The edge of darkness, and other halo surprises

Similar documents
cluster scaling relations and mass definitions

Splashback radius as a physical boundary of clusters

THE EDGES OF DARK MATTER HALOS: THEORY AND OBSERVATIONS

The Milky Way in the cosmological context. Andrey Kravtsov The University of Chicago

halo merger histories

DETECTION OF HALO ASSEMBLY BIAS AND THE SPLASHBACK RADIUS

N-body Simulations. Initial conditions: What kind of Dark Matter? How much Dark Matter? Initial density fluctuations P(k) GRAVITY

Beyond the spherical dust collapse model

The Los Cabos Lectures

arxiv: v1 [astro-ph.co] 26 Mar 2014

A.Klypin. Dark Matter Halos

arxiv: v2 [astro-ph.co] 3 Feb 2016

arxiv:astro-ph/ v3 13 May 2008

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by

arxiv: v1 [astro-ph.co] 27 Apr 2011

THE BOLSHOI COSMOLOGICAL SIMULATIONS AND THEIR IMPLICATIONS

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by

arxiv: v1 [astro-ph.ga] 21 Aug 2017

pseudo- evolution of halo mass and observable-mass relations Andrey Kravtsov The University of Chicago

ASTR 610 Theory of Galaxy Formation Lecture 11: Structure of Dark Matter Halos

Princeton December 2009 The fine-scale structure of dark matter halos

Effects of SN Feedback on the Dark Matter Distribution

arxiv: v2 [astro-ph.co] 18 Nov 2009

arxiv: v2 [astro-ph.co] 10 May 2016

Properties of dark matter haloes as a function of local environment density

The immitigable nature of assembly bias: the impact of halo definition on assembly bias

2. What are the largest objects that could have formed so far? 3. How do the cosmological parameters influence structure formation?

Identifying Star-Forming Clumps in CANDELS Galaxies

Gamma-rays from Earth-Size dark-matter halos

halo formation in peaks halo bias if halos are formed without regard to the underlying density, then δn h n h halo bias in simulations

Origin and Evolution of Disk Galaxy Scaling Relations

Simulating non-linear structure formation in dark energy cosmologies

Non-universality of halo profiles and implications for dark matter experiments

The fine-scale structure of dark matter halos

arxiv:astro-ph/ v3 10 Oct 2000

RHAPSODY: I. HALO PROPERTIES AND FORMATION HISTORY FROM A STATISTICAL SAMPLE OF RE-SIMULATED CLUSTER-SIZE HALOS

MASSIVE FAILURES IN THE WMAP-7 COSMOLOGY

Dependence of the inner dark matter profile on the halo mass

The friends-of-friends algorithm: A percolation theory perspective

QUENCHING AND MORPHOLOGICAL TRANSFORMATIONS. Physics of Groups IAP Mike Hudson, U. Waterloo

Non-linear structure in the Universe Cosmology on the Beach

Structure and substructure in dark matter halos

Structure formation in the concordance cosmology

The statistics of ΛCDM halo concentrations

Elad Zinger Hebrew University Jerusalem Spineto, 12 June Collaborators: Avishai Dekel, Yuval Birnboim, Daisuke Nagai & Andrey Kravtsov

Dark matter. Anne Green University of Nottingham

The dark matter crisis

A Self-Consistent, Dynamic Model for the Evolution of the Galaxy-Dark Matter Connection across Cosmic Time. Frank van den Bosch.

Dark Matter Substructure and their associated Galaxies. Frank C. van den Bosch (MPIA)

Future evolution of bound supercluster in an accelerating Universe

arxiv: v1 [astro-ph.co] 26 Mar 2014

arxiv: v2 [astro-ph] 22 Aug 2008

Central dark matter distribution in dwarf galaxies

Structure of Dark Matter Halos

arxiv: v3 [astro-ph.co] 14 Sep 2010

arxiv: v2 [astro-ph.co] 20 Jul 2018

arxiv: v1 [astro-ph.co] 5 May 2017

Astronomy 233 Winter 2009 Physical Cosmology Week 10 Simulations and Semi-Analytic Models Joel Primack University of California, Santa Cruz

The halo-galaxy connection KITP, May 2017` Assembly bias. Simon White Max Planck Institute for Astrophysics

What can we learn from galaxy clustering measurements II. Shaun Cole Institute for Computational Cosmology Durham University

Astrometric Microlensing by Local Dark Matter Subhalos

arxiv: v1 [astro-ph.co] 7 Jul 2018

Galaxies: Structure, Dynamics, and Evolution. Dark Matter Halos and Large Scale Structure

The Current Status of Too Big To Fail problem! based on Warm Dark Matter cosmology

The mass of a halo. M. White

RHAPSODY: II. SUBHALO PROPERTIES AND THE IMPACT OF TIDAL STRIPPING FROM A STATISTICAL SAMPLE OF CLUSTER-SIZE HALOS

The theoretical view of high-z Clusters. Nelson Padilla, PUC, Chile Pucón, November 2009

The inside-out Growth of the Stellar Mass Distribution in Galaxy Clusters since z 1

arxiv:astro-ph/ v1 19 Dec 2003

The growth and structure of dark matter haloes

arxiv: v1 [astro-ph.co] 12 Oct 2010

Halo concentration and the dark matter power spectrum

Self-Interacting Dark Matter

The Los Cabos Lectures

arxiv:astro-ph/ v1 27 Nov 2000

The Full Strength of Cluster Gravitational Lensing: Mass Distribution in and around Cosmic Giants from the CLASH Survey

Mergers and Mass Assembly of Dark Matter Halos & Galaxies

NYU Nov 5, R isa Wechsler. The Dark Matter and Satellites in the Milky Way and its Twins

MOKA: a new tool for Strong Lensing Studies

Halo formation times in the ellipsoidal collapse model

Dark Matter Halos. They will have a large impact on galaxies

arxiv: v2 [astro-ph.ga] 27 Jul 2015

Phase Space Structure of Dark Matter Halos

The Distribution of Stellar Mass in Galaxy Clusters since z=1

Satellite Galaxy Evolution in Groups & Clusters

arxiv: v1 [astro-ph] 6 Apr 2008

(Toward) A Solution to the Hydrostatic Mass Bias Problem in Galaxy Clusters. Eiichiro Komatsu (MPA) UTAP Seminar, December 22, 2014

Angular Momentum Problems in Disk Formation

arxiv: v2 [astro-ph.co] 25 Jun 2012

Ensenada March 2008 Galaxy halos at (very) high resolution

Concentrating the dark matter in galaxy clusters through tidal stripping of baryonically compressed galactic halos

CLUMPY: A public code for γ-ray and ν signals from dark matter structures.

arxiv: v3 [astro-ph.co] 25 May 2015

Empirical Models for Dark Matter Halos. I. Model Comparison

NUMERICAL STUDY OF HALO CONCENTRATIONS IN DARK-ENERGY COSMOLOGIES

Some useful spherically symmetric profiles used to model galaxies

arxiv: v2 [astro-ph.co] 11 Apr 2018

The impact of Sagittarius on the disk of the Milky Way

Effects of baryons on the circular velocities of dwarf satellites

Calibrating the Planck Cluster Mass Scale with CLASH

Transcription:

The edge of darkness, and other halo surprises Benedikt Diemer ITC Fellow, Harvard-Smithsonian Center for Astrophysics (in collaboration with Andrey Kravtsov and Surhud More) APEC Seminar IPMU 4/7/26

Strength of density fluctuations Dark matter power spectrum 4 2 P (k) [(Mpc/h) 3 ] 2 4 6 8 2 4 3 2 2 3 4 k [Mpc h] Large < Scale > Small CAMB, Lewis et al. 2

Dark matter power spectrum P (k) [(Mpc/h) 3 ] 4 2 2 4 6 5 Mpc/h δ = ρ/ρ m - 8 2 P (k) [(Mpc/h) 3 ] 4 4 3 2 2 3 4 3 2 k [Mpc h] k [Mpc h] P (k) [(Mpc/h) 3 ] 4 2 2 4 6 8 2 4 3 2 2 3 4 k [Mpc h]

N-body simulations P (k) [(Mpc/h) 3 ] 4 2 2 4 6 8 2 4 3 2 2 3 4 k [Mpc h] Crocce et al. 26

89 Mpc Visualization code: Phil Mansfield

Mpc

N-body simulations 2 Mpc/h 3 Density at z = 2 2 2 y (h Mpc) 5 2 2 4 6 y (h Mpc) 8 2 6 6 5 4 4 3 2 3 2 3 8 2 5 2 5 5 3 log ( / m ) 25 log ( / m ) 3 z (h Mpc) 2 2 log ( / m ) z (h Mpc) 4 3 62.5 Mpc/h 4 25 Mpc/h 5 z (h Mpc) 6 log ( / m ) 2 25 Mpc/h z (h Mpc) 8 3 z (h Mpc) log ( / m ) Mpc/h 5 Mpc/h log ( / m ) 2 2 3 y (h Mpc) 4 5 5 5 y (h Mpc) 2 25 2 4 6 8 y (h Mpc) 2 2 3 4 y (h Mpc) 5 6 Diemer & Kravtsov 24, 25 Springel 25 Crocce et al. 26 Behroozi et al. 23ab

2 3 4 2 Mpc/h 4 3 2 25 Mpc/h z (h Mpc) log ( / m ) z (h Mpc) 2 4 6 y (h Mpc) 6 2 5 62.5 Mpc/h 3 2 4 2 3 log ( / m ) 2 6 8 y (h Mpc) 5 y (h Mpc) 4 2 5 2 3 y (h Mpc) 4 2 8 3 2 25 8 5 8 4 4 6 y (h Mpc) 6 8 2 6 25 Mpc/h 4 5 2 3 2 y (h Mpc) z (h Mpc) 2 2 5 2 5 Mpc/h log ( / m ) z (h Mpc) 6 5 log ( / m ) 8 2 Mpc/h z (h Mpc) 3 log ( / m ) 2 3 4 y (h Mpc) 5 6 Springel 25 Crocce et al. 26 Behroozi et al. 23ab

Initial peaks δ Top hat Real peak Gaussian r Bardeen et al. 986 Dalal et al. 28

Mass accretion history M(z) δ r Slow accretion regime Fast accretion regime Formation time time Wechsler et al. 22 van den Bosch 22 Zhao et al. 23/29 Dalal et al. 28

Density profile δ log ρ r Shallow inner profile M(z) time Steep outer profile log r Dalal et al. 28 Ludlow et al. 23

Density profile log ρ Scale radius: d log(ρ) / d log(r) = -2 Outer radius (enclosing some mean overdensity) Mass: M Δ = 4π/3 Δ ρ ref R Δ 3 rs R2c Rvir R2m log r

Navarro-Frenk-White profile log ρ ρ r - ρ r -2 ρ r -3 Concentration: c Δ = R Δ / r s rs R2c Rvir R2m log r Navarro et al. 995/996/997

Navarro-Frenk-White profile log ρ high concentration low concentration rs rs R2m log r Navarro et al. 995/996/997

Questions. Can we find a universal concentration-mass relation? 2. Are the outer profiles universal? 3. Is there a well-defined edge to a halo?

Concentration-mass models Navarro et al. 996 Navarro et al. 997 Avila-Reese et al. 999 Jing 2 Bullock et al. 2 Eke et al. 2 Wechsler et al. 22 Zhao et al. 23 Colin et al. 24 Dolag et al. 24 Neto et al. 27 Duffy et al. 28 Maccio et al. 28 Gao et al. 28 Zhao et al. 29 Klypin et al. 2 Munoz-Cuartas et al. 2 Prada et al. 22 Giocoli et al. 22 Bhattacharya et al. 23 Ludlow et al. 24 Dutton & Maccio 24 Klypin et al. 25

Power-law fits Munoz-Cuartas et al. 2 log (c) log (M) Avila-Reese et al. 999 Jing 2 Neto et al. 27 Duffy et al. 28 Maccio et al. 28 Gao et al. 28 Klypin et al. 2 Munoz-Cuartas et al. 2 Dutton & Maccio 24

History-based models Wechsler et al. 22 cvir = Rvir / rs Formation scale Navarro et al. 997 Bullock et al. 2 Eke et al. 2 Wechsler et al. 22 Zhao et al. 29 Giocoli et al. 22 Ludlow et al. 24

Concentration-mass relation Concentration c2c 5 4 z =. z =.5 z =. z =.5 z =2. z =4. z =6. 3 2 3 4 5 M 2c (h M ) Halo mass Diemer & Kravtsov 25

Is there an upturn? All Relaxed Ludlow et al. 22 Prada et al. 22 Ludlow et al. 22 Meneghetti & Rasia 23

Concentration-mass relation Concentration c2c 5 4 z =. z =.5 z =. z =.5 z =2. z =4. z =6. 3 2 3 4 5 M 2c (h M ) Halo mass Diemer & Kravtsov 25 Dutton & Maccio 25

Peak height ν δ / σ Bardeen et al. 986

Peak height ν δ / σ Bardeen et al. 986

Concentration-peak height relation Concentration c2c 5 4 z =. z =.5 z =. z =.5 z =2. z =4. z =6. c2c 5 4 z =. z =.5 z =. z =.5 z =2. z =4. z =6. 3 3 2 3 4 5.5 2 3 4 5 M 2c (h M ) 2c Halo mass Peak height Prada et al. 22 Ludlow et al. 23 Diemer & Kravtsov 25

Power spectrum slope Halo mass (h M ) 5 5 P (k) [(Mpc/h) 3 ] 4 2 2 4 6 8 Eisenstein & Hu 998, no BAO c2c 5 z =. z =.5 z =. z =.5 z =2. z =4. z =6. 4 n = d ln P/d ln k.5 2. 2.5 3.5 2 3 4 5 2c 3. 2 3 4 k [h/mpc] Eisenstein & Hu 998 Diemer & Kravtsov 25

Effects of power spectrum slope Substructure Peak shape Isolated halo Accreted subhalos Smooth accretion Bardeen et al. 986 Moore et al. 998 Dalal et al. 2

3 n = -2.5 n = -2 2 log ( / m) 3 8 2 z (h Mpc) 6 n = -.5 n = - 4 log ( / m) 2 2 4 6 8 y (h Mpc)

Simulation Model z =. z =.5 z =. z =.5 z =2. z =4. z =6. c2c 5 c = c(m, z, Ω x, ) 4 3 c 2c = c 2c (ν, n) c/cfit... 2 3 4 5 M 2c (h M ) Diemer & Kravtsov 25

Comparison to CLASH observations 7 6 This work, z=.4 CLASH, This work, weak z= and strong, Merten + 4 CLASH, weak, and Umetsu strong, + 4 Merten + 4 CLASH, weak, Umetsu + 4 c2c 5 4 3 2 cobs/cmodel.4.2..2.4 5 4 5 M 2c (h M ) Umetsu et al. 24 Merten et al. 24 Meneghetti et al. 24

Micro-halos at high redshift z 3 M M earth -M 6 Simulation, z= 26 (Diemand + 25) Simulation, z= 3 (Anderhalden + 23) Simulation, z= 32 (Ishiyama 24) 4 c2c 2 2 3 Diemand et al. 25 Anderhalden & Diemand 23 Ishiyama 24

Micro-halos at high redshift z 3 M M earth -M 6 orders of mag. below calibrated masses! c2c 6 4 Simulation, This work, z= 3 26 (Diemand + 25) Simulation, This work, n= z= 33.5 (Anderhalden + 23) Simulation, z= 32 26 (Ishiyama (Diemand + 24) 25) Simulation, z= 3 (Anderhalden + 23) Simulation, z= 32 (Ishiyama 24) 2 2 3 Diemand et al. 25 Anderhalden & Diemand 23 Ishiyama 24

Mass accretion history Ω x, σ 8, P(k) c

We found a universal c-m relation, and thus a universal inner profile. But what about the outer profile?

4 Small halos ( <M<3 ) / m 3 2 = d log /d log r 2 3..5 5 r/r vir 4 NFW fit Einasto fit..5 5 r/r vir Large halos (M> 5 ) / m 4 3 2 = d log /d log r 2 3..5 5 4 NFW fit Einasto fit..5 5 Diemer & Kravtsov 24 r/r vir r/r vir

3 3 < M < 4 (r/r2m) 2 / m 2 < < < < 2 2 < < 3 > 3..5 5 = d log /d log r 2 3 4..5 5 r/r 2m r/r 2m Γ = Δ log(m vir ) / Δ log(a) Diemer & Kravtsov 24

New fitting function M>.5 5 3.4 3 <M<.4 4.4 <M<2.6 (r/r2m) 2 / m 2 = d log /d log r 2 3 4..5 5 r/r 2m..5 5 r/r 2m % accuracy (selected by mass or accretion rate) Valid between. and 9 R vir

The outer profiles are not universal, they exhibit a steepening that depends on the mass accretion rate Is there an edge to a halo?

R 2c Halo finder: Rockstar (Behroozi et al. 23)

R vir Halo finder: Rockstar (Behroozi et al. 23)

Spherical collapse model Turnaround radius, r ta Outermost infalling shell Fillmore & Goldreich 984 Bertschinger 985 Diemand & Kuhlen 28 Vogelsberger et al. 2 Lithwick & Dalal 2 Adhikari et al. 24

Spherical collapse model 5 4 3 Secondary infall ( = 3.) ρ r -9/4 / m 2 2 r/r ta Fillmore & Goldreich 984 Bertschinger 985 Diemand & Kuhlen 28 Vogelsberger et al. 2 Lithwick & Dalal 2 Adhikari et al. 24

Spherical collapse model Adhikari et al. 24 cf. Diemand & Kuhlen 28

The Splashback Radius 5 4 Secondary infall ( = 3.) Diemer & Kravtsov 24 / m 3 2 Edge in self-similar model 2 r/r ta Fillmore & Goldreich 984 Bertschinger 985 Diemand & Kuhlen 28 Vogelsberger et al. 2 Lithwick & Dalal 2 Adhikari et al. 24

The Splashback Radius R vir R 2m R splashback R splashback = f(γ, z) R 2m.8 f.6 2 =.8 2 =2.7 4 3 2 y (h Mpc) z (h Mpc) log ( / m) 2 2 2 2 x (h Mpc) 2 2 x (h Mpc) Low accretion rate High accretion rate Diemer & Kravtsov 24 More, Diemer & Kravtsov 25

R sp /M sp as a function of MAR.6.4 z =. z =.5 z =. z =2. z =4..4 Rsp/R2m.2 Msp/M2m.2...8 2 3 4 5.8 2 3 4 5 More, Diemer & Kravtsov 25 cf. Vogelsberger et al. 2 cf. Adhikari et al. 24

Do the Milky Way and Andromeda halos overlap? R sp 425 kpc R vir = 244 kpc R sp 54 kpc R vir = 33 kpc Milky Way, M vir = 8 M Andromeda, M vir =.7 2 M distance = 78 kpc More, Diemer & Kravtsov 25 Diaz et al. 24

Mass accretion rate dm 2c /dt dm sp /dt dm 4r s /dt M vir () = 9 M /h M vir () = 2 M /h M vir () = 5 M /h dm/dt/mvir, [Gyr ] 2 2 3 z More, Diemer & Kravtsov 25

R sp in cluster member profiles Patej & Loeb 25 cf. Tully 25

R sp in cluster member profiles More et al. 25 Miyatake et al. 25

R sp in cluster member profiles More et al. 25 Miyatake et al. 25

R sp in cluster member profiles More et al. 25

Can we measure R sp in individual simulated halos?

R sp in individual halos 3 R 2m 2 [ m] r [Mpc/h] Mansfield et al. 26 (in prep.)

SHELLFISH Mansfield et al. 26 (in prep.)

Finding R sp in trajectories 9 9 9 2 8 7 R 2m Particle 8 7 R 2m Particle 8 7 R 2m Particle R 2m Particle 6 6 6 8 r (h kpc) 5 4 r (h kpc) 5 4 r (h kpc) 5 4 r (h kpc) 6 3 3 3 4 2 2 2 2 2 4 6 8 2 4 2 4 6 8 2 4 2 4 6 8 2 4 2 4 6 8 2 4 6 6 3 4 4 4 2 3 vr (h kpc/gyr) 2 2 vr (h kpc/gyr) 2 2 vr (h kpc/gyr) 2 vr (h kpc/gyr) 2 2 4 4 3 3 6 2 4 6 8 2 4 6 2 4 6 8 2 4 4 2 4 6 8 2 4 4 2 4 6 8 2 4 t (Gyr) t (Gyr) t (Gyr) t (Gyr)

Finding R sp in trajectories 3 35 3 3 25 R 2m Particle 3 R 2m Particle 25 R 2m Particle 25 R 2m Particle r (h kpc) 2 5 r (h kpc) 25 2 5 r (h kpc) 2 5 r (h kpc) 2 5 5 5 5.6.65.7.75.8 5.6.65.7.75.8.6.65.7.75.8.6.65.7.75.8 5 2 3 5 2 vr (h kpc/gyr) 5 5 vr (h kpc/gyr) vr (h kpc/gyr) vr (h kpc/gyr) 5 5 5 2 2 5 2.6.65.7.75.8 3.6.65.7.75.8 3.6.65.7.75.8 2.6.65.7.75.8 t (Gyr) t (Gyr) t (Gyr) t (Gyr)

Finding R sp in trajectories R 2m 5th percentile 2. 2.8.6.4 r (h kpc) 8 6.2..8 log (N + ) 4.6 2.4.2 2 4 6 8 2 4 t (Gyr).

Finding R sp in trajectories 2 R 2m 5th percentile, smr. 5th percentile, smr. 5th percentile, smr. 2..8.5.6.4. r (h kpc) 8 6.2..8 log (N + ).5 log (msub/mhost) 2. 4.6 2.4 2.5.2 2 4 6 8 2 4 t (Gyr). 3.

Finding R sp in trajectories 2 R 2m 5th percentile 75th percentile 9th percentile 2..8.5.6.4. r (h kpc) 8 6.2..8 log (N + ).5 log (msub/mhost) 2. 4.6 2.4 2.5.2 2 4 6 8 2 4 t (Gyr). 3.

Finding M sp in trajectories 4 3 M 2m 5th percentile, smr. 5th percentile, smr. 5th percentile, smr. 2..8.5.6.4. M (h M ) 3 3 2 3.2..8 log (N + ).5 log (msub/mhost) 2..6 3.4 2.5.2. 2 4 6 8 2 4 t (Gyr). 3.

Finding M sp in trajectories 4 3 M 2m 5th percentile 75th percentile 9th percentile 2..8.5.6.4. M (h M ) 3 3 2 3.2..8 log (N + ).5 log (msub/mhost) 2..6 3.4 2.5.2. 2 4 6 8 2 4 t (Gyr). 3.

Results: R sp -Γ relation 2.5 SPLASH (75th pcntl.) MDK5 2. Rsp/R2m.5..5 2.5 z =. z =.5 z =. z =2. z =4. Msp/M2m 2..5..5 5 5 5 5 5 5 5 5 5 5 2m 2m 2m 2m 2m

Results: Δ sp 5 z =., SPARTA z =2., SPARTA 4 3 75 sp 2 2 2 4 6 8 2m

Spherical collapse model Shi 26

Results: Δ sp 5 4 z =., SPARTA Shi 26 z =2., SPARTA 3 75 sp 2 2 2 4 6 8 2m Shi 26

Results: Δ sp 5 4 z =., SPARTA Adhikari et al. 24 z =2., SPARTA 3 75 sp 2 2 2 4 6 8 2m Adhikari et al. 24

Future directions Measure R sp in individual halos Quantify the mass function and accretion rates of M sp Create halo catalogs and merger trees based on R sp Find more observational signatures of R sp

The Colossus Code Cosmology from colossus.cosmology import cosmology cosmo = cosmology.setcosmology('wmap9') xi = cosmo.correlationfunction(.) Concentration from colossus.halo import concentration as hc c = hc.concentration(e2, 'vir',., model = diemer5') Density profiles from colossus.halo import profile_nfw as nfw from colossus.halo import profile_dk4 as dk4 p = nfw.nfwprofile(m = E4, mdef = 'vir', c = 4., z =.) Sigma = p.surfacedensity(5.) p2 = dk4.dk4profile(m = E4, mdef = 'vir', c = 4., z =.) splashback_radius = p2.rsp() http://www.benediktdiemer.com/code/

Conclusions Concentrations are universal when expressed as a function of peak properties The outer profiles are not universal, they depend on the mass accretion rate and are not well described by the NFW form The splashback radius provides a physical halo boundary Diemer & Kravtsov 24 ApJ 789, arxiv 4.26 Diemer & Kravtsov 25 ApJ 799, 8 arxiv 47.473 More, Diemer & Kravtsov 25 arxiv 54.559