Supporting Information. A rare three-coordinated zinc cluster-organic framework

Similar documents
A dominant homolytic O-Cl bond cleavage with low-spin triplet-state Fe(IV)=O formed is revealed in the mechanism of heme-dependent chlorite dismutase

3,4-Ethylenedioxythiophene (EDOT) and 3,4- Ethylenedioxyselenophene (EDOS): Synthesis and Reactivity of

Supplementary information

Decomposition!of!Malonic!Anhydrides. Charles L. Perrin,* Agnes Flach, and Marlon N. Manalo SUPPORTING INFORMATION

SUPPORTING INFORMATION

Planar Pentacoordinate Carbon in CAl 5 + : A Global Minimum

Supporting Information

Methionine Ligand selectively promotes monofunctional adducts between Trans-EE platinum anticancer drug and Guanine DNA base

Synergistic Effects of Water and SO 2 on Degradation of MIL-125 in the Presence of Acid Gases

Truong Ba Tai, Long Van Duong, Hung Tan Pham, Dang Thi Tuyet Mai and Minh Tho Nguyen*

Aluminum Siting in the ZSM-5 Framework by Combination of

Electronic Supplementary information

Supporting Information

Supporting Information

Supporting Information. for. Silylation of Iron-Bound Carbon Monoxide. Affords a Terminal Fe Carbyne

Spin contamination as a major problem in the calculation of spin-spin coupling in triplet biradicals

Electronic supplementary information (ESI) Infrared spectroscopy of nucleotides in the gas phase 2. The protonated cyclic 3,5 -adenosine monophosphate

University of Groningen

Supplemental Material

Group 13 BN dehydrocoupling reagents, similar to transition metal catalysts but with unique reactivity. Part A: NMR Studies

Electronic Supplementary Information for:

Photoinduced intramolecular charge transfer in trans-2-[4 -(N,Ndimethylamino)styryl]imidazo[4,5-b]pyridine:

Supporting Information. Synthesis, Molecular Structure, and Facile Ring Flipping of a Bicyclo[1.1.0]tetrasilane

Supporting Information. spectroscopy and ab initio calculations of a large. amplitude intramolecular motion

Electronic Supplementary Information (ESI) for Chem. Commun.

Effect of Ionic Size on Solvate Stability of Glyme- Based Solvate Ionic Liquids

Supporting Information For. metal-free methods for preparation of 2-acylbenzothiazoles and. dialkyl benzothiazole-2-yl phosphonates

Metal Enhanced Interactions of Graphene with Monosaccharides. A Manuscript Submitted for publication to. Chemical Physics Letters.

Supporting Information. 4-Pyridylnitrene and 2-pyrazinylcarbene

China; University of Science and Technology, Nanjing , P R China.

Ligand-to-Metal Ratio Controlled Assembly of Nanoporous Metal-Organic Frameworks

Supporting Information

Ali Rostami, Alexis Colin, Xiao Yu Li, Michael G. Chudzinski, Alan J. Lough and Mark S. Taylor*

Phosphine Oxide Jointed Electron Transporters for Reducing Interfacial

A theoretical study on the thermodynamic parameters for some imidazolium crystals

Supporting Information. O-Acetyl Side-chains in Saccharides: NMR J-Couplings and Statistical Models for Acetate Ester Conformational Analysis

STRUCTURAL DETERMINATION OF A SYNTHETIC POLYMER BY GAUSSIAN COMPUTATIONAL MODELING SOFTWARE

Concerted halogen and hydrogen bonding in RuI 2 (H 2 dcbpy)(co) 2 ] I 2 (CH 3 OH) I 2 [RuI 2 (H 2 dcbpy)(co) 2 ]

Calculating Accurate Proton Chemical Shifts of Organic Molecules with Density Functional Methods and Modest Basis Sets

A Computational Model for the Dimerization of Allene: Supporting Information

Ferromagnetic Coupling of [Ni(dmit) 2 ] - Anions in. (m-fluoroanilinium)(dicyclohexano[18]crown-6)[ni(dmit) 2 ]

Molecular Engineering towards Safer Lithium-Ion Batteries: A. Highly Stable and Compatible Redox Shuttle for Overcharge.

Superacid promoted reactions of N-acyliminium salts and evidence for the involvement of superelectrophiles

Supporting Information

Supporting Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Supporting Information

Supporting Information

Supporting Information. {RuNO} 6 vs. Co-Ligand Oxidation: Two Non-Innocent Groups in One Ruthenium Nitrosyl Complex

Supporting Information For

Supplementary Material

Supporting information on. Singlet Diradical Character from Experiment

Molecular Modeling of Photoluminescent Copper(I) Cyanide Materials. Jasprina L Ming Advisor: Craig A Bayse

Supporting Information

SUPPLEMENTARY INFORMATION

Highly sensitive cyanide anion detection with a coumarin-spiropyran conjugate as a fluorescent receptor. Electronic Supplementary Information (ESI )

Supplementary Information

(1) 2. Thermochemical calculations [2,3]

Non-Radiative Decay Paths in Rhodamines: New. Theoretical Insights

Supporting Information

Tuning the electron transport band gap of bovine serum. albumin by doping with Vb12

A phenylbenzoxazole-amide-azacrown linkage as a selective fluorescent receptor for ratiometric sening of Pb(II) in aqueous media

Supporting Information

A Redox-Fluorescent Molecular Switch Based on a. Heterobimetallic Ir(III) Complex with a Ferrocenyl. Azaheterocycle as Ancillary Ligand.

Computational Material Science Part II

Two-Dimensional Carbon Compounds Derived from Graphyne with Chemical Properties Superior to Those of Graphene

SUPPLEMENTARY INFORMATION

Department of Chemistry, School of life Science and Technology, Jinan University, Guangzhou , China b

Supporting Information

Experimental Evidence for Non-Canonical Thymine Cation Radicals in the Gas Phase

SUPPORTING INFORMATION. Ammonia-Borane Dehydrogenation Promoted by a Pincer-Square- Planar Rhodium(I)-Monohydride: A Stepwise Hydrogen Transfer

Supporting Information

1,5,2,4,6,8-dithiatetrazocine. Synthesis, computation, crystallography and voltammetry of the parent heterocycle. Supplemental Information

Reversible intercyclobutadiene haptotropism in cyclopentadienylcobalt linear [4]phenylene

Supporting Information

Electronic Supplementary Information. Electron Mobility for All-Polymer Solar Cells

Motooka, Nishi, Fukuoka , Japan.

BINOPtimal: A Web Tool for Optimal Chiral Phosphoric Acid Catalyst Selection

Concerted Attack of Frustrated Lewis Acid Base Pairs on Olefinic Double Bonds: A Theoretical Study

Electronic Supporting Information

Scalable synthesis of quaterrylene: solution-phase

The Activation of Carboxylic Acids via Self Assembly Asymmetric Organocatalysis: A Combined Experimental and Computational Investigation

Supplementary Information:

Mechanism of Hydrogen Evolution in Cu(bztpen)-Catalysed Water Reduction: A DFT Study

Cationic Polycyclization of Ynamides: Building up Molecular Complexity

Supporting information

CICECO, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal

Diphosphene Photobehaviour

The Chemist Journal of the American Institute of Chemists

Supporting Information

Supporting Information. Fluorescent Coronene Monoimide Gels via H-bonding Induced Frustrated Dipolar Assembly

Supporting Information

Electronic relaxation dynamics of PCDA PDA studied by transient absorption spectroscopy

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Reaction of N-(4-methyl-6-oxo-1,6-dihydropyrimidin-2-yl)guanidine with benzaldehyde: experimental and theoretical investigation of the product

Supporting Information. Detection of Leucine Aminopeptidase Activity in Serum Using. Surface-Enhanced Raman Spectroscopy

Pyrogallol[4]arenes as frustrated organic solids

A mechanistic study supports a two-step mechanism for peptide bond formation on the ribosome

Preprint. This is the submitted version of a paper published in Journal of Computational Chemistry.

ELECTRONIC SUPPLEMENTARY INFORMATION

Transcription:

Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 0 Supporting Information A rare three-coordinated zinc cluster-organic framework with two types of second building units Jin-Song Hu, a, b Lei Zhang, b Ling Qin, a He-Gen Zheng,*,a Xiang-Biao Zhang*,b a State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 00, P. R. China. b School of Chemical Engineering, Anhui University of Science and Technology, Huainan 00. Materials and methods. Synthesis procedure. Electronic structure calculations. CD, PXRD, TGA and luminescent and the photoluminescence lifetime patterns. Bond Lengths (Å) and Angles (deg) of

. Materials and methods Reagents and solvents employed were commercially available and used as received. Ligand H NTB was prepared by the literature methods [S]. IR absorption spectra of the complexes were recorded in the range of 00 000 cm - on a Nicolet (Impact 0) spectrometer with KBr pellets ( mg of sample in 00 mg of KBr). Powder X-ray diffraction (PXRD) measurements were performed on a Bruker D Advance X-ray diffractometer using Cu-Kα radiation (0. nm), in which the X-ray tube was operated at 0 kv and 0 ma. Luminescent spectra were recorded with a SHIMAZU VF 0 X-ray fluorescence spectrophotometer at room temperature. The photoluminescence lifetime was measured with an Edinburgh Instruments FLS0P fluorescence spectrometer. The as-synthesized samples were characterized by thermogravimetric analysis (TGA) on a Perkin Elmer thermogravimetric analyzer Pyris TGA up to 0 K using a heating rate of 0 K min - under N atmosphere. A pulsed Q-switched Nd:YAG laser at a wavelength of 0 nm was used to generate a SHG signal. The backscattered SHG light was collected by a spherical concave mirror and passed through a filter that transmits only nm radiation. The solvent molecules in the structure were found to be highly disordered and were impossible to refine using conventional discrete-atom models. To resolve these issues, the contribution of the electron density by the remaining solvent molecules was removed by the SQUEEZE routine in PLATN [S]. The numbers of solvent molecules were obtained by element analysis, IR and TGA. References [S] J. Wang, C. He, P. Y. Wu, J. Wang, C. Y. Duan, J. Am. Chem. Soc., 0,, 0. [S] A. L. Spek, Acta Crystallogr., Sect. A: Found Crystallogr. 0,,.

. Synthesis procedure A mixture of (N ) H (0. mmol), H NTB (0. mmol) and H NDB (0. mmol) is dispersed in 0 ml H, and the mixture is adjusted to ph=. The final mixture is placed in a Parr Teflon-lined stainless steel vessel ( ml) and heated at 0 C for d. Large quantities of faint yellow-block crystals is obtained, the crystals are filtered off, washed with mother liquid, and dried under ambient conditions. yield of the reaction is ~0%. Anal. Calcd for C H N : C, 0.%, H,.%, N,.%; found C, 0.%, H,.%, N,.%. IR (KBr, cm - ): (w), (w), (m), (s), 0(s), (s), (s), (w), (m), 0(m), 00(w), (w), (m), (s), (m).. Electronic structure calculations Computational details Starting from the crystal structures, geometry optimizations were performed for clusters H (μ -)(C) and H (μ -) (C) using the DFT/BLYP/ - G(d) with diffuse functions for oxygen atoms. In order to obtain the same geometry configurations with clusters in the MFs, H (μ -)(C) and H (μ - ) (C) are constrainted to have C and D symmetries, respectively. To further study the configuration of H (μ -) (C), we calculated its structure again without any symmetry constraint. As a result, a stable configuration H (μ -)(μ - ) (C) was obtained. Based on the optimized geometry structures, frequency calculations were carried out at the same theoretical level and accurate electronic energies for these clusters were calculated using the DFT/BLYP/-++G(d,p). Finally, we performed natural bond orbital (NB) analysis[s] for all the clusters. All the calculations were carried out with the Gaussian0 package[s]. ur calculation methods have been successfully used to the similar study of the clusters.[s] The calculated results indicate that H (μ -)(C) and H (μ -)(μ -) (C) have no imaginary frequency and H (μ -) (C) has five imaginary frequencies (-.i, -.i, -.0i, -.0i, -.i).

Cartesian coordiantes and electronic energies (E) by the BLYP/ -++G(d,p) H (μ -)(C) (E = -. au) Center Number Atomic Number Coordinates (Angstroms) 0 0 X Y Z -0. -0. -0. -0.0-0.0-0.0....... 0. 0. 0...0.0.0.0.0.0-0. -.0-0. -.0-0. -.0 0.0-0.000.. -.. -.0..0-0.0.0..00-0....00....00 -. -.0...0. -.00 -.0 0.00.0.0-0.0.00.0.00. 0...00.00....0..00. 0. 0.. 0. -0. -...00.0. H (μ -) (C) (E = -.0 au)

Coordinates (Angstroms) Center Number Atomic Number X Y Z 0 0 0 -.0 -.0 -.0.0 0.. -.. 0.0 -..0-0.0. -.0 -.0.0.0-0.0.0 -.0 -. -. -. -. 0.0.....0-0. -..0... 0.0. 0..0.0.0 -.. -0. -0....0.. -0. -. -. -0. -. 0. 0. -. -0. -.0 -. -. -.0 -. -. -0. 0. -.. -. -.00 -. -. -....0 0.0-0.0... -0.00 -. -. 0.00-0.0 0.0-0.0 0.0.. -. -. 0.00. -0.00 -. -. 0.00. -0.00 -. -.0 -. -. -.0 -.0.0.0 -.0

0 0-0... -.000 -.0 -. -. -.0 -. -. -. -0.0 0..000.0.. -. -. -.0..0.. -. -. -. -.00..0 -. -.0....00..00 -.0 -.0 -.0 -.0 -.0 -.0 -.0.0.0.0.0.0.0.0.0.0.0 -.0 -.0 H (μ -)(μ -) (C) (E = -.00 au) Coordinates (Angstroms) Center Number Atomic Number X Y Z 0 0-0.0.. 0.0 0..0 -. 0. -..0 -. 0.. -.0 -.0 -..00.0 -. -..... -0...0 0..0 -. -.0.. 0..0.0 -. -.000 -. -0. 0.00 -. -0.00 -. -0. 0. 0.0 -.00 -. -0.0-0.0 0.... 0.00.0 -.0 -.0-0.

0 0 0. -.0..0...0-0. -.0 -.0 -. -.0 -.00 -. -. 0. -. -. -. -.0 -.00-0.00 -. -. 0. 0.0..0..0.00.0.0.00 -. -. -.0 -.0 0. 0. -0.0. -.0 -.0 0. 0. -. -.0 -. -.0-0.0 -. -0. -.0 -.0 -.00 -. -.0 -. -. -.0 -. 0.0 0. -.0 -. -.0 -. 0.0.0.. -0.0 0..0.0..0.. -.0 -.. 0.. -0. -. -0.0-0. -. -. -0.0.0..0. -0.0-0. -. -.00....00.0. -0. -0. 0. 0.00 -. -.0 -. -.00 -. -.0 0. 0...0 Summary of natural population analyses

Center Natural Natural Population Atom Number Charge Cor Val Ryd Total H (μ -)(C) 0-0. -0. -0. -0.0-0.0-0.0-0. -0. -0.0-0. -0. -0. -....0.0......................0........ 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.0 0.0 0.0....0.0.0...0.....0.0.. 0 Natural Electron Configuration [core]s(.)p(.)p( 0.0)d( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0)p( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0)p( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0)p( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0)p( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0)p( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0)p( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0) [core]s(.)p(.)p( 0.0)p( 0.0) [core]s( 0.)d(.)p( 0.0)p( 0.0) [core]s( 0.)d(.)p( 0.0)p( 0.0) [core]s( 0.)d(.)p( 0.0) [core]s( 0.)d(.)p( 0.0)p( 0.0) H (μ -) (C)

0 0 -. -0. -0..0.0.. -0. -0. -. -. -0. -0. -0. -0. -0..... -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0..0-0. -0....0...........0.......0.0.0.....0..........0.0 0.0 0. 0. 0..0.0....0.0..0 0. 0. 0. 0..0.0.0..0..0.0..0..0.0 0.0.0.0 0.000 0.0 0.00 0.0 0.00 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.0 0.00 0.0 0.0 0.000 0.000 0.000 0.000 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0....0.0.............................0.. Natural Electron Configuration [core]s(.)p(.)p( 0.0)p( 0.0) [core]s(.)p(.)s( 0.0)p( 0.0)d( 0.0) [core]s(.)p(.0)p( 0.0)d( 0.0) [core]s( 0.)d(.)p( 0.0)p( 0.0) [core]s( 0.)d(.)p( 0.0)p( 0.0)

0 0 [core]s( 0.)d(.)p( 0.0)p( 0.0) [core]s( 0.)d(.)p( 0.0)p( 0.0) [core]s(.)p(.)s( 0.0)p( 0.0)d( 0.0) [core]s(.)p(.)s( 0.0)p( 0.0)d( 0.0) [core]s(.)p(.)p( 0.0)p( 0.0) [core]s(.)p(.)p( 0.0)p( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0) [core]s(.)p(.0)p( 0.0)d( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0) [core]s( 0.)d(.)p( 0.0)p( 0.0) [core]s( 0.)d(.)p( 0.0)p( 0.0) [core]s( 0.)d(.)p( 0.0)p( 0.0) [core]s( 0.)d(.)p( 0.0)p( 0.0) [core]s(.)p(.0)p( 0.0)d( 0.0) [core]s(.)p(.0)p( 0.0)d( 0.0) [core]s(.)p(.0)p( 0.0)d( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0) [core]s(.)p(.0)p( 0.0)d( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0) [core]s(.)p(.)s( 0.0)p( 0.0)d( 0.0) [core]s( 0.)d(.)p( 0.0)p( 0.0) [core]s(.)p(.)s( 0.0)p( 0.0)d( 0.0) [core]s(.)p(.)s( 0.0)p( 0.0)d( 0.0) H (μ -)(μ -) (C) 0 -.0-0. -0...0.0. -0. -0. -.....0..0.....00.. 0. 0. 0.0 0...00. 0.0000 0.00 0.0 0.00 0.0 0.0 0.0 0.0 0.0 0.0.0......... 0

0 -. -0. -0. -0. -0. -0.0..0.. -0.00-0. -0.00-0.0-0. -0.0-0. -0. -0.0-0.0-0. -0. -0.. -0. -0..........0.00..............0......0.. 0.0 0.00 0.0 0...0...00.0.0.0.....0 0... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0......0..0...00..00.0..0...0.0...... 0 Natural Electron Configuration [core]s(.)p(.)p( 0.0)p( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0) [core]s( 0.)d(.)p( 0.0)p( 0.0) [core]s( 0.)d(.)p( 0.0)S( 0.0) [core]s( 0.)d(.)p( 0.0)p( 0.0) [core]s( 0.)d(.)p( 0.0)p( 0.0) [core]s(.)p(.0)s( 0.0)p( 0.0)d( 0.0) [core]s(.)p(.0)p( 0.0)d( 0.0) [core]s(.)p(.)p( 0.0) [core]s(.)p(.)p( 0.0)p( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0) [core]s(.)p(.)s( 0.0)p( 0.0)d( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0)

0 [core]s(.)p(.)p( 0.0)d( 0.0) [core]s( 0.)d(.)p( 0.0)p( 0.0) [core]s( 0.)d(.)p( 0.0) [core]s( 0.)d(.)p( 0.0) [core]s( 0.)d(.)p( 0.0)p( 0.0) [core]s(.)p(.0)p( 0.0)d( 0.0) [core]s(.)p(.)s( 0.0)p( 0.0)d( 0.0) [core]s(.)p(.0)p( 0.0)d( 0.0)p( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0)p( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0) [core]s(.)p(.0)p( 0.0)d( 0.0) [core]s( 0.)d(.)p( 0.0)p( 0.0) [core]s(.)p(.)p( 0.0)d( 0.0) [core]s(.)p(.)s( 0.0)p( 0.0)d( 0.0) References [S] E. D. Glendening, A. E. Reed, J. E. Carpenter and F. Weinhold, NB Version.. [S] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. chterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain,. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. rtiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong,

C. Gonzalez and J. A. Pople, GAUSSIAN 0 (Revision D.0), Gaussian, Inc., Wallingford CT, 00. [S] (a) D. Samanta and P. Jena, J. Am. Chem. Soc., 0,, 00; (b) S. S. Hepperle and Y. A. Wang, J. Phys. Chem. A, 0,, ; (c) D. P. Martin, P. G. Blachly, A. R. Marts, T. M. Woodruff, C. A. F. de liveira, J. A. McCammon, D. L. Tierney and S. M. Cohen, J. Am. Chem. Soc., 0,, 00.

. CD, PXRD, TGA and luminescent and the photoluminescence lifetime patterns CD/mdeg 0 Complex - 00 0 00 00 00 Wavelength/nm Figure S. Solid-state circular dichroism spectrum of exprimental simulated 0 0 0 0 degree( ) Figure S. Powder X-ray diffraction pattern of Figure S. The TGA pattern of complex

Figure S. The solid photoluminescent patterns of complex, H NTB and H NDB a b Figure S. The fitted decay curve monitored at 0nm (a) and 0 nm (b) for complex in the solid state at room temperature. The sample is excited at 0 nm. Yellow lines: experimental data; Solid line: fitted by Fit = A+B exp(-t/τ )+B exp(- t/τ ).

. Bond lengths (Å) and angles (deg) of complex Table S. Selected Bond Lengths (Å) and Angles (deg) for Complex Complex -.0() -.() -.() -.() -.() -.() -.0() -.0() -.() -.() 0-.() 0-.0() --.() -- 0.0 -#-.0() -#-.() -# 0.() -#-.0() -#-.() -#- 00.() --.() -- 0.() -- 0.() --0 0.() --0.() --0 0.() 0-- 0.() -- 0.0() # = -x, -x+y, -z.