Some selected results of lattice QCD

Similar documents
Hamilton Approach to Yang-Mills Theory Confinement of Quarks and Gluons

Gluon propagators and center vortices at finite temperature arxiv: v1 [hep-lat] 26 Oct 2009

arxiv: v1 [hep-lat] 18 Nov 2013

W m n = tr [ U(C) ] η(s)σ(s) C= S, P = W 1 1 = tr [ U( p) ] η(p)σ(p)

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany

QCD Vacuum, Centre Vortices and Flux Tubes

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

arxiv:hep-lat/ v2 13 Oct 1998

Center-symmetric dimensional reduction of hot Yang-Mills theory

Bulk Thermodynamics in SU(3) gauge theory

arxiv:hep-lat/ v2 17 Mar 1999 R. Bertle a, M. Faber a, J. Greensite b,c, and Š. Olejníkd

Chiral symmetry breaking, instantons, and monopoles

arxiv:hep-lat/ v1 5 Oct 2006

Center-symmetric dimensional reduction of hot Yang-Mills theory

Weakly coupled QGP? Péter Petreczky

Thermodynamics of (2+1)-flavor QCD from the lattice

Pushing dimensional reduction of QCD to lower temperatures

Heavy-quark hybrid mesons and the Born-Oppenheimer approximation

Thermodynamics for SU(2) gauge theory using gradient flow

Dimensional reduction near the deconfinement transition

The SU(2) quark-antiquark potential in the pseudoparticle approach

Bulk Thermodynamics: What do we (want to) know?

Termodynamics and Transport in Improved Holographic QCD

Putting String Theory to the Test with AdS/CFT

arxiv: v1 [hep-lat] 26 Dec 2009

arxiv:hep-lat/ v1 6 Oct 2000

arxiv: v2 [hep-lat] 14 Aug 2009

A Lattice Study of the Glueball Spectrum

Deconfinement and Polyakov loop in 2+1 flavor QCD

The Conformal Window in SU(3) Yang-Mills

Heavy quark free energies and screening from lattice QCD

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking

Suitable operator to test the Abelian dominance for sources in higher representation

From confinement to new states of dense QCD matter

Confining strings in representations with common n-ality

Spectral Properties of Quarks in the Quark-Gluon Plasma

Hamiltonian approach to Yang- Mills Theories in 2+1 Dimensions: Glueball and Meson Mass Spectra

Center Vortices and Topological Charge

Surprises in the Columbia plot

Remarks on the Gribov Problem in Direct Maximal Center Gauge

New Mexico State University & Vienna University of Technology

String Dynamics in Yang-Mills Theory

Spatial string tension revisited

Gauge invariance of the Abelian dual Meissner effect in pure SU(2) QCD

The Equation of State for QCD with 2+1 Flavors of Quarks

Gauge/String Duality and Quark Anti-Quark Potential

Quark Mass and Flavour Dependence of the QCD Phase Transition. F. Karsch, E. Laermann and A. Peikert ABSTRACT

Dual quark condensate and dressed Polyakov loops

arxiv: v1 [hep-lat] 5 Nov 2007

Seminar presented at the Workshop on Strongly Coupled QCD: The Confinement Problem Rio de Janeiro UERJ November 2011

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

arxiv:hep-lat/ v2 19 Jul 2006

The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach)

arxiv:hep-lat/ v3 20 Sep 2006

Computation of the string tension in three dimensional Yang-Mills theory using large N reduction

arxiv: v2 [hep-lat] 23 Dec 2008

Steffen Hauf

Exceptional Deconfinement in G(2) Gauge Theory

Chiral restoration and deconfinement in two-color QCD with two flavors of staggered quarks

QCD thermodynamics OUTLINE:

Quarkonium Free Energy on the lattice and in effective field theories

Scalar particles. Axel Maas. 7 th of May 2010 Delta 2010 Heidelberg Germany

Flavor quark at high temperature from a holographic Model

Gluon chains and the quark-antiquark potential

Color screening in 2+1 flavor QCD

Heavy quark free energies, screening and the renormalized Polyakov loop

Lattice QCD with Eight Degenerate Quark Flavors

Solitons in the SU(3) Faddeev-Niemi Model

Quark Model of Hadrons

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky

Baryonic Spectral Functions at Finite Temperature

Quasi-particle degrees of freedom in finite temperature SU(N) gauge theories

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

Thermodynamics. Quark-Gluon Plasma

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa

PoS(LATTICE 2013)500. Charmonium, D s and D s from overlap fermion on domain wall fermion configurations

Possible Color Octet Quark-Anti-Quark Condensate in the. Instanton Model. Abstract

Axel Maas. 6 th of January 2005 RHI Seminar WS 2004/2005

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions

Catalytic effects of monopole in QCD

Resonances and Lattice QCD

arxiv: v2 [hep-lat] 13 Dec 2010

doi: /PhysRevD

Hadronic phenomenology from gauge/string duality

arxiv: v1 [hep-lat] 1 May 2011

The QCD phase diagram at low baryon density from lattice simulations

Light hadrons in 2+1 flavor lattice QCD

arxiv:hep-ph/ v2 13 Feb 2004

(De-)Confinement from QCD Green s functions

Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD

Quark Gluon Plasma. Rajiv V. Gavai T. I. F. R., Mumbai. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V.

Can we locate the QCD critical endpoint with a Taylor expansion?

Effective theories for QCD at finite temperature and density from strong coupling

The Quark-Gluon plasma in the LHC era

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential

Scale hierarchy in high-temperature QCD

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University

Constraining the QCD equation of state in hadron colliders

The QCD phase diagram at real and imaginary chemical potential

Lattice computation for the QCD Lambda parameter

Transcription:

Some selected results of lattice QCD Heidelberg, October 12, 27 Kurt Langfeld School of Mathematics and Statistics University of Plymouth p.1/3

Glueball spectrum: no quarks (quenched approximation) 12 + r m G 1 8 6 3 ++ *++ 2 ++ 2 * + * + 2 + + 2 + 3 + 1 + 3 2 1 4 3 2 m G (GeV) 4 ++ 2 1 ++ + + PC C. J. Morningstar and M. J. Peardon, Phys. Rev. D 6, 3459 (1999) p.2/3

Glueball spectrum: no quarks (quenched approximation) 12 +...and beyond: r m G 1 8 6 4 2 3 ++ *++ 2 ++ ++ 2 * + * + 2 + + 2 + 3 + 1 + 3 2 1 ++ + + PC 4 3 2 1 m G (GeV) 2 4 6 8 (r m π ) 2 C. J. Morningstar and M. J. Peardon, Phys. Rev. D 6, 3459 (1999) r m G 7 6 5 4 3 ens. e 1 e 2 e 4 e 3 e 5 e 6 Tensor Scalar 2r m π O(a) imp., N f =2 Quenched Quenched, cont. extrap. A. Hart and M. Teper [UKQCD Collaboration], Phys. Rev. D 65, 3452 (22) p.2/3

The quark gluon plasma: ε T 4 Stefan Boltzmann limit hadron gas strong non perturbative effects offset? T c T gluon deconfinement - strongly interaction QGP J. Engels, F. Karsch and K. Redlich, Nucl. Phys. B 435, 295 (1995) p.3/3

Vortex picture of confinement Too much information in full SU(3) lattice configurations p.4/3

Vortex picture of confinement Too much information in full SU(3) lattice configurations remember 3 2 V/sqrt(K) 1 SU(N) -1-2 gauge fixing beta=2.5, Ls=16 beta=2.5, Ls=32 beta=2.635, Ls=48 beta=2.74, Ls=32-3.5 1 1.5 2 2.5 3 R sqrt(k) projection reducing degrees of freedom red. Theorie * [DelDebbio, Faber, Greensite, Olejnik, PRD55 (1997) 2298.] *? Z N theory of vortices! p.4/3

Understanding confinement: SU(2) action density [CSSM, Adelaide] vortex content projection [MCG, LCG,...] p.5/3

(pure) SU(2) gauge theory p.6/3

Vortex impact on confinement [SU(2)]: SU(2), 12 4 SU(2), 12 4 3 2 6 4 full ensemble fit to vortex only 6 4 plot from Langfeld, hep lat/143 full ensemble vortices removed V/sqrt(K) 1 V(r)/σ 1/2 2 V(r)/σ 1/2 2-1 -2 beta=2.5, Ls=16 beta=2.5, Ls=32 beta=2.635, Ls=48 beta=2.74, Ls=32-3.5 1 1.5 2 2.5 3 R sqrt(k) 2.5 1 1.5 2 r [fm] 2.5 1 1.5 2 r [fm] full SU(2) vortices only vortices removed p.7/3

(pure) SU(3) gauge theory p.8/3

Vortex impact on confinement [SU(3)]: quark antiquark potential: 3 SU(3) improved action: LCG σa 2 =.1186(26), 12 4, β=6.64 2 1 V(r) /σ 1/2-1 -2 full -3.5 1 1.5 2 2.5 r σ 1/2 p.9/3

Vortex impact on confinement [SU(3)]: quark antiquark potential: 3 2 SU(3) improved action: LCG σa 2 =.1186(26), 12 4, β=6.64 σ vor =1.7(22) σ 1 V(r) /σ 1/2-1 -2 full vortices only -3.5 1 1.5 2 2.5 r σ 1/2 p.1/3

Vortex impact on confinement [SU(3)]: quark antiquark potential: 3 2 SU(3) improved action: LCG σa 2 =.1186(26), 12 4, β=6.64 σ vor =1.7(22) σ 1 V(r) /σ 1/2-1 -2 full vortices removed vortices only -3.5 1 1.5 2 2.5 r σ 1/2 p.11/3

SU(3) + 2 dynamical flavors p.12/3

Vortex impact on confinement [SU(3) + 2dyn]: String breaking: heavy light 2 1.5 SU(3) + 2 dynamical flavors 16 3 x4, m/t =.4, staggered T= V(r)/σ 1/2 1.5 -.5-1 1 2 3 4 5 6 7 8 9 1 r σ 1/2 O. Kaczmarek F. Karsch K. Langfeld (GSI Virtual Institute) p.13/3

Vortex impact on confinement [SU(3) + 2dyn]: String breaking: heavy light 2 1.5 SU(3) + 2 dynamical flavors 16 3 x4, m/t =.4, staggered T= T/T c =.76, full V(r)/σ 1/2 1.5 -.5-1 1 2 3 4 5 6 7 8 9 1 r σ 1/2 O. Kaczmarek F. Karsch K. Langfeld (GSI Virtual Institute) p.14/3

Vortex impact on confinement [SU(3) + 2dyn]: String breaking: heavy light 2 1.5 SU(3) + 2 dynamical flavors 16 3 x4, m/t =.4, staggered T= T/T c =.76, full T/T c =.76, vortex only V(r)/σ 1/2 1.5 -.5-1 1 2 3 4 5 6 7 8 9 1 r σ 1/2 O. Kaczmarek F. Karsch K. Langfeld (GSI Virtual Institute) p.15/3

Vortex impact on confinement [SU(3) + 2dyn]: String breaking: heavy light 2 1.5 1 SU(3) + 2 dynamical flavors 16 3 x4, m/t =.4, staggered T= T/T c =.76, full T/T c =.76, vortex only T/T c =.76, vortex removed V(r)/σ 1/2.5 -.5-1 1 2 3 4 5 6 7 8 9 1 r σ 1/2 O. Kaczmarek F. Karsch K. Langfeld (GSI Virtual Institute) p.16/3

Random vortex model Why do vortex ensembles confine quarks? (lattice ) universe Wilson loop { } exp V (r)/t ( 1) V (r) static quark potential 1111111111111 111111111111111 11111111111111111 A 111111111111111111 111111111111111111 111111111111111111 11111111111111111 111111111111111 11111111111 Wilson loop 1/T here: V (r) = 2 ρ r vortex intersection density: ρ p.17/3

Random vortex model Why do vortex ensembles confine quarks? (lattice ) universe Wilson loop { } exp V (r)/t ( 1) V (r) static quark potential 1111111111111 111111111111111 11111111111111111 A 111111111111111111 111111111111111111 111111111111111111 11111111111111111 111111111111111 11111111111 Wilson loop 1/T here: V (r) = 2 ρ r vortex intersection density: ρ Vortex density ρ string tension: σ = 2ρ p.17/3

Are vortices physical? Vortex density ρ string tension p.18/3

Are vortices physical? Vortex density ρ string tension Vortex properties must be indepedent of the lattice spacing a p.18/3

Are vortices physical? Vortex density ρ string tension Vortex properties must be indepedent of the lattice spacing a The quest for physical vortices: gauge + projection vortex matter p.18/3

Are vortices physical? Vortex density ρ string tension Vortex properties must be indepedent of the lattice spacing a The quest for physical vortices: gauge + projection vortex matter Mandelstam 1975 t Hooft 1978 Mack 198 Tomboulis 1981...... Debbio, Faber, Greensite, Ojelnik 1997 continuum limit? MCG Langfeld, Reinhardt, Tennert 1998 continuum [Alexandru, Engelhardt, Forcrand, Haymaker, dofs! Kovacs, Stack,...] p.18/3

Vortex density: SU(2) σ a 2 ρa 2 (β) 1 1 ρ ~ 3.6/fm 2 1.6 1.8 2 2.2 2.4 2.6 β ρ /σ independent of the lattice spacing! [Langfeld, Reinhardt, Tennert, PLB 419 (1998) 317.] p.19/3

Brief summary [T=]: [remember SU(2): MCG] Vortices extrapolate to the continuum limit Vortex configurations recover ~1% string tension Vortex removed configurations do not confine quarks p.2/3

Brief summary [T=]: [remember SU(2): MCG] Vortices extrapolate to the continuum limit Vortex configurations recover ~1% string tension Vortex removed configurations do not confine quarks [here SU(3): LCG] Vortices extrapolate to the continuum limit: liquid Vortex configurations recover the string tension There is no string tension without vortices Vortices realize string breaking p.2/3

What do we learn from the vortex picture about deconfinement at high temperatures? p.21/3

A puzzle at high temperatures Spatial Wilson loop: Ws (R, L) exp{ σ s R L} 1/T time Expectations: space R L Dimensional reduction: 3D Yang-Mills theory σ s σ 3 [Appelquist, Pisarski, 1981] Perturbation theory: T Λ QCD asymptotic freedom σ s = p.22/3

Lattice calculation: σ s =.136g 4 (T)T 2 T σs 1 g 2 (T) [Bali, Fingberg, Heller, Karsch, Schilling, PRL 71 (1993) 359.] p.23/3

Deconfinement at high T [SU(2) so far] Wilson loop W ( 1) W vortex time axis p.24/3

Deconfinement at high T [SU(2) so far] Wilson loop W ( 1) W vortex time axis W 2 ( 1) W = W p.24/3

Deconfinement at high T [SU(2) so far] Wilson loop W ( 1) W vortex time axis W 2 ( 1) W = W remember = exp{ V(r)/T} static quark potential p.24/3

Vortex picture of deconfinement T=: spatial Wilson Loop random vortex model! p.25/3

Vortex picture of deconfinement T=: spatial Wilson Loop random vortex model! T > T c : vortex depercolation randomly distributed deconfinement σ s T 2 [Gattnar, KL, Schäfke, Reinhardt, PLB 489 (2) 251.] p.26/3

Vortex picture of deconfinement T=: Langfeld, Tennert, Engelhardt, Reinhardt, PLB 452 (1999) 31. Engelhardt, Langfeld, Reinhardt, Tennert, PRD 61 (2) 5454. Langfeld, PRD 67 (23) 11151 (rapid comm.) spatial Wilson Loop random vortex model! T > T c : vortex depercolation randomly distributed deconfinement σ s T 2 [Gattnar, KL, Schäfke, Reinhardt, PLB 489 (2) 251.] p.26/3

Depercolation of vortices:.5 T =.9 T c.8 T = 1.1 T c.4.6 probability.3.2 probability.4.1.2.2.4.6.8 1 cluster extension.2.4.6.8 1 cluster extension from Engelhardt, Langfeld, Reinhardt, Tennert, PRD 61 (2) 5454. p.27/3

Depercolation of vortices:.5 T =.9 T c.8 T = 1.1 T c probability.4.3.2.4.3 T = 1.4 T c probability.6.4.8.6 T = 1.8 T c.1 probability.2.2.4.6.8 1.1 cluster extension.2 probability.4.2.4.6.8 1.2 cluster extension.2.4.6.8 1 cluster extension.2.4.6.8 1 cluster extension from Engelhardt, Langfeld, Reinhardt, Tennert, PRD 61 (2) 5454. p.27/3

Finite size scaling analysis: Can we realize the order of the phase transition in the vortex picture?.8.6 8 12 16 2 24 P(β).4.2 2.24 2.26 2.28 2.3 2.32 2.34 β p.28/3

Finite size scaling analysis: Can we realize the order of the phase transition in the vortex picture?.8.6 8 12 16 2 24 x = (β β c ) L 1/ν P(β).4.2 2.24 2.26 2.28 2.3 2.32 2.34 β p.29/3

Finite size scaling analysis: Can we realize the order of the phase transition in the vortex picture?.8.6 8 12 16 2 24 x = (β β c ) L 1/ν P(β).4.8.2.6 2.24 2.26 2.28 2.3 2.32 2.34 β L=8 L=12 L=16 L=2 L=24 P(x).4.2-8 -6-4 -2 2 4 6 (β β c ) L 1/ν ν =.6294... (3D Ising critical exponent! ) from Langfeld, PRD 67 (23) 11151 (rapid comm.) p.29/3

Brief summary [T ]: [SU(2): lattice] deconfinement vortex depercolation transition explains the spatial string tension: σ s (T) universality class correctly anticipated by the vortex structure [SU(3): vortex model] correctly reproduces the 1st order transition [Engelhardt, Quandt, Reinhardt, NPB 685 (24) 227.] p.3/3