Approximation of functions belonging to the class L p (ω) β by linear operators

Similar documents
W. Lenski and B. Szal ON POINTWISE APPROXIMATION OF FUNCTIONS BY SOME MATRIX MEANS OF CONJUGATE FOURIER SERIES

UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE

S. S. Dragomir. 2, we have the inequality. b a

ON THE C-INTEGRAL BENEDETTO BONGIORNO

S. S. Dragomir. 1. Introduction. In [1], Guessab and Schmeisser have proved among others, the following companion of Ostrowski s inequality:

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

A BRIEF INTRODUCTION TO UNIFORM CONVERGENCE. In the study of Fourier series, several questions arise naturally, such as: c n e int

KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION

p n m q m s m. (p q) n

The Regulated and Riemann Integrals

NEW INEQUALITIES OF SIMPSON S TYPE FOR s CONVEX FUNCTIONS WITH APPLICATIONS. := f (4) (x) <. The following inequality. 2 b a

A product convergence theorem for Henstock Kurzweil integrals

ASYMPTOTIC BEHAVIOR OF INTERMEDIATE POINTS IN CERTAIN MEAN VALUE THEOREMS. II

Review of Riemann Integral

ON A CONVEXITY PROPERTY. 1. Introduction Most general class of convex functions is defined by the inequality

Homework 4. (1) If f R[a, b], show that f 3 R[a, b]. If f + (x) = max{f(x), 0}, is f + R[a, b]? Justify your answer.

Lecture 1. Functional series. Pointwise and uniform convergence.

Positive Solutions of Operator Equations on Half-Line

The Bochner Integral and the Weak Property (N)

Solution to Fredholm Fuzzy Integral Equations with Degenerate Kernel

A HELLY THEOREM FOR FUNCTIONS WITH VALUES IN METRIC SPACES. 1. Introduction

A PROOF OF THE FUNDAMENTAL THEOREM OF CALCULUS USING HAUSDORFF MEASURES

DYNAMICAL SYSTEMS SUPPLEMENT 2007 pp Natalija Sergejeva. Department of Mathematics and Natural Sciences Parades 1 LV-5400 Daugavpils, Latvia

1.9 C 2 inner variations

On the Generalized Weighted Quasi-Arithmetic Integral Mean 1

FUNDAMENTALS OF REAL ANALYSIS by. III.1. Measurable functions. f 1 (

Bounds for the Riemann Stieltjes integral via s-convex integrand or integrator

RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL APPROXIMATION OF CSISZAR S f DIVERGENCE

Advanced Calculus: MATH 410 Uniform Convergence of Functions Professor David Levermore 11 December 2015

New Integral Inequalities for n-time Differentiable Functions with Applications for pdfs

SOLUTIONS FOR ANALYSIS QUALIFYING EXAM, FALL (1 + µ(f n )) f(x) =. But we don t need the exact bound.) Set

SOME INEQUALITIES FOR THE DISPERSION OF A RANDOM VARIABLE WHOSE PDF IS DEFINED ON A FINITE INTERVAL

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

GENERALIZED ABSTRACTED MEAN VALUES

Fundamental Theorem of Calculus for Lebesgue Integration

New Expansion and Infinite Series

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying

Chapter 4. Lebesgue Integration

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1

LYAPUNOV-TYPE INEQUALITIES FOR NONLINEAR SYSTEMS INVOLVING THE (p 1, p 2,..., p n )-LAPLACIAN

Math 554 Integration

Introduction to Real Analysis (Math 315) Martin Bohner

Continuous Random Variables

TRAPEZOIDAL TYPE INEQUALITIES FOR n TIME DIFFERENTIABLE FUNCTIONS

Research Article On Existence and Uniqueness of Solutions of a Nonlinear Integral Equation

Chapter 6. Infinite series

WHEN IS A FUNCTION NOT FLAT? 1. Introduction. {e 1 0, x = 0. f(x) =

Set Integral Equations in Metric Spaces

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

g i fφdx dx = x i i=1 is a Hilbert space. We shall, henceforth, abuse notation and write g i f(x) = f

GENERALIZATIONS OF WEIGHTED TRAPEZOIDAL INEQUALITY FOR MONOTONIC MAPPINGS AND ITS APPLICATIONS. (b a)3 [f(a) + f(b)] f x (a,b)

Asymptotic behavior of intermediate points in certain mean value theorems. III

2 Fundamentals of Functional Analysis

Bulletin of the. Iranian Mathematical Society

1 1D heat and wave equations on a finite interval

arxiv:math/ v2 [math.ho] 16 Dec 2003

1. On some properties of definite integrals. We prove

Hermite-Hadamard type inequalities for harmonically convex functions

37 Kragujevac J. Math. 23 (2001) A NOTE ON DENSITY OF THE ZEROS OF ff-orthogonal POLYNOMIALS Gradimir V. Milovanović a and Miodrag M. Spalević

ODE: Existence and Uniqueness of a Solution

Convergence of Fourier Series and Fejer s Theorem. Lee Ricketson

ON THE APPROXIMATION NUMBERS OF CERTAIN VOLTERRA INTEGRAL OPERATORS BETWEEN LEBESGUE SPACES

Heat flux and total heat

arxiv: v1 [math.ca] 7 Mar 2012

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

Chapter 5 : Continuous Random Variables

On some Hardy-Sobolev s type variable exponent inequality and its application

MAC-solutions of the nonexistent solutions of mathematical physics

Analytical Methods Exam: Preparatory Exercises

MATH 174A: PROBLEM SET 5. Suggested Solution

Keywords : Generalized Ostrowski s inequality, generalized midpoint inequality, Taylor s formula.

FUNCTIONS OF α-slow INCREASE

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all

Best Approximation. Chapter The General Case

Multiple Positive Solutions for the System of Higher Order Two-Point Boundary Value Problems on Time Scales

Definite integral. Mathematics FRDIS MENDELU

MODULI OF CONTINUITY FOR OPERATOR VALUED FUNCTIONS

International Jour. of Diff. Eq. and Appl., 3, N1, (2001),

Lecture notes. Fundamental inequalities: techniques and applications

ON THE WEIGHTED OSTROWSKI INEQUALITY

Properties of the Riemann Integral

Handout 4. Inverse and Implicit Function Theorems.

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30

Theoretical foundations of Gaussian quadrature

CLOSED EXPRESSIONS FOR COEFFICIENTS IN WEIGHTED NEWTON-COTES QUADRATURES

Math 324 Course Notes: Brief description

The Hadamard s inequality for quasi-convex functions via fractional integrals

Journal of Inequalities in Pure and Applied Mathematics

Energy Bands Energy Bands and Band Gap. Phys463.nb Phenomenon

STUDY GUIDE FOR BASIC EXAM

Riemann Sums and Riemann Integrals

SEMIBOUNDED PERTURBATION OF GREEN FUNCTION IN AN NTA DOMAIN. Hiroaki Aikawa (Received December 10, 1997)

Chapter 28. Fourier Series An Eigenvalue Problem.

Entrance Exam, Real Analysis September 1, 2009 Solve exactly 6 out of the 8 problems. Compute the following and justify your computation: lim

7.2 The Definite Integral

Quadratic Forms. Quadratic Forms

Journal of Inequalities in Pure and Applied Mathematics

A Note on Heredity for Terraced Matrices 1

Riemann Sums and Riemann Integrals

Discrete Least-squares Approximations

Transcription:

ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA Volume 3, 9, Approximtion of functions belonging to the clss L p ω) β by liner opertors W lodzimierz Lenski nd Bogdn Szl Abstrct. We prove results which correspond to the theorems of M. L. Mittl, B. E. Rhodes, V. N. Mishr Interntionl Journl of Mthemtics nd Mthemticl Sciences, Volume 6 6), Article ID 53538, pges] on the rte of norm nd pointwise pproximtion of conjugte functions by the mtrix summbility mens of their Fourier series.. Introduction Let L p < p < ) be the clss of ll -periodic rel-vlued functions integrble in the Lebesgue sense with p-th power over Q =,] with the norm /p f = f ) L p = ft) ) p. ) Consider its trigonometric Fourier series Sfx) := f) + ν f)cos νx + b ν f)sinνx) nd the conjugte one Sfx) := ν= Q b ν f)cos νx ν f)sin νx) ν= with the prtil sums S k f nd S k f, respectively. We know tht if f L, then f x) := ψ x t) cot t = lim f x,ɛ), ɛ Received September, 8. Mthemtics Subject Clssifiction. 4A4. Key words nd phrses. Degree of pproximtion, conjugte functions.

W LODZIMIERZ LENSKI AND BOGDAN SZAL where with f x,ɛ) := ɛ ψ x t) cot t ψ x t) := f x + t) f x t), exists for lmost ll x 7, Th. 3.)IV]. Now, we define two clsses of seuences see ]). A seuence c := c n ) of nonnegtive numbers tending to zero is clled the Rest Bounded Vrition Seuence, or briefly c RBV S, if it hs the property c n c Kc)c m ) k=m for ll nturl numbers m, where Kc) is constnt depending only on c. A seuence c := c n ) of nonnegtive numbers will be clled the Hed Bounded Vrition Seuence, or briefly c HBV S, if it hs the property m c n c Kc)c m 3) for ll nturl numbers m, or only for ll m N if the seuence c hs only finite number of nonzero terms nd the lst nonzero term is c N. We ssume tht the seuence Kα n )) n= is bounded, tht is, there exists constnt K such tht Kα n ) K holds for ll n, where Kα n ) denotes the seuence of constnts ppering in the ineulities ) or 3) for the seuence α n := n,k ) n. Now we cn give the conditions to be used lter on. We ssume tht for ll n nd m n n,k n,k+ K n,m 4) or k=m m n,k n,k+ K n,m 5) holds if α n := n,k ) n belongs to RBV S or HBV S, respectively. Let A := n,k ) be lower tringulr infinite mtrix of rel numbers such tht n,k, n,k = k,n =,,,...),

APPROXIMATION OF FUNCTIONS BELONGING TO THE CLASS L p ω) β 3 nd let the A-trnsformtions of S k f) nd Sk f) be given by nd T n,a f x) := T n,a f x) := n,k S k f x) n =,,,...) n,k Sk f x) n =,,,...), respectively. Let for k =,,.., k A n,k = n,i nd A n,k = i= i=n k+ n,i An, = A n, = ). As mesure of pproximtion by the bove untities we use the generlized moduli of continuity of f in the spce L p defined for β by the formuls ω β f δ) L p := sup sin t βp p ψ x t) p dx, where t δ ω β f δ) L p := sup It is cler tht for β > α t δ sin t βp ϕ x t) p dx ϕ x t) := f x + t) + f x t) f x). ω β f δ) L p ω α f δ) L p nd ω β f δ) L p ω α f δ) L p, nd it is esily seen tht ω f ) L p = ωf ) L p, ω f ) L p = ωf ) L p re the clssicl moduli of continuity. The devition T n,a f f ws estimted in the norm of L p by S. Ll nd H. Nigm ]. Their result ws generlized by M. L. Mittl, B. E. Rhodes nd V. N. Mishr 3] in the following form: Let A = n,k ) be n infinite regulr tringulr mtrix with nonnegtive entries stisfying r ) k + ) n,n k n,n k = O n,k, r n. 6) k=n r p,

4 W LODZIMIERZ LENSKI AND BOGDAN SZAL Then the degree of pproximtion of function f, conjugte to -periodic function f belonging to the clss W L p,ω ) = f Lp : f x + t) f x)]sin β x p p dx = O ω t)), where p > nd β, is given by T n,a f f )) = O ) β+/p ω provided tht ω stisfies { /) ) } t ψx t) p /p sin βp t = O ω t) nd { /) t γ ) } p /p ψ x t) = O ) γ ) ω t) 7) ) ) 8) uniformly in x, nd ω t)/t is nonincresing in t, in which γ is n rbitrry positive number with γ) >, where p + =, p. The ssumptions of this theorem re not sufficient for the estimtion 7). More precisely, condition 8) leds to the divergent integrl of type /n t +β) ) /. Moreover, condition 6) gives the following estimte { /n t γ β A n, ) } / = O n β γ /) which is incorrect for e.g. β =. Tking β = one hs the bove-mentioned erlier result ]: If A = n,k ) is n infinite regulr tringulr mtrix such tht the elements n,k re nonnegtive nd nondecresing with k, then the degree of pproximtion of function f, conjugte to -periodic function f belonging to Lip ω,p), is given by T n,a f f = O )) ) /p ω provided tht ω stisfies { /n ) } t ψx t) p /p = O ) ) ω t) 9)

APPROXIMATION OF FUNCTIONS BELONGING TO THE CLASS L p ω) β 5 nd { /n t γ ) } p /p ψ x t) = O ) γ ) ω t) uniformly in x, where γ is n rbitrry number such tht γ) >, where p + =, p. In ], there re similr mistkes in the proof s in ]. As we noted, the ssumption 8) is, in generl, not proper. In the results formulted below we give, insted of 8), nother condition ) which gurntees the estimte 9). The estimtes of the devition T n,a f f were lso obtined by K. Qureshi 4, 5] in cse β = nd for monotonic seuences n,k ) n. In this note we shll consider the sme devition nd dditionlly the devitions T n,a f ) f, ) nd T n,a f f. In our theorems we formulte the generl nd precise conditions for the functions nd moduli of continuity. Finlly, we lso give some results on the norm pproximtion. We shll write I I if there exists positive constnt K, sometimes depending on some prmeters, such tht I KI.. Sttement of the results Let us consider function ω of modulus of continuity type on the intervl, ], i.e. nondecresing continuous function hving the following properties: ω ) =, ω δ + δ ) ω δ ) + ω δ ) for ny δ δ δ + δ. It is esy to conclude tht the function δ ω δ) is nondecresing function of δ. Let L p ω) β = {f L p : ω β f δ) L p ω δ)}, L p ω) β = {f L p : ω β f δ) L p ω δ)}, where ω nd ω re lso the functions of modulus of continuity type. It is cler tht for β > α L p ω) α L p ω) β nd L p ω) α L p ω) β. We cn now formulte our min results using the following nottion: { n, when n = n,k ) n RBV S, n,n when n,k ) n HBV S. At the beginning, we formulte the results on the degrees of pointwise summbility of conjugte series.

6 W LODZIMIERZ LENSKI AND BOGDAN SZAL Theorem. Let f L p ω) β with β < p, n,k) n HBV S or n,k ) n RBV S) nd let ω be such tht { /) ) } t ψx t) p /p sin βp t ω t) = O x ) ) ) nd { /) t γ ψ x t) ω t) hold with < γ < β + p. Then T n,a f x) f x, for considered x. ) } p /p sin βp t = O x ) γ ) ) ) = O x ) β+ p n ) ω )) Theorem. Let f L p ω) β with β < p, n,k) n HBV S or n,k ) n RBV S) nd let ω stisfy ) with < γ < β + p, { /) ) } ψx t) p /p sin βp t ω t) = O x ) /p) ) nd { /) ω t) t sin β t ) } / = O ) β+/p ω where = p p ). Then T n,a f x) f x) = O x ) β+ p n ) ω for considered x such tht f x) exists. )), 3) )) Now we present the pproximtion properties of the opertor T n,a f. Theorem 3. Let f L p ω) β with β < p, n,k) n n,k ) n RBV S) nd let ω stisfy HBV S or { /) with < γ < β + p, { /) t γ ϕ x t) ω t) ) p sin βp t } /p = O x ) γ ) 4) ) } ϕx t) p /p sin βp t ω t) = O x ) /p) 5)

APPROXIMATION OF FUNCTIONS BELONGING TO THE CLASS L p ω) β 7 nd { /) ω t) t sin β t ) } / = O ) β+/p ω )), 6) where = p p ). Then Tn,A f x) f x) )) = Ox ) β+ p n ) ω, for considered x. Finlly, we formulte some remrks. Remrk. Considering the L p norms of the devitions from our theorems insted of the pointwise one we cn obtin the sme estimtions without ny dditionl ssumptions like ), ), ) nd 4), 5). Remrk. Under the dditionl ssumptions n,n = O n), β = nd ω t) = O t α ) or ω t) = O t α ) < α ), the degrees of pproximtion in Theorems, or 3, respectively, re O n α) p. We obtin in Theorems, or 3 the sme degrees of pproximtion under the ssumption n, = O n). Remrk 3. Due to the bove remrks, in the specil cse when our seuences n,k ) n re monotonic with respect to k we hve the corrected form of the result of S. Ll nd H. K. Nigm ]. 3. Auxiliry results We begin this section by some nottion following A. Zygmund 7, Section 5 of Chpter II]. It is cler tht nd where S k f x) = S k f x) = T n,a f x) = T n,a f x) = D k t) = f x + t) D k t), f x + t)d k t) f x + t) f x + t) k sin νt = cos t ν= n,k Dk t), n,k D k t), k+)t cos sin t,

8 W LODZIMIERZ LENSKI AND BOGDAN SZAL Hence nd where nd T n,a f x) f D k t) = k + cos νt = ) x, ν= T n,a f x) f x) = D k T n,a f x) f x) = = + /) /) ψ x t) k+)t sin sin t. ψ x t) ψ x t) n,k Dk t) n,k D k t) n,k D k t), k+)t cos t) = sin t, ϕ x t) n,k D k t). Now, we formulte some estimtes for the conjugte Dirichlet kernels. Lemm see 7]). If < t /, then D k t) t nd Dk t) t, nd for ny rel number t we hve D k t) k k + ) t nd Dk t) k +. More complicted estimtes we give with proofs. Lemm. If n,k ) n HBV S nd n t, then n,k D k t) = O t ) A n,τ = O t ) n,n, nd if n,k ) n RBV S for < t, then n,k D k t) = O t ) A n,τ = O t ) n,, where τ = mx, t ]).

APPROXIMATION OF FUNCTIONS BELONGING TO THE CLASS L p ω) β 9 Proof. Let us consider the sum n,k cos k=m k + ) t k=m+ sin t m + ) t = n,m cos sin t n + sin t k ν + ) t cos + sin t = n,m cos + n k=m+ + n,n sin ν=m+ ν=m+ cos m + ) t ν + ) t n,n sin t n,k n,k+ )sin n m ) t cos k m ) t n,k n,k+ ) n + m + ) t. Hence, for n τ = ] t, k + ) t n,k cos sin t sin t A n,τ + n,τ + or n,k cos k + ) t Since n,k ) n RBV S we hve n,m n,k n,k+ k=m cos k + m + ) t n n,k n,k+ + n,n k=τ sin t sin t n τ A n,n τ+ n, + n,k n,k+ + n,n τ. n,k n,k+ n,r n m r ) k=r nd therefore k + ) t n,k cos sin t sin t A n,τ + n,τ sin t τ A n,τ + t n,τ sin t A n,τ + t τ n,k ta n,τ n,.

W LODZIMIERZ LENSKI AND BOGDAN SZAL Anlogously, the reltion n,k ) n HBV S implies nd n,m n,r r k=m r n,k n,k+ n,k n,k+ n,r n r m ) n,m n,r n r m ), whence n,k cos k + ) t sin t sin t A n,n τ + n,n τ ta n,n τ + t n,n τ ta n,n τ + t k=n τ ta n,n τ n,n. k=n τ n,k Next, we present some known estimtes for the Dirichlet kernel. Lemm 3 see 7]). If < t /, then D k t) t nd for ny rel number t we hve D k t) k +. We hve lemm similr to Lemm. Lemm 4 cf., 6]). If n,k ) n HBV S nd n t, then n,k D k t) = O t ) A n,τ = O t ) n,n, nd if n,k ) n RBV S for < t, then n,k D k t) = O t ) A n,τ = O t ) n,, where τ = mx, t ]).

APPROXIMATION OF FUNCTIONS BELONGING TO THE CLASS L p ω) β Proof. Similrly s bove, for n τ = ] t, k + ) t n,k sin sin t n A n,τ + n,τ + n,k n,k+ + n,n or n,k sin k + ) t k=τ sin t n τ A n,n τ + n, + n,k n,k+ + n,n τ. Since n,k ) n RBV S we hve n,m n,k n,k+ n,k n,k+ n,r n m r ) k=m nd therefore n,k sin k + ) t k=r sin t ta n,τ + n,τ ta n,τ n,. Anlogously, the reltion n,k ) n HBV S implies nd whence n,k sin n,m n,r k + ) t r k=m r n,k n,k+ n,k n,k+ n,r n r m ) n,m n,r n r m ), sin t ta n,n τ + n,n τ ta n,n τ n,n. 4. Proofs of the results 4.. Proof of Theorem. We strt with the obvious reltions ) T n,a f x) f x, = /) ψ x t) n,k Dk t) + ψ x t) n,k D k t) nd Tn,Af x) f x, =: Ĩ + Ĩ /) ) Ĩ + Ĩ.

W LODZIMIERZ LENSKI AND BOGDAN SZAL By Hölder s ineulity Ĩ p + = ), Lemm nd ) /) ) t ψ x t) ) { t ψx t) sin β t p ω t) ] { /) ] ω ) t) } for β < p. t β } p { ω t) sin β t ) ) β+ p ω By Hölder s ineulity p + ), = Lemm nd ) Ĩ ψ x t) n,k D k t) n /) n { t γ ψ x t) sin β t p ω t) ] ω t) } p { { n ) γ t γ sin β t ) { n ) γ+ ω ) β+ p n ) ω /) ] } ) ψ x t) t ω t) t γ sin β t } t γ β ] for < γ < β + p. Collecting these estimtes we obtin the desired result. 4.. Proof of Theorem. We strt with the obvious reltions T n,a f x) f x) = /) ψ x t) n,k D k t) + =: Ĩ + Ĩ /) ψ x t) n,k D k t) nd Tn,A f x) f x) Ĩ + Ĩ. ] } ] }

APPROXIMATION OF FUNCTIONS BELONGING TO THE CLASS L p ω) β 3 By Hölder s ineulity p + = ), Lemm, ) nd 3) Ĩ /) { ψ x t) t ψx t) ω t) sin β t ] p } p { ω t) t sin β t ] } ) { ) p ω ] ω t) } t +β By the previous proof Ĩ ) β+ p n ) ω ) ) β ω ) for < γ < β + p. Collecting these estimtes we obtin the desired result. 4.3. Proof of Theorem 3. Let T n,a f x) f x) = + /) =: I + I, /) ϕ x t) ϕ x t) n,k D k t) n,k D k t) then T n,a f x) f x) I + I. By Hölder s ineulity I /) { p + = ), Lemm 3, 5) nd 6), ϕ x t) t ϕx t) ω t) ) { ) p ω sin β t ] p } p { ] ω t) } t +β ω t) t sin β t ] } ) ) β ω

4 W LODZIMIERZ LENSKI AND BOGDAN SZAL By Hölder s ineulity I n { p + = ), Lemm 4 nd 4) t γ ϕ x t) sin β t p ω t) ] n ) γ+ ω ) β+ p n ) ω ) { ) } p { } t γ β ] for < γ < β + p. Collecting these estimtes we obtin the desired result. ω t) t γ sin β t ] } Acknowledgement. Authors re grteful to the referee for his vluble suggestions for the improvement of editing of this pper. References ] S. Ll nd H. K. Nigm, Degree of pproximtion of conjugte of function belonging to Lipξ t),p) clss by mtrix summbility mens of conjugte Fourier series, Int. J. Mth. Mth. Sci. 7 ), 555 563. ] L. Leindler, On the degree of pproximtion of continuous functions, Act Mth. Hungr. 4 4), 5 3. 3] M. L. Mittl, B. E. Rhodes nd V. N. Mishr, Approximtion of signls functions) belonging to the weighted W L p, ξ t))-clss by liner opertors, Int. J. Mth. Mth. Sci. 6 6), Article ID 53538, pp. http://dx.doi.org/.55/ijmms/6/53538 4] K. Qureshi, On the degree of pproximtion of functions belonging to the Lipschitz clss by mens of conjugte series, Indin J. Pure Appl. Mth. 98), 3. 5] K. Qureshi, On the degree of pproximtion of functions belonging to the clss Lip α, p) by mens of conjugte series, Indin J. Pure Appl. Mth. 3 98), 56 563. 6] B. Szl, On the strong pproximtion by mtrix mens in the generlized Hlder metric. Rend. Circ. Mt. Plermo ) 56 7), 87 34. 7] A. Zygmund, Trigonometric Series, Cmbridge,. University of Zielon Gr, Fculty of Mthemtics, Computer Science nd Econometrics, ul. Szfrn 4, 65-56 Zielon Gr, Polnd E-mil ddress: W.Lenski@wmie.uz.zgor.pl E-mil ddress: B.Szl @wmie.uz.zgor.pl