Exact solutions of (0,2) Landau-Ginzburg models

Similar documents
Exact Solutions of 2d Supersymmetric gauge theories

Triality of Two-dimensional (0,2) Theories

Aspects of (0,2) theories

Some Tools for Exploring Supersymmetric RG Flows

Introduction to defects in Landau-Ginzburg models

Heterotic Torsional Backgrounds, from Supergravity to CFT

Very quick introduction to the conformal group and cft

arxiv: v2 [hep-th] 29 Sep 2015

Three-Charge Black Holes and ¼ BPS States in Little String Theory I

Current Algebra Constraints on Supersymmetric Quantum Field Theories

Boundaries, Interfaces, & Duality in 3d SCFTs

Sphere Partition Functions, Topology, the Zamolodchikov Metric

Anomalies, Conformal Manifolds, and Spheres

The Chiral Algebra Program for 4d SCFTs

Rigid SUSY in Curved Superspace

Domain Walls for Two-Dimensional Renormalization Group Flows

Boundaries, Interfaces and Dualities

Lecture 25 Superconformal Field Theory

Seiberg duality and the Superconformal Index

Properties of monopole operators in 3d gauge theories

Lecture 7: N = 2 supersymmetric gauge theory

An Introduction to Quantum Sheaf Cohomology

Topological reduction of supersymmetric gauge theories and S-duality

Bounds on 4D Conformal and Superconformal Field Theories

String theory and the 4D/3D reduction of Seiberg duality. A Review

Numerical simulation of the N = 2 Landau Ginzburg model

Supercurrents. Nathan Seiberg IAS

Three-Charge Black Holes and ¼ BPS States in Little String Theory

1 Susy in 4d- Notes by Horatiu Nastase A very basic introduction (survival guide)

M-theory S-Matrix from 3d SCFT

Supersymmetric Gauge Theories, Matrix Models and Geometric Transitions

Lecture 20 FUNDAMENTAL Theorem of Finitely Generated Abelian Groups (FTFGAG)

ASPECTS OF FREE FERMIONIC HETEROTIC-STRING MODELS. Alon E. Faraggi

Exact Results in D=2 Supersymmetric Gauge Theories And Applications

Traces of rationality of Darmon points

Chapter 6. Differentially Flat Systems

Recent Advances in SUSY

Some developments in heterotic compactifications

Twistor Strings, Gauge Theory and Gravity. Abou Zeid, Hull and Mason hep-th/

ON ULTRAVIOLET STRUCTURE OF 6D SUPERSYMMETRIC GAUGE THEORIES. Ft. Lauderdale, December 18, 2015 PLAN

t-deformations of Grothendieck rings as quantum cluster algebras

Theorem The simple finite dimensional sl 2 modules Lpdq are indexed by

THE MASTER SPACE OF N=1 GAUGE THEORIES

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee

Exact Quantization of a Superparticle in

AdS/CFT Beyond the Planar Limit

Explicit realization of affine vertex algebras and their applications

q-de Rham cohomology via Λ-rings

Symmetries Then and Now

Bootstrapping the N = 2 landscape

One-loop corrections to heterotic flux compactifications,

Instantons and Sphalerons in a Magnetic Field

Non-Supersymmetric Seiberg duality Beyond the Planar Limit

N = 2 heterotic string compactifications on orbifolds of K3 T 2

2-Group Global Symmetry

Field Theory Description of Topological States of Matter

Electric-Magnetic Duality, Monopole Condensation, And Confinement In N = 2 Supersymmetric Yang-Mills Theory

arxiv: v2 [hep-th] 2 Nov 2018

A (gentle) introduction to logarithmic conformal field theory

Seiberg Duality: SUSY QCD

A-twisted Landau-Ginzburg models

String Theory in a Nutshell. Elias Kiritsis

arxiv:hep-th/ v2 2 Dec 1995

N = 2 supersymmetric gauge theory and Mock theta functions

2d SCFT from M2-branes

Spacetime supersymmetry in AdS 3 backgrounds

Amplitudes & Wilson Loops at weak & strong coupling

Interfaces. in conformal field theories and Landau-Ginzburg models. Stefan Fredenhagen Max-Planck-Institut für Gravitationsphysik

Some applications of light-cone superspace

Techniques for exact calculations in 4D SUSY gauge theories

Semiclassical Framed BPS States

Yasu Kawahigashi ( ) the University of Tokyo/Kavli IPMU (WPI) Kyoto, July 2013

arxiv:hep-th/ v3 17 Jan 2005

CP n supersymmetric mechanics in the U(n) background gauge fields

Flag Varieties. Matthew Goroff November 2, 2016

Symmetries of K3 sigma models

Bootstrapping the (2, 0) theories in six dimensions. Balt van Rees

3. Signatures Problem 27. Show that if K` and K differ by a crossing change, then σpk`q

Donaldson Thomas invariants for A-type square product quivers

CP n supersymmetric mechanics in the U(n) background gauge fields

Vertex Algebras at the Corner

A Crack in the Conformal Window

Holomorphic symplectic fermions

Representation theory of vertex operator algebras, conformal field theories and tensor categories. 1. Vertex operator algebras (VOAs, chiral algebras)

Some Comments on Kerr/CFT

Dualities and Topological Strings

On Flux Quantization in F-Theory

RECENT DEVELOPMENTS IN FERMIONIZATION AND SUPERSTRING MODEL BUILDING

Supersymmetry Highlights. Kevin Hambleton

Fixed points and D-branes

arxiv: v2 [hep-th] 25 Nov 2015

Infrared Computations of Defect Schur Indices

BPS Black Holes Effective Actions and the Topological String ISM08 Indian Strings Meeting Pondicherry, 6-13 December 2008

Pietro Fre' SISSA-Trieste. Paolo Soriani University degli Studi di Milano. From Calabi-Yau manifolds to topological field theories

Ω-deformation and quantization

An introduction to heterotic mirror symmetry. Eric Sharpe Virginia Tech

Lecture 12 Holomorphy: Gauge Theory

University of Amsterdam

A Supergravity Dual for 4d SCFT s Universal Sector

Towards solution of string theory in AdS3 x S 3

Transcription:

Exact solutions of (0,2) Landau-Ginzburg models 1608.07753 w/ A. Gadde Pavel Putrov IAS, Princeton November 28, 2016 1 / 17

Motivaiton Known: N p0, 0q: real boson φ, V pφq φ 2n IR ÝÑ n-th unitary minimal model SUp2q n 1ˆSUp2q 1 SUp2q n. N p2, 2q: chiral superfield Φ, W pφq Φ n`1 [Witten] IR ÝÑ n-th N 2 minimal model SUp2q n 1ˆSOp2q 1 Up1q. 2pn`1q Want: N p0, 2q LG??? IR ÝÑ (0,2) SCFT??? 2 / 17

(0,2) Landau-Ginzburg models Supercharges: Q Q Up1q rot `1{2 `1{2 Up1q R `1{2 1{2 tq, Qu 2P`, superspace: x`, x, θ`, θ`. Multiplets: Chiral: Φ b φ b ` ψ b`θ` `..., b 1... p Fermi: Ψ a ψ á `... `, a 1... q Interaction: ş dθ` řq a 1 Ψa J a pφq ù ř a J apφq 2 ` ř holomorphic a,b ψá BJ apφq Bφ b `c.c. ψ b` ` c.c. 3 / 17

Finding IR CFT UV data: tj a pφqu a 1...q ÝÑ IR CFT H à λ H L λ modules of VOA L, c L b HR λ modules of N 2 SVOA R, c R Tools/constraints to determine IR CFT: c-extrimization ñ c L, c R Superconformal index BPS spectrum (Ą Topological heterotic ring) t Hooft anomalies Modular invariance 4 / 17

Modular invariance Zpτq Tr H q L0 q L 0 ÿ λ χ L λ pqqχr λ p qq, pq e2πiτ q χ L λ pqq Tr Hλ L q L 0, χ R λ p qq Tr q L 0 HR λ Zpτ q should be modular invariant. NS sector: τ Ñ 1{τ, τ Ñ τ ` 2. anti-periodic 0 anti-periodic 1 Gives constraints on possible pairs (VOA L, SVOA R ). (e.g. pup1q 5, Up1q 3 q modular invariant pairing does not exist) 5 / 17

c-extremization [Benini-Bobev] Suppose vacuum is normalizable (tφ P C p J a pφq 0u is finite) pÿ qÿ c R 3 prrφ b s 1q 2 3 prrψ a sq 2 b 1 a 1 RrΦ b s, RrΨ a s trial R-charges. Extremize c R subject to conditions RrJ a pφqs ` RrΨ a s 1. c L c R q p (grav. anomaly) ñ c L... 6 / 17

t Hooft anomalies Up1q m flavor symmetry (similarly for non-abelian). k - m ˆ m anomaly matrix (integral quadratic form on charge lattice Z m ). A j J i xb µ J µ i y ř j k ijfµνɛ j µν k ij ÿ apfermi k is positive definite Ñ Up1q m k left-moving sector. q a i q a j ÿ bpchiral q b i q b j affine algebra in IR in the J i pzqj j p0q k ij z 2 vertex operators: e ř i ni ş J i, n P Z m. 7 / 17

BPS spectrum H BPS (IR) H L0` R 0 {2 0 à λ P chiral primaries H L λ H BPS (UV) Q-cohomology Maybe hard to calculate (though in principle possible). Simple finite-dimensional subsector: topological heterotic ring 8 / 17

Topological heterotic ring [Katz-Sharpe,Adam-Distler-Ernebjerg,Melnikov,...] Suppose there is a left-moving flavor symmetry Up1q L ü H L λ such that in UV: q L rφ b s RrΦ b s, q L rψ a s RrΨ a s 1. H Top (IR) H BPS L0 q L {2 H L0` R 0 {2 0, L 0 q L {2 Can be computed in the UV as Koszul homology: C 0 d ÝÑ ^qe d ÝÑ... d ÝÑ ^1E ÝÑ d ^0E E Span C t Ψ a u q a 1 b CrΦ is CrΦ i s q, d H Top (UV) H pc, dq Ker d{im d qÿ a 1 d ÝÑ 0 J a B B Ψ a, 9 / 17

Example 1 3 Φ 1 Φ 2 p 2, q 3 ż L int dθ` Ψ 1 Φ m 1 `Ψ 2 Φ n 2 `Ψ ` c.c. J 1 J 2 J 3 c-extr ñ c R 3 mn 1 mn ` 1, c L 2 2mn 1 mn ` 1 c R ă 3 ñ VOA R mn-th N 2 minimal model Up1q 2 flavor symmetry: q 1 q 2 Φ 1 1 0 Φ 2 0 1 Ψ 1 m 0 Ψ 2 0 n Ψ 3 1 1 k ˆ m2 1 1 n 2 ñ VOA L Ą Up1q 2 k, c L c Sugawara pup1q 2 k q 2 mn 2 mn ` 1 cpparafermionsq ă 2 10 / 17

Example 1, cont. IR CFT SUp2qmn 1 Up1q 2pmn 1q parafermions ˆUp1q 2 k b SUp2qmn 1 ˆ SOp2q 1 Up1q 2pmn`1q mn-th N 2 minimal model D modular invariant pairing: mn 1 ÿ Z α 0 checks: ÿ ν P Z 2pmn 1q ÿ Superconformal index Topological heterotic ring χ SUp2qmn 1{Up1q2pmn 1q α;ν a P Z mn`1 χ Up1q2 k pma, npa ` νqq PZ 2 {kz 2 χ SUp2q mn 1ˆSOp2q 1 {Up1q 2pmn`1q α;2a`ν 11 / 17

How to find modular invariant pairing (idea) cf. [Gannon] m Up1q 1 A Up1q m b 2 B m Up1q 3 C Up1q m 4 D D modular invariant pairing ô A D Q C B (as quadratic forms) Q-linear map ÞÑ pairing b (e.g. Up1q 5 b Up1q 3 : 5x 2 3y 2 3 ñ x y ñ no pairing) 5 x fy, f P HompQ m 2`m 4, Q m 1`m 3 q, s.t. pa Dqpxq pb Cqpyq. Mx gy, M P Z, g P HompZ m 2`m 4, Z m 1`m 3 q, s.t. pa Dqpgyq M 2 pb Cqpyq. ÿ µ 1,µ 2,µ 3,µ 4 χ Up1qm 1`m 3 A D pgyq ÿ pµ 1,µ 3 q ν 2,ν 4 A pµ1,µ 3 q,pν 2,ν 4 q χ Up1q m2`m 4 M 2 pb Cq pν 2,ν 4 q pyq, χ Up1qm 2`m 4 B C pmyq ÿ Up1q m2`m 4 M B pµ 2,µ 4 q pµ2,µ 4 q,pν 2,ν 4 q χ 2 pb Cq pyq. pν 2,ν 4 q ν 2,ν 4 ÿ A pµ1,µ 3 q,pν 2,ν 4 q B pµ2,µ 4 q,pν 2,ν 4 q χ Up1q m 1 A {Up1qm 2 B µ 1 ;µ 2 χ Up1qm 3 C {Up1qm 4 D µ 3 ;µ 4 ν 2,ν 4 is modular invariant. 12 / 17

Example 1, cont. Check that indeed UV and IR calculations of the topological heterotic ring agree: H L0` R 0 {2 0, L 0 q L {2 H pc, dq H 3 pc, dq 0, H 2 pc, dq 0, H 1 pc, dq Span C t Ψ 3 Φ m 1 1 Φ b 2 Ψ 1 Φ b`1 2 u n 1 b 0 Span C t Ψ 3 Φ n 1 2 Φ a 1 Ψ 2 Φ a`1 1 u m 2 a 0, H 0 pc, dq Span C tφ aum 1 1 a 0 Span C tφbun 1 2 b 1, q 2 (m,n)=(5,4) 4 3 2 1 H 0 (C,d) H 1 (C,d) 0 1 2 3 4 5 q 1 13 / 17

Example 2 IR CFT p 2, q 2 ż L int dθ` Ψ 1 pφ m 1 ` Φ n 2 q `Ψ 2 Φ 1 Φ 2 ` c.c. J 1 J 2 SUp2qmn Up1q 2mn parafermions ˆUp1q mnpmn`2q b SUp2qmn ˆ SOp2q 1 Up1q 2pmn`2q mn ` 1-th N 2 minimal model Modular invariant pairing depends on pm, nq individually (inequivalent Q-linear maps px 1, x 2 q ÞÑ py 1, y 2 q such that mnpmn ` 2q x 2 1 ` 2pmn ` 2q x2 2 2mn y2 1 ` y2 2 ) 14 / 17

Example 2, cont. mn 6: 12x 2 1 ` x2 2 Q 48y 2 1 ` 16y2 2 (m,n)=(1,6) ˆ x1 x 2 ˆ 1 1 6 2 ˆ y1 y 2 6à à H λ 0 αpz 12 à H SUp2q6{Up1q12 λ;ᾱ bh Up1q 48 6s`α b H SUp2q 6ˆSOp2q 1 {Up1q 16 λ;2s α spz 8 (m,n)=(2,3) ˆ x1 x 2 1 7 ˆ 11 5 30 22 ˆ y1 y 2 6à à H λ 0 αpz 12 à H SUp2q6{Up1q12 λ;ᾱ bh Up1q 48 6s`5α b H SUp2q 6ˆSOp2q 1 {Up1q 16 λ;2s 5α spz 8 15 / 17

Example 3 ż L int dθ` Nÿ i,j 1 Ψ ij Φ i Φ j Nonabelian flavor symmetry: UpNq SUpNqˆUp1q Z N. IR CFT `SUpNq N`1 ˆ Up1q Np2N`1q b SOp2N ` 2q1 ˆ SOpNpN ` 1qq 1 SUpN ` 1q N ˆ Up1q pn`1qp2n`1q Kazama-Suzuki coset rsop2n ` 2q{UpN ` 1qs 2N`1 Modular invariant pairing provided by level-rank duality: conformal Up1q 1 ˆ UpNpN ` 1qq 1 Ą `SUpNqN`1 ˆ Up1q Np2N`1q ˆ `SUpN ` 1qN ˆ Up1q pn`1qp2n`1q 16 / 17

Summary For a number of families of N p0, 2q LG models we found explicit descritption of the N p0, 2q SCFT at the IR fixed point in terms of (KS) WZW cosets. To determine the IR CFT we use RG protected quantities (BPS spectrum and anomalies) as well as modular invariance In particular we give explicit expression of the full partition function of the IR CFT (which is not a supersymetric partition function, it could not be computed by localization) 17 / 17