 ut)... c D q k ut) ) for almost all t J.IfF is an arbitrary multifunction then it has been proved that S F u) for all u CJ X)ifdim X < [32].

Ntouyas etal. Advances in Difference Equations 215) 215:14 Page 3 of 15 The graph of a function F is the set GrF)={x y) X Y : y Fx) [29]. The graph GrF) off : X P cl Y ) is said to be a closed subset of X Y ifforeverysequence {u n n N X {y n n N Y whenn u n u y n y y n Fu n ) then y Fu )[29]. We will use the following lemmas theorem in our main result. Lemma 1.1 [29] Proposition 1.2) If F : X P cl Y ) is u.s.c. then GrF) is a closed subset of X Y. Conversely if F is completely continuous has a closed graph then it is upper semi-continuous. Lemma 1.2 [32]) Let X be a separable Banach space. Let F :[1] X k3 P cpcv X) be an L 1 -Carathéodory function. Then the operator S F : CJ X) P cpcv CJ X) ) x SF )x)=s Fx ) is a closed graph operator. Theorem 1.3 [33] Krasnoselskii s fixed point theorem) Let X be a Banach space Y P bclcv X) A B : Y P cpcv X) two multi-valued operators. If the following conditions are satisfied: i) Ay By Y for all y Y ; ii) A is a contraction; iii) B is u.s.c. compact then there exists y Ysuchthaty Ay By. 2 Main results Now we are ready to prove our main result. Let X = {u : u u u c D q iu CJ R) i = 1 2...k. ThenX ) endowed with the norm u = sup ut) sup u t) sup u t) sup c D q i ut) i =1...k) is a Banach space [34]. We need the following auxiliary lemma. See also [35 36]. Lemma 2.1 Let y CJ R) u C 2 [ 1] R) is a solution to the fractional boundary value problem { c D α ut)=yt) u) = u ) = u1) u 1) u ) = u 1) c D p u1) 2.1) then ut)= ys) ds t Ɣα) 3 t t 2) vice versa where = ys) ds t Ɣα) 3 Ɣα 2) ys) ds t t 2) Ɣ3 p) 4Ɣ3 p)2. ys) ds Ɣα 1) ys) ds 2.2)

Ntouyas etal. Advances in Difference Equations 215) 215:14 Page 4 of 15 Proof It is well known that the solution of equation c D α ut)=yt)canbewrittenas ut)= ys) ds c c 1 t c 2 t 2 2.3) Ɣα) where c c 1 c 2 R.Thenweget u t)= u t)= t s) α 2 Ɣα 1) ys) ds c 1 2c 2 t t s) α 3 Ɣα 2) ys) ds 2c 2 c D p t s) α p 1 ut)= ys) ds c 2t 2 p 2 Ɣ3 p) 1 < p 2). By using the boundary value conditions we obtain c = c 1 = 1 3 c 2 = ys) ds 1 Ɣα) 3 ys) ds Ɣα 2) ys) ds Ɣα 2) ys) ds Ɣα 1) ys) ds ys) ds. Substituting the values of c c 1 c 2 in 2.3)weget2.2). Conversely applying the operator c D α on 2.2) taking into account 2.1) it follows that c D α ut)=yt). From 2.2) it is easily to verify that the boundary conditions u) = u ) = u1) u 1) u ) = u 1) c D p u1) are satisfied. This establishes the equivalence between 2.1)2.2). The proof is completed. Definition 2.2 Afunctionu C 2 [ 1] R) is called a solution for the problem 1.1)-1.2) if it satisfies the boundary value conditions u) = u ) = u1) u 1) u ) = u 1) c D p u1) there exist functions v v 1 L 1 J R) suchthatvt) Ft ut) u t) u t) c D q 1ut)... c D q k ut)) v 1 t) Gt ut) u t) u t) c D q 1ut)... c D q k ut)) for almost all t J ut)= vs) ds t vs) ds Ɣα) 3 Ɣα) t 3 Ɣα 1) vs) ds t t 2) vs) ds Ɣα 2) t t 2) Ɣα) vs) ds v 1 s) ds t v 1 s) ds 3 Ɣα)

Ntouyas etal. Advances in Difference Equations 215) 215:14 Page 5 of 15 t 3 t t 2) Ɣα 1) v 1s) ds t t 2) Remark 2.3 For the sake of brevity we set 1 = 2 = 4 3Ɣα 1) 1 3Ɣα) 4 3Ɣα) 1 3Ɣα 1) Ɣα 2) v 1s) ds v 1s) ds. 2.4) 4Ɣα 1) Ɣα 1) 4Ɣα p 1) 2.5) Ɣα p 1) 2.6) 3 = 12 Ɣα 1) 2 Ɣα p 1) 2.7) for each i =1...k i 4 = 1 Ɣα q i 1) 2 Ɣ3 q i )Ɣα 1) 2 Ɣ3 q i )Ɣα p 1). 2.8) Also in the following we use the notation x = sup{ xt) : t J. Theorem 2.4 Suppose that: H 1 ) F : J R k3 P cpc R) is a multifunction G : J R k3 P cpc R) is a Carathéodory multifunction; H 2 ) there exist continuous functions p m : J ) such that t Ft w 1 w 2 w 3 z 1...z k ) is measurable Ft w 1 w 2 w 3 z 1...z k ) mt) Gt w 1 w 2 w 3 z 1...z k ) pt); H 3 ) there exists a continuous function h : J ) such that If H d Ft w1 w 2 w 3 z 1...z k ) F t w 1 w 2 w 3 )) z 1...z k [ 3 ] k ht) w i w i z i z i i=1 i=1 for all t J for each w 1 w 2 w 3 z 1...z k w 1 w 2 w 3 z 1...z k R. L := h 1 2 3 i 4) <1 for i =12...k where the j j =1...4)are defined in 2.5)-2.8) then the inclusion problem 1.1)-1.2) has at least one solution. Proof We define the subset Y of X by Y = {u X : u Mwhere M = ) p m 1 2 3 i ) 4 i =1...k).

Ntouyas etal. Advances in Difference Equations 215) 215:14 Page 6 of 15 It is clear that Y is closed bounded convex subset of Banach space X.Wedefinethe multi-valued operators A B : Y PX)suchthatforsomev S Fu { Au)= u X : ut)= vs) ds t Ɣα) 3 t 3 Ɣα 1) vs) ds t t 2) t t 2) vs) ds for some v 1 S Gu { Bu)= u X : ut)= v 1 s) ds t Ɣα) 3 t 3 Ɣα 1) v 1s) ds t t 2) t t 2) v 1s) ds. vs) ds Ɣα) vs) ds Ɣα 2) v 1 s) ds Ɣα) Ɣα 2) v 1s) ds In this way the fractional differential inclusion 1.1)-1.2) is equivalent to the inclusion problem u Au Bu. We show that the multi-valued operators A B satisfy the conditions of Theorem 1.3 on Y. First we show that the operators A B define the multi-valued operators A B : Y P cpcv X). First we prove that A is compact-valued on Y. Note that the operator A is equivalent to the composition L S F wherelis the continuous linear operator on L 1 J R)into Xdefinedby Lv)t)= vs) ds t vs) ds Ɣα) 3 Ɣα) t 3 Ɣα 1) vs) ds t t 2) vs) ds Ɣα 2) t t 2) vs) ds. Suppose that u Y is arbitrary let {v n be a sequence in S Fu. Then by definition of S Fu wehavev n t) Ft ut) u t) u t) c D q 1ut)... c D q k ut)) for almost all t J. Since Ft ut) u t) u t) c D q 1ut)... c D q k ut)) is compact for all t J thereisaconvergent subsequence of {v n t) we denote it by {v n t) again) that converges in measure to some vt) S Fu for almost all t J. On the other h L is continuous so Lv n )t) Lv)t) pointwise on J. In order to show that the convergence is uniform we have to show that {Lv n ) is an equi-continuous sequence. Let t 1 t 2 J with t 1 < t 2.Thenwehave Lv n )t 2 ) Lv n )t 1 ) 1 Ɣα) 1 [ t2 s) α 1 t 1 s) α 1] v n s) ds 1 Ɣα) 2 t 1 t 2 s) α 1 v n s) ds

Ntouyas etal. Advances in Difference Equations 215) 215:14 Page 7 of 15 t 2 t 1 3Ɣα) [t 2 t 1 ) t 2 2 t2 1 )] Ɣα 2) [t 2 t 1 ) t 2 2 t2 1 )] vn s) t 2 t 1 ds 3Ɣα 1) vn s) ds v n s) ds vn s) ds { t α m 2 t1 α Ɣα 1) t 2 t 1 3Ɣα 1) t 2 t 1 3Ɣα) [t 2 t 1 ) t2 2 t2 1 )] Ɣα 1) [t 2 t 1 ) t 2 2 t2 1 )] Ɣα p 1) Continuing this process we have. L v n )t 2 ) ) L v n )t 1 ) ) { t α 1 2 t1 α 1 m t 2 t 1 Ɣα) Ɣα 1) t 2 t 1 Ɣα p 1) L v n )t 2 ) ) L v n )t 1 ) ) 1 Ɣα 2) finally for every i =1...k c D q i Lv n )t 2 ) ) c D q i Lv n )t 1 ) ) 1 2 1 Ɣα 2) t 1 t2 α 2 t1 α 2 m Ɣα 1) [ t2 s) α 3 t 1 s) α 3] v n s) ds t 2 s) α 3 v n s) ds { α q t i 2 t α q i 1 m Ɣα q i 1) 2 t2 qi 2 t 2 q i 1 Ɣ3 q i )Ɣα 1) 2 t 2 qi 2 t 2 q i 1 Ɣ3 q i )Ɣα p 1) We see that the right-h sides of the above inequalities tend to zero as t 2 t 1.Thus the sequence {Lv n ) is equi-continuous by using the Arzelá-Ascoli theorem we see that there is a uniformly convergent subsequence. So there is a subsequence of {v n we denote it again by {v n )suchthatlv n ) Lv). Note that Lv) LS Fu ). Hence Au)= LS Fu )iscompactforallu Y.SoAu)iscompact. Now we show that Au) is convex for all u X. Letz 1 z 2 Au). We select f 1 f 2 S Fu such that z i t)= f i s) ds t f i s) ds Ɣα) 3 Ɣα) t 3 Ɣα 1) f is) ds t t 2) Ɣα 2) f is) ds t t 2) f is) ds i =12.

Ntouyas etal. Advances in Difference Equations 215) 215:14 Page 8 of 15 for almost all t J.Let λ 1. Then we have [ ] t [ λz1 1 λ)z 2 t)= λf1 s)1 λ)f 2 s) ] ds Ɣα) t [ λf1 s)1 λ)f 2 s) ] ds 3 Ɣα) t [ λf1 s)1 λ)f 2 s) ] ds 3 Ɣα 1) t t 2) t t 2) [ λf1 s)1 λ)f 2 s) ] ds Ɣα 2) [ λf1 s)1 λ)f 2 s) ] ds. Since F has convex values S Fu is convex λf 1 s)1 λ)f 2 s) S Fu.Thus λz 1 1 λ)z 2 Au). Consequently A is convex-valued. Similarly B is compact convex-valued. Here we show that Au) Bu) Y for all u Y.Supposethatu Y z 1 Au) z 2 Bu) are arbitrary elements. Choose v 1 S Fu v 2 S Gu such that z 1 t)= v 1 s) ds t v 1 s) ds Ɣα) 3 Ɣα) t 3 Ɣα 1) v 1s) ds t t 2) Ɣα 2) v 1s) ds t t 2) v 1s) ds z 2 t)= v 2 s) ds t v 2 s) ds Ɣα) 3 Ɣα) t 3 Ɣα 1) v 2s) ds t t 2) Ɣα 2) v 2s) ds t t 2) v 2s) ds for almost all t J.Henceweget z 1 t)z 2 t) 1 Ɣα) t 3Ɣα) v 1 s) v 2 s) ) ds t 3Ɣα 1) t t2 Ɣα 2) v1 s) v2 s) ) ds v1 s) v2 s) ) ds v 1 s) v 2 s) ) ds

Ntouyas etal. Advances in Difference Equations 215) 215:14 Page 9 of 15 t t2 v1 s) v2 s) ) ds p m ) { 4 3Ɣα 1) 1 3Ɣα) Hence sup z 1 t)z 2 t) p m ) 1.Alsowehave z 1 t)z 2 t) p m ) { 4 3Ɣα) 1 3Ɣα 1) which implies that sup z 1 t)z 2 t) p m ) 2 z 1 t)z 2 t) ) { 12 p m Ɣα 1) 2 Ɣα p 1) 4Ɣα 1) Ɣα 1). 4Ɣα p 1) Ɣα p 1) from which sup z 1 t)z 2 t) p m ) 3. Finally for all i =1...kwehave c D q i z 1 t) c D q i z 2 t) ) { 1 p m Ɣα q i 1) 2 Ɣ3 q i )Ɣα 1) 2 Ɣ3 q i )Ɣα p 1) so sup c D q iz 1 t) c D q iz 2 t) p m ) i 4 i = 12...k. Henceitfollows that z 1 z 2 p m ) 1 2 3 i 4) = M i =12...k. Now we show that the operator B is compact on Y.Todothisitisenoughtoprovethat BY ) is uniformly bounded equi-continuous in X.Letz BY ) be arbitrary. For some u Y choosev 1 S Gu such that zt)= v 1 s) ds t v 1 s) ds Ɣα) 3 Ɣα) t 3 Ɣα 1) v 1s) ds t t 2) Ɣα 2) v 1s) ds t t 2) v 1s) ds t J. 2.9) Hence zt) { 4 p 3Ɣα 1) 1 3Ɣα) 4Ɣα 1) z t) p { 4 3Ɣα) 1 3Ɣα 1) z t) p { 12 Ɣα 1) c D q i zt) { p 2 Ɣα p 1) 1 Ɣα q i 1) Ɣα 1) 4Ɣα p 1) Ɣα p 1) 2 Ɣ3 q i )Ɣα 1) 2 Ɣ3 q i )Ɣα p 1) for i =1...k.Hence z p 1 2 3 i 4 ) i =1...k.

Ntouyas etal.advances in Difference Equations 215) 215:14 Page 1 of 15 Now we show that B maps Y to equi-continuous subsets of X.Lett 1 t 2 J with t 1 < t 2 u Y z Bu). Choose v 1 S Gu such that zt)isgivenby2.9). Then we have zt2 ) zt 1 ) { t α 2 t1 α p Ɣα 1) t 2 t 1 3Ɣα 1) t 2 t 1 3Ɣα) [t 2 t 1 ) t2 2 t2 1 )] Ɣα 1) [t 2 t 1 ) t 2 2 t2 1 )] Ɣα p 1) z t 2 ) z t 1 ) { t α 1 2 t1 α 1 p 2 t 2 t 1 2 t 2 t 1 Ɣα) Ɣα 1) Ɣα p 1) z t 2 ) z t 1 ) p t α 2 2 t α 2 1 Ɣα 1) c D q i zt 2 ) c D q i zt 1 ) { α q t i 2 t α q i 1 p Ɣα q i 1) 2 t2 qi 2 t 2 q i 1 Ɣ3 q i )Ɣα 1) 2 t 2 qi 2 t 2 q i 1 Ɣ3 q i )Ɣα p 1) for each i =1...k. It is seen that the right-h sides of the above inequalities tend to zero as t 2 t 1. Hence by using the Arzelá-Ascoli theorem B is compact. Next we prove that B has a closed graph. Let u n Y z n Bu n ) for all n such that u n u z n z. We show that z Bu ). Associated with z n Bu n )foreachn N there exists v n S Gun such that z n t)= v n s) ds t v n s) ds Ɣα) 3 Ɣα) t 3 Ɣα 1) v ns) ds t t 2) Ɣα 2) v ns) ds t t 2) v ns) ds for all t J. It suffices to show that there exists v S Gu such that for each t J z t)= v s) ds t v s) ds Ɣα) 3 Ɣα) t 3 Ɣα 1) v s) ds t t 2) Ɣα 2) v s) ds t t 2) v s) ds. Consider the continuous linear operator : L 1 J R) X by v)t)= vs) ds t vs) ds Ɣα) 3 Ɣα) t 3 Ɣα 1) vs) ds t t 2) vs) ds Ɣα 2) t t 2) vs) ds.

Ntouyas etal.advances in Difference Equations 215) 215:14 Page 11 of 15 Notice that zn t) z t) t = vn s) v s) ) ds t vn s) v s) ) ds Ɣα) 3 Ɣα) t vn s) v s) ) ds 3 Ɣα 1) t t 2) t t 2) vn s) v s) ) ds Ɣα 2) vn s) v s) ) ds asn. By using Lemma 1.2 S G is a closed graph operator. Since z n t) S Gun ) for all n u n u thereisv S Gu such that z t)= v s) ds t v s) ds Ɣα) 3 Ɣα) t 3 Ɣα 1) v s) ds t t 2) Ɣα 2) v s) ds t t 2) v s) ds. Hence z Bu ). So it follows that B has a closed graph this implies that the operator B is upper semi-continuous. Finally we show that A is a contraction multifunction. Let u w X z 1 Aw) is given. Then we can select v 1 S Fw such that z 1 t)= v 1 s) ds t v 1 s) ds Ɣα) 3 Ɣα) t 3 Ɣα 1) v 1s) ds t t 2) Ɣα 2) v 1s) ds t t 2) v 1s) ds for all t J.Since H d F t ut) u t) u t) c D q 1 ut)... c D q k ut) ) F t wt) w t) w t) c D q 1 wt)... c D q k wt) )) ht)[ ut) wt) u t) w t) u t) w t) k c D q i ut) c D q i wt) ] i=1 for almost all t Jthereexistsy Ft ut) u t) u t) c D q 1ut)... c D q k ut)) such that v 1 t) y mt)[ ut) wt) u t) w t) u t) w t) k c D q i ut) c D q i wt) ] i=1

Ntouyas etal.advances in Difference Equations 215) 215:14 Page 12 of 15 for almost all t J. Consider the multifunction U : J PR)by Ut)= { s R : v 1 t) s mt)gt) for almost all t J where gt)=[ ut) wt) u t) w t) u t) w t) k c D q i ut) c D q i wt) ]. i=1 Since v 1 ϕ = mg are measurable U ) F u ) u ) u ) c D q 1u )... c D q k u )) is a measurable multifunction. Thus we can choose v 2 t) F t ut) u t) u t) c D q 1 ut)... c D q k ut) ) such that v1 t) v 2 t) mt) [ ut) wt) u t) w t) u t) w t) k c D q i ut) c D q i wt) ] i=1 z 2 t)= v 2 s) ds t v 2 s) ds Ɣα) 3 Ɣα) t 3 Ɣα 1) v 2s) ds t t 2) Ɣα 2) v 2s) ds t t 2) v 2s) ds for all t J.Nowwehave z 1 t) z 2 t) 1 Ɣα) t 3Ɣα) v 1 s) v 2 s) ds t 3Ɣα 1) t t2 Ɣα 2) t t2 v1 s) v 2 s) ds v 1 s) v 2 s) ds v1 s) v 2 s) ds v1 s) v 2 s) ds { 4 h 3Ɣα 1) 1 3Ɣα) 4Ɣα 1) u w. 4Ɣα p 1)

Ntouyas etal.advances in Difference Equations 215) 215:14 Page 13 of 15 Similarly z 1 t) z 2 t) h { 4 3Ɣα) 1 3Ɣα 1) { z 1 t) z 2 t) 12 h c D q i z 1 t) c D q i z 2 t) Ɣα 1) 2 Ɣα p 1) Ɣα 1) u w u w Ɣα p 1) { 1 h Ɣα q i 1) 2 Ɣ3 q i )Ɣα 1) 2 u w. Ɣ3 q i )Ɣα p 1) Hence supz 1 t) z 2 t) h 1 u w z 1 t) z 2 t) h 2 u w sup sup sup z 1 t) z 2 t) h 3 u w c D q i z 1 t) c D q i z 2 t) h i 4 u w for each 1 i k.so z 1 z 2 h 1 2 3 i 4) u w i =12...k. This implies that H d Au) Aw)) L u w. ThusA B satisfy all the conditions of Theorem 1.3 so the inclusion u Au) Bu) hasasolutioniny. Therefore the inclusion problem 1.1)-1.2)hasasolutioninY the proofis completed. Finally we give an example to illustrate the validity of our main result. Example 2.5 Consider the following fractional differential inclusion: [ c D 2 5 t ut) 3 ut) 11 ut) 3 ) t 2 sinu t)) 2 sinu t)) 1).1t u t) u t) 1 t cos c D 2 3 ut)) 11 cos c D 2 3 ut)) ) t2 π sin 2 t c D 2 3 ut) 2 ] 1t c D 2 3 ut) 2 1) [ e t ut) 1 e t )1 ut) ) cos πt u t) e t 1 e t )1 u t) ) e t u t) 2 1 u t) 2 )1 e t ) e 2t sin c D 2 3 ut)) 1 sin c D 2 3 ut)) )e t 1 e t ) e 3t c 3 D 2 ut) 3 e 2t e 3t )1 c D 2 3 ut) 3 ) with the following boundary conditions: ] 2.1) u) = u ) = u1) u 1) u ) = u 1) c D 3 2 u1) 2.11) where t [ 1]. In the above inclusion problem we have α = 5/2 p = 3/2 k =2q 1 = q 2 =3/2.Alsowehave =.1597.

Ntouyas etal.advances in Difference Equations 215) 215:14 Page 14 of 15 Now we define F :[1] R R R R R PR)by [ t x 3 Ft x y z v w)= 11 x 3 ) t 2 sin y 2 sin y 1).1t z z 1 t cos v 11 cos v ) t2 sin π 2 t w2 1tw 2 1) G :[1] R R R R R PR)by [ e t x cos πt y e t Gt x y z v w)= 1 e t )1 x ) 1 e t )1 y ) e t z 2 ] e 2t sin v 1 sin v )e t 1 e t ) e 3t w 3 e 2t e 3t )1 w 3 ) 1 z 2 )1 e t ) ]. Then there exist continuous functions m p :[ 1] ) given by mt)=5 t e t pt)= 1 1e. t On the other h we can easily check that for every x i y i z i v i w i R i =12) H d Ft x1 y 1 z 1 v 1 w 1 ) Ft x 2 y 2 z 2 v 2 w 2 ) ) ht) x 1 x 2 y 1 y 2 z 1 z 2 v 1 v 2 w 1 w 2 ) where h :[1] ) isdefinedbyht)= t 1.Itcaneasilybefoundthat 1 =.7369 2 =1.4434 3 =1.812 1 4 =1.76872 4 =1.7687.Since h = 1 1 wehave L := h 1 2 3 1 4 2 4 )=.1 7.5279 =.75279 < 1. Consequently all assumptions conditions of Theorem 2.4 are satisfied. Hence Theorem 2.4 implies that the fractional differential inclusion problem 2.1)-2.11)hasasolution. Competing interests The authors declare that they have no competing interests. Authors contributions All authors contributed equally in this article. They read approved the final manuscript. Author details 1 Department of Mathematics University of Ioannina Ioannina 451 1 Greece. 2 Nonlinear Analysis Applied Mathematics NAAM) Research Group Department of Mathematics Faculty of Science King Abdulaziz University P.O. Box 823 Jeddah 21589 Saudi Arabia. 3 Young Researchers Elite Club Tabriz Branch Islamic Azad University Tabriz Iran. 4 Nonlinear Dynamic Analysis Research Center Department of Mathematics Faculty of Applied Science King Mongkut s University of Technology North Bangkok Bangkok 18 Thail. Acknowledgements We would like to thank the reviewers for their valuable comments suggestions on the manuscript. Received: 2 January 215 Accepted: 21 April 215 References 1. Agarwal RP Ahmad B: Existence theory for anti-periodic boundary value problems of fractional differential equations inclusions. J. Appl. Math. Comput. 62 12-1214 211) 2. Agarwal RP Belmekki M Benchohra M: A survey on semilinear differential equations inclusions involving Riemann-Liouville fractional derivative. Adv. Differ. Equ. 29 Article ID981728 29) 3. Agarwal RP Benchohra M Hamani S: A survey on existence results for boundary value problems of nonlinear fractional differential equations inclusions. Acta Appl. Math. 19973-133 21)

Ntouyas etal.advances in Difference Equations 215) 215:14 Page 15 of 15 4. Agarwal RP Ntouyas SK Ahmad B Alhothuali M: Existence of solutions for integro-differential equations of fractional order with nonlocal three-point fractional boundary conditions. Adv. Differ. Equ. 213 128 213) 5. Ahmad B Nieto JJ: Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray-Schauder degree theory. Topol. Methods Nonlinear Anal. 35 295-34 21) 6. Ahmad B Ntouyas SK: Boundary value problem for fractional differential inclusions with four-point integral boundary conditions. Surv. Math. Appl. 6 175-193 211) 7. Ahmad B Ntouyas SK Alsedi A: On fractional differential inclusions with anti-periodic type integral boundary conditions. Bound. Value Probl. 21382 213) 8. Alsaedi A Ntouyas SK Ahmad B: Existence of solutions for fractional differential inclusions with separated boundary conditions in Banach space. Abstr. Appl. Anal. 213ArticleID 869837 213) 9. Bai Z Sun W: Existence multiplicity of positive solutions for singular fractional boundary value problems. Comput. Math. Appl. 63 1369-1381 212) 1. Baleanu D Agarwal RP Mohammadi H Rezapour S: Some existence results for a nonlinear fractional differential equation on partially ordered Banach spaces. Bound. Value Probl. 213 112 213) 11. Baleanu D Diethelm K Scalas E Trujillo JJ: Fractional Calculus Models Numerical Methods. World Scientific Singapore 212) 12. Baleanu D Mohammadi H Rezapour S: The existence of solutions for a nonlinear mixed problem of singular fractional differential equations. Adv. Differ. Equ. 213 359 213) 13. Baleanu D Mohammadi H Rezapour S: Positive solutions of a boundary value problem for nonlinear fractional differential equations. Abstr. Appl. Anal. 212 ArticleID837437 212) 14. Baleanu D Mohammadi H Rezapour S: Some existence results on nonlinear fractional differential equations. Philos. Trans. R. Soc. Lond. A 371 212144 213) 15. Baleanu D Mohammadi H Rezapour S: On a nonlinear fractional differential equation on partially ordered metric spaces. Adv. Differ. Equ. 213 83 213) 16. Baleanu D Nazemi Z Rezapour S: The existence of positive solutions for a new coupled system of multi-term singular fractional integro-differential boundary value problems. Abstr. Appl. Anal. 213 ArticleID368659 213) 17. Baleanu D Nazemi Z Rezapour S: Existence uniqueness of solutions for multi-term nonlinear fractional integro-differential equations. Adv. Differ. Equ. 213 368 213) 18. Baleanu D Nazemi Z Rezapour S: Attractivity for a k-dimensional system of fractional functional differential equations global attractivity for a k-dimensional system of nonlinear fractional differential equations. J. Inequal. Appl. 214 31 214) 19. Bragdi M Debbouche A Baleanu D: Existence of solutions for fractional differential inclusions with separated boundary conditions in Banach space. Adv. Math. Phys. 213 Article ID42661 213) 2. Campos LM: On the solution of some simple fractional differential equations. Int. J. Math. Sci. 133) 481-496 199) 21. Luchko Y Srivastava H: The exact solution of certain differential equations of fractional order by using operational calculus. Comput. Math. Appl. 29 73-85 1995) 22. Ouahab A: Some results for fractional boundary value problem of differential inclusions. Nonlinear Anal. 69 3877-3896 28) 23. Podlubny I: Fractional Differential Equations. Academic Press San Diego 1999) 24. Phung PD Truong LX: On a fractional differential inclusion with integral boundary conditions in Banach space. Fract. Calc.Appl.Anal.16 538-558 213) 25. Samko G Kilbas A Marichev O: Fractional Integrals Derivatives: Theory Applications. Gordon & Breach New York 1993) 26. Diethelm K: Analysis of Fractional Differential Equations. Springer Berlin 21) 27. Oldham KB Spanier J: The Fractional Calculus. Academic Press San Diego 1974) 28. Miller S Ross B: An Introduction to the Fractional Calculus Fractional Differential Equations. Wiley New York 1993) 29. Deimling K: Multi-Valued Differential Equations. de Gruyter Berlin 1992) 3. Hu S Papageorgiou N: Hbook of Multivalued Analysis. Volume I: Theory. Kluwer Academic Dordrecht 1997) 31. Aubin J Ceuina A: Differential Inclusions: Set-Valued Maps Viability Theory. Springer Berlin 1984) 32. Lasota A Opial Z: An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations. Bull.Acad.Pol.Sci.Sér.Sci.Math.Astron.Phys.13 781-786 1965) 33. Petrusel A: Fixed points selections for multi-valued operators. Semin. Fixed Point Theory Cluj-Napoca 2 3-22 21) 34. Su X: Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl. Math. Lett. 22 64-69 29) 35. Ibrahim AG: Fractional differential inclusions with anti-periodic boundary conditions in Banach spaces. Electron. J. Qual. Theory Differ. Equ. 214 65 214) 36. Lan Q Lin W: Positive solutions of systems of Caputo fractional differential equations. Commun. Appl. Anal. 17 61-86 213)