Electron-electron interaction and decoherence in metallic wires

Similar documents
Coherence and interactions in diffusive systems. Lecture 4. Diffusion + e-e interations

Coherence and interactions in diffusive systems. Cours 4. Diffusion + e-e interations

7.4 QUANTUM MECHANICAL TREATMENT OF FLUCTUATIONS *

CSE 245: Computer Aided Circuit Simulation and Verification

Lecture 1: Growth and decay of current in RL circuit. Growth of current in LR Circuit. D.K.Pandey

Chemistry 988 Part 1

Charging of capacitor through inductor and resistor

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

C From Faraday's Law, the induced voltage is, C The effect of electromagnetic induction in the coil itself is called selfinduction.

On the Speed of Heat Wave. Mihály Makai

EE 434 Lecture 22. Bipolar Device Models

Lecture 2: Current in RC circuit D.K.Pandey

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields!

Azimuthal angular correlations between heavy flavour decay electrons and charged hadrons in pp collisions at s = 2.76 TeV in ALICE

Arturo R. Samana* in collaboration with Carlos Bertulani*, & FranjoKrmpotic(UNLP-Argentina) *Department of Physics Texas A&M University -Commerce 07/

Transfer function and the Laplace transformation

Poisson process Markov process

A THREE COMPARTMENT MATHEMATICAL MODEL OF LIVER

Review Lecture 5. The source-free R-C/R-L circuit Step response of an RC/RL circuit. The time constant = RC The final capacitor voltage v( )

Double Slits in Space and Time

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Physics 160 Lecture 3. R. Johnson April 6, 2015

H is equal to the surface current J S

Logistic equation of Human population growth (generalization to the case of reactive environment).

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

k (but not necessarily much larger).

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

HYSTERESIS AND BLEACHING OF ABSORPTION BY ELECTRONS ON HELIUM

Lecture 2 Qualitative explanation of x-ray sources based. on Maxwell equations

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES MATEMATICAL PHYSICS SOLUTIONS are

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields!

Section 5 Exercises, Problems, and Solutions. Exercises:

A MATHEMATICAL MODEL FOR NATURAL COOLING OF A CUP OF TEA

Spontaneous and Stimulated Radiative emission of Modulated Free- Electron Quantum wavepackets - Semiclassical Analysis

Chapter 12 Introduction To The Laplace Transform

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t

Single Electron Devices for Logic Applications

Midterm exam 2, April 7, 2009 (solutions)

Elementary Differential Equations and Boundary Value Problems

Economics 302 (Sec. 001) Intermediate Macroeconomic Theory and Policy (Spring 2011) 4/25/2011. UW Madison

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is

Chap.3 Laplace Transform

Part I: Short Answer [50 points] For each of the following, give a short answer (2-3 sentences, or a formula). [5 points each]

10. If p and q are the lengths of the perpendiculars from the origin on the tangent and the normal to the curve

Wave Equation (2 Week)

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review

UNSTEADY FLOW OF A FLUID PARTICLE SUSPENSION BETWEEN TWO PARALLEL PLATES SUDDENLY SET IN MOTION WITH SAME SPEED

Almost power law : Tempered power-law models (T-FADE)

Institute of Actuaries of India

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Economics 302 (Sec. 001) Intermediate Macroeconomic Theory and Policy (Spring 2011) 3/28/2012. UW Madison

Microscopic Flow Characteristics Time Headway - Distribution

ψ ( t) = c n ( t ) n

CHAPTER CHAPTER14. Expectations: The Basic Tools. Prepared by: Fernando Quijano and Yvonn Quijano

a dt a dt a dt dt If 1, then the poles in the transfer function are complex conjugates. Let s look at f t H t f s / s. So, for a 2 nd order system:

Solutions to FINAL JEE MAINS/IITJEE

Circuits and Systems I

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu

Heat/Di usion Equation. 2 = 0 k constant w(x; 0) = '(x) initial condition. ( w2 2 ) t (kww x ) x + k(w x ) 2 dx. (w x ) 2 dx 0.

symmetric/hermitian matrices, and similarity transformations

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:

ERROR ANALYSIS A.J. Pintar and D. Caspary Department of Chemical Engineering Michigan Technological University Houghton, MI September, 2012

Effects of ion motion on linear Landau damping

The transition:transversion rate ratio vs. the T-ratio.

EE 529 Remote Sensing Techniques. Review

A HAMILTON-JACOBI TREATMENT OF DISSIPATIVE SYSTEMS

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches.

Nikesh Bajaj. Fourier Analysis and Synthesis Tool. Guess.? Question??? History. Fourier Series. Fourier. Nikesh Bajaj

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

THULIUM IONS IN A YTTRIUM ALUMINUM GARNET HOST FOR QUANTUM COMPUTING APPLICATIONS: MATERIAL ANALYSIS AND SINGLE QUBIT OPERATIONS.

Principles of Humidity Dalton s law

Ma/CS 6a Class 15: Flows and Bipartite Graphs

ψ ( t) = c n ( t) t n ( )ψ( ) t ku t,t 0 ψ I V kn

From Periodic Motion to Unbounded Chaos: Investigations of the Simple Pendulum

First Lecture of Machine Learning. Hung-yi Lee

LaPlace Transform in Circuit Analysis

3(8 ) (8 x x ) 3x x (8 )

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees

Modelling of three dimensional liquid steel flow in continuous casting process

Subatomic Physics: Particle Physics Handout 8. The Weak Force

Mock Test -1 (Engineering Entrance)

Lagrangian for RLC circuits using analogy with the classical mechanics concepts

Control System Engineering (EE301T) Assignment: 2

Dissipative Dynamics of Two-Level Systems in Low Temperature Glasses

Exam 1. It is important that you clearly show your work and mark the final answer clearly, closed book, closed notes, no calculator.

General Article Application of differential equation in L-R and C-R circuit analysis by classical method. Abstract

2008 AP Calculus BC Multiple Choice Exam

ECE 145A / 218 C, notes set 1: Transmission Line Properties and Analysis

SUPERCRITICAL BRANCHING DIFFUSIONS IN RANDOM ENVIRONMENT

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions

PRELIMINARY DEFINITIONS AND RELATIONS

4 x 4, and. where x is Town Square

EXERCISE - 01 CHECK YOUR GRASP

Transcription:

Elcron-lcron inracion and dcohrnc in mallic wirs Chrisoph Txir, Gills Monambaux, Univrsié Paris-Sud, Orsay www.lps.u-psud.fr/usrs/gills

Elcron-lcron inracion and dcohrnc in mallic wirs ( T ) Msoscopic Quanum ( T) = D Macroscopic Classical Cohrn ranspor on mallic wirs and nworks Tmpraur dpndnc of h phas cohrnc im ( T ) a low T Diffusiv rgim : r () = D

Physics wll undrsood for wirs - inracions in wirs ( T) /3 1/3 T ( T) = D T Alshulr, Aronov, Khmlniskii (8) Ag Wak localizaion masurmns on mallic wirs Au Ag T /3 Sauraion du o addiional dgrs of frdom, Cu magnic impuriis 3 T (phonons Saclay, 003

Som complicaions on nworks In nworks, quanum oscillaions ( T ) Analysis of h ampliud of h quanum oscillaions may giv diffrn!!! Which is masurd in xprimns?

Oulin Wak localizaion and phas cohrnc Wha is and how o xrac i from wak localizaion xprimns? Diffusion on nworks Phas cohrnc, - inracions and gomry ffcs w xprimns

Wak localizaion = corrcion o classical ranspor Classical conducanc G cl Quanum corrcion Tim rvrsd rajcoris Phas cohrnc G G cl d 1 λf v Vol F P () / d P () = d (4 π D) d / Cohrn ffs ar mor imporan in low dimnsion Incras of h rsisanc, supprssd by a magnic fild ngaiv magnorsisanc

B Exampl 1: wak localizaion in D G P() G cl / d P () = S 4π D G ln l In a magnic fild : P () = BS / 0 sinh 4 π BD / 0 G ln ( B ) min, l B B 0 Brgmann, 84 Wak localizaion corrcion is supprssd whn R * B * B 0 ( T) 1/ T

G P() G Exampl : wak localizaion in a quasi-1d wir / cl d P() = ( 4π D) 0 1/ G In a magnic fild : min (, B ) = P P / B () () G B 0 BW Wak localizaion corrcion is supprssd whn * B * BW 0 T 1/3 agrs wih AAK

Exampl 3 : wak localizaion in a ring G P() G cl / d wir : P() = ( 4π D) 0 1/ / B G min (, B ) Ring in a Aharonov-Bohm flux : /4 m D P () = cos4π m 4π D m 0 / B G m min (, B ) m Alshulr, Aronov, Spivak, 81 may b xracd ihr from h nvlop * BW 0 Or from h ampliud of h oscillaions m / T 1/3 Dolan,icini,Bishop, 86

works : analysis of quanum oscillaions 3.5 300mK 500mK 1.4K.K 3.3K ĘR/R*10^4 (Ohm) 1.5 1 0.5 wir 0 cr304-0.5-400 -300-00 -100 0 100 00 300 400 nvlop B (G) (T) can b xracd from h fild dpndnc of h W corrcion (nvlop) from h harmonics of h quanum oscillaions harmonics Diffrn (T)!? Orsay, GaAs Wha is = D?

Wha is = D? Dphasing bwn im rvrsd rajcoris ( ) i Φ () / = ( ) yquis im Quaniy xracd from xprimns =??

Wha is masurd in W xprimns? Wak-localizaion corrcion : ( ) ( ) iφ() g P() d Diffusion Dphasing : - inracion i Φ () / = T /3

1) Diffusion : assum i Φ () / = shulr,aronov,spivak, 81 g ( n) n/ n / Harmonics of h quanum oscillaions n 1/ n 1/4 Pn ( ) n Pn ( ) n n 4/3 1/3 1/3 1/6 Subdiffusiv winding C. Txir, G.M., J Phys A 38, 3455 (005)

1) Diffusion : assum i Φ () / = shulr,aronov,spivak, 81 g ( n) n/ n / Assuming n/ = T 1/3 = T 1/6 ( T) T /3 " ( T)" T 1/3 C. Txir, G.M., J Phys A 38, 3455 (005)

) Gomric ffcs on dphasing iφ() g P() d /?? Diffusion Dphasing du o - inracion iφ( ) = { / / c AAK Diffusiv Ergodic c w characrisic im D = / D Thoulss im diffusiv vs rgodic rgim Consqunc on quanum ranspor on nworks = 3/ 1/ c D

( T ) T iφ() /3? : a simpl rmindr Dphasing du o - inracion Alshulr,Aronov,Khmlniskii, 8 quasi-1d wirs ( ) ( ) - inracion = lcric flucuaing ponial Flucuaing phas 1 iφ() Φ () Φ( ) = ( ) ( ) () = V(( r ), ) d 0 Φ ( ) = V( r, ) V( r, ) V( r, ) V( r, ) d 0 d Φ () d V

yquis horm d Φ () V V kbt R kbt d r σ 0 S d Φ () k B d T S σ 0 r Diffusion r D kt D B 3/ Φ () σ0s 3/ σ S 0 kt B D /3 1 T /3 yquis im AAK

Diffusiv quasi-1d sysm Φ () 3/ 1 iφ()?? T, C () T, C = Φ on xponnial im rlaxaion iφ() = f i () Φ 1 π 4 3/ 0.8 0.6 0.4 0. i Φ () /.M., E. Akkrmans, Phys. Rv.. 95, 016403 (005) 1 3 4 5 6 7

Gomric ffcs on dphasing du o - inracion d Φ () d V d Φ () d kt B S σ 0 r

yquis horm d Φ () B V V kbt R r σ 0 S d kt d Φ () d kt B S σ 0 r Dphasing dpnds on h naur of h diffusiv rajcoris Diffusiv Ergodic r D r 3/ 3/ B σ 0 S Φ kt D () Φ () kt B σ S 0 c /3 σ 0 S 1 σ /3 kt T B D c 0 B S kt 1 T yquis im AAK This im probs h gomry of h sysm

Diffusiv (infini sysm) Ergodic (fini sysm) Φ () 3/ Φ () c iφ() / = f(/ ) i Φ () / i Φ () / c =

Gomric ffc on dphasing Quasi-1D wir on-xponnial im dpndnc of h phas rlaxaion ( ) f / / kt = g( ) B ( T ) T /3 Ring Exponnial im dpndnc Diffusiv vs Ergodic / 1 c kt = ( ) c ( T ) T B c g Thoulss im D = / D = 3/ 1/ c D

Tim dpndnc of h phas rlaxaion Th dphasing dpnds on h naur of h diffusiv rajcoris, m = 0 D m= 0 ( ) iφ() / = f / T, C D iφ() / c = T, C m= 0 m 0 i () / c Φ = T, C m Harmonics and nvlop may hav a diffrn T dpndnc

C. Txir, G.M., Phys. Rv. B7, 11537 (005) π Ai(0) m 8 c g = m Ai '(0) = D T c = D T c 1/ 1/3 Insad of g m = AAS, 81 m Compar wih naiv xpcaion from convnional analysis m g = m T 1/3 T 1/

Conclusion : dphasing probs h naur of h diffusiv rajcoris ( T ) T /3 ( ) T c T 1?

.... σ Diffusion iφ() P () d Dphasing ormal diffusion + boundd moion Pn (, ) n iφ() C m c n c nt 1/...... Subdiffusiv winding + unboundd moion Pn (, ) n n 4/3 1/3 1/3 1/6 iφ() C m n 1/ nt 1/6

Subdiffusiv winding + unboundd moion Pn (, ) n n 4/3 1/3 1/3 1/6 iφ() C m n 1/ nt 1/6 Diffusiv winding + unboundd moion Pn (, ) n iφ() C m n nt 1/3

Conclusions *Dcohrnc du o - inracion dpnds dramaically on gomry hrough h naur of h diffusiv rajcoris *Two yps of dphasing (diffusiv vs rgodic rgim) ( ) f / / kt = g ( ) B ( T ) T /3 / c kt B c = g ( ) 1 c ( T ) T = 3/ 1/ c D *Diffrn mpraur dpndncs for apparnly diffrn phas cohrnc lnghs

high T low T < < 1/ nt 1/6 nt 1/3 nt 1/3 nt

high T low T < < 1/ nt 1/ nt diffusiv winding, c diffusiv winding, c 1/ nt diffusiv winding, c 1/6 nt subdiffusiv winding, 1/3 nt diffusiv winding, 1/3 nt diffusiv winding,

Wha abou nworks? σ Diffusion P() iφ() d Dphasing Squar nwork < a ormal diffusion iφ() Cm c 3/ m m c = 3/ 1/ m T > a?

* On quasi-1d wir, phas rlaxaion is almos xponnial * yquis im in on lin : V k T R B R K = h R( D ) D kt kt B B R R K K σ 0 S T /3

......

Diffusion on nworks : gnral formalism E () = n P D ψ = E n ψ n γ 1 g P() d = = ln S( γ ) γ + E γ n n 1 γ = = D S( γ) = ( γ + E ) n n Spcral drminan : conains all informaions abou diffusion M. Pascaud, G.M., PR 8, 451 (1999)

Spcral drminan on a nwork Solv diffusion quaion on ach bond + currn consrvaion a h nods B αβ S( γ ) = sinh d αβ M M = αα coh M αβ β iθ αβ = sinh αβ αβ nods M is a marix bonds cf: suprconducing nworks (Alxandr, D Gnns) scaring on 1D graphs (C. Txir, G.M.) g ln S( γ ) γ M. Pascaud, G.M., PR 8, 451 (1999)

xampls S( γ ) = (cosh / cos 4 πϕ) ϕ = 0 γ = D/ ϕ AAS sinh / g cosh / cos 4πϕ g n n / S ( γ ) = sinh / + (cosh / cos 4 π ϕ ) = (cosh / cos 4 πϕ) ff sam form as for an isolad ring wih ff g n n ff / ff ff g n n / n g + n ( / ) / C. Txir, G.M., J Phys A 38, 3455 (005)

Winding propris n / gn n / g n Pn ( ) n Pn ( ) n n 4/3 1/3 1/3 1/6 n 1/ n 1/4 Anomalous diffusion C. Txir, G.M., J Phys A 38, 3455 (005)

From spcral drminan o winding propris γ P () d= ln S( γ ) γ P P n ( n) ( ), ( ) and n 1/ d d = 1 n 1/4 d = d = 3 n n ln C C. Txir, G.M., J Phys A 38, 3455 (00

Baurl,Saminadayar,Mall,Schopr 100 T 1/3 for h quasi 1D wir 10 T /11 Envlops (µm) =4a 1 =a 0.1 0.001 0.01 0.1 T (K) 1 10 100

QUESTIO : * Phas cohrnc iφ() = f (/ ) on xponnial dphasing on quasi-1d wir Coopron in a flucuaing fild * Wha abou dcay of quasi-paricl? on quasi-1d wir Frmi goldn rul Quasiparicl injcd a nrgy ε abov h Frmi sa, a mpraur T P / () = ( ε, T ) ( T) = ( T)??? P () vs. iφ() Tim dpndnc of quasiparicl dcay?

1 - ifim of quasiparicl ε / P () =? ω Frmi goldn rul ε andau ε T 1 1 ( ε, T = 0) W ωdω ε ( ε = 0, T) T W dω T 0 0 W : marix lmn of h inracion ε ω ε +ω Diffusiv conducors : h ypical marix lmn of h inracion is nrgy dpndn (Alshulr-Aronov) 1 W ( ω) ω d / 1 P () = ( D) d / ε 1 d / ( ε, T = 0) W ( ω) ωdω ε 0 T T 1 1 dω ( T) = ( ε = 0, T) T W ( ω) dω T d / ω 0 0 Infrard divrgnc for d Sinc rprsns h lifim of a quasiparicl sa, nrgy xchang canno b dfind wih a prcision br han 1/ ω Slf-consisn rlaion 1 ( T ) T T 1 dω 3/ ω d=1 ( ) T T /3

Claim : his infrard divrgnc implis ha h q.p. dcay is no xponnial P / () Sinc rprsns h lifim of a quasiparicl sa, nrgy xchang canno b dfind wih a prcision br han 1/ ω Frmi goldn rul : For a givn valu of im, ransiions consrv nrgy wihin 1/ Enrgy ransfr canno b dfind wih a prcision br han 1/ ω. 1 ω. 1 1 ( T) T T 1 ( T ) dω 3/ ω T dω w () T T 3/ ω 1/ 1/ Rlaxaion ra incrass wih im : rlaxaion is no xponnial

1 dp dω w () = T T 3/ d P ω T 1/ 1/ 3/ /3 T ( T ) P () 3/ P () ( / ) 3/ Characrisic im is unchangd ( ) T σ S DT /3 Th xponn «/3» is indd a signaur of h non-xponnial «3/» rlaxaion G.M., E. Akkrmans, Phys. Rv.. 95, 016403 (005)

Conclusion : * Quasiparicl dcay in a quasi-1d wir is a non xponnial procss P ( / ) () = 3/ ( ) T σ S = DT /3 * In a ring, nrgy ransfr canno b smallr han dω P() T T if 3/ ω 1/ D 1/ D c = / ( ) P () c c T 1 RT

Abou Frmi goldn rul (1) P () = 1 P () if f ( ω) P U f if () = αγ, βδ ( εα + εγ εβ εδ) f E E = ω i f Enrgy «uncrainy» funcion of widh 1/ : nrgy is consrvd wihin 1/ (Hisnbrg usually f ( ω) π δ ( ω) P d d U f if ( ) ω ω ( ω ) ω, ω, Τ π ω d U ω,τ ω = ε ε Enrgy ransfr β α T dω ω 3/ Howvr, should b : T dω 3/ 3/ max( ω, ω )

Abou Frmi goldn rul () f ( ω) π δ ( ω) P d ω d U f d ω U π if ( ) ω ( ω ) ω, ω, Τ ω,τ Propr ingraion ovr ω h( ω) dω Pif () T h( ) 3/ ω ω 0 Cuoff funcion 4 6 8 ω Propr applicaion of Frmi goldn rul provids naurally a low nrgy cuoff dx P T h x 3/ if () ( ) 3/ x 0 3/

Dphasing on a ring udwig, Mirlin 03 W g m m / 9/4 g m m( / ) 3/ AAS 1/ 3 σ 0DS = D = T Hr : * Analyical soluion for W corrcion * Simpl dscripion and analysis in im rprsnaion ( / ) 3/ i () Φ { / c m( / ) 3/ is h signaur of xponnial rlaxaion c * w gomris

Diffusiv conducors : h ypical marix lmn of h inracion is nrgy dpndn (Alshulr-Aronov) W 1 ( ω) ω d / Th ffciv - inracion is proporional o h im spn in h inracion rgion : 1/ ω W ( ω) P( ) d 1 ) P() rurn probabiliy P () = d ( 4π D) /

i Φ () T, C? 1 1 () iφ() T = Φ T 1 iφ() = Φ T, C () T C i Φ () 1 0.8 d Alshulr,Aronov,Khmlniskii iφ() γ T C 1 Ai, ( γ) d = 4π D DAi'( γ ) 1 () T, Φ C Srn,Imry,Aharonov 0.6 0.4 0. i () Φ T, C 1 3 4 5 6 7

iφ() γ T, C 1 Ai( γ) d = 4π D DAi'( γ ) ( T ) σ S DT /3 1 umrical aplac invrs ransform i Φ () 0.8 0.6 / i () Φ T, C 0.4 0. π 4 3/ 1 3 4 5 6 7 / Phas rlaxaion scals as 3/

i Φ () 1 0.8 0.6 0.4 i () Φ T, C / 0. 1 3 4 5 6 7 iφ() γ 4π D d 0.6 0.5 0.4 γ = DW B 3 0.3 0. 0.1 γ 1 3 4 5

Conclusion Th dcay of quasiparicl and h dphasing of im rvrsd rajcoris ar dscribd by h sam characrisic im = P 3/ ( / ) () = flucuaing fild () Frmi goldn rul + - inracion i () () P () = = = iφ() ( / ) 3/ Coopron in a flucuaing fild () ( ) iφ() i( () ( )) ( () () ( )) = =

Rlaxaion of quasiparicl i () () P () = = T dq DT 3/ () σ q σ 1/ D Phas rlaxaion (coopron) iφ() i( () ( )) ( () () ( )) = = T dq () ( ) σ q 1/ D Dq T dq DT () () ( ) (1 ) Dq 3/ σ q σ 0

From spcral drminan o winding propris γ P () d= ln S( γ ) γ P ( n) () and P () ff ( ) ϕ ϕ = D n 1/ 1/ ff ( ) ff = n 1/ 0 ff = ϕ P (0) ϕ n P ϕ = (0) d = 1 P ϕ (0) ϕ d = P (0) ln ϕ d = 3 P (0) C ϕ ϕ n n n 1/4 ln C

Φ ( ) = V( r, ) V( r, ) V( r, ) V( r, ) d 0 d=1 d= d=3

Ring : Harmonics conn of h phas rlaxaion Harmonics of h W corrcion iφ g P() d C 1 m /4D P() = cos4π m 4π D m Harmonics xpansion of h rurn probabiliy m/4d iφ() g m Cm 4π D d c c m c Alshulr, Aronov, Spivak bu R c = D c = D T insad of = D T Ν 1/3 g m 3/ 3/ m udwig, Mirlin (04)