Integrals and Invariants of

Similar documents
Integrals and Invariants of Euler-Lagrange Equations

Canonical transformations

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

12. The Hamilton-Jacobi Equation Michael Fowler

Lecture 20: Noether s Theorem

PHYS 705: Classical Mechanics. Calculus of Variations II

Mechanics Physics 151

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force.

PHYS 705: Classical Mechanics. Canonical Transformation II

Poisson brackets and canonical transformations

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions

1 Matrix representations of canonical matrices

10. Canonical Transformations Michael Fowler

LAGRANGIAN MECHANICS

Analytical classical dynamics

Notes on Analytical Dynamics

Lecture 13 APPROXIMATION OF SECOMD ORDER DERIVATIVES

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2

Physics 181. Particle Systems

Lecture 10: Euler s Equations for Multivariable

Solutions to Problem Set 6

Section 8.3 Polar Form of Complex Numbers

ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY

Lagrange Multipliers. A Somewhat Silly Example. Monday, 25 September 2013

Conservation of Energy

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results.

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

Moments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is.

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

6.3.4 Modified Euler s method of integration

Physics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1

Symmetric Lie Groups and Conservation Laws in Physics

Feature Selection: Part 1

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2)

Mechanics Physics 151

CHAPTER 14 GENERAL PERTURBATION THEORY

Lagrangian Field Theory

NEWTON S LAWS. These laws only apply when viewed from an inertial coordinate system (unaccelerated system).

11. Dynamics in Rotating Frames of Reference

Difference Equations

Lecture 12: Discrete Laplacian

4. Laws of Dynamics: Hamilton s Principle and Noether's Theorem

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Comparative Studies of Law of Conservation of Energy. and Law Clusters of Conservation of Generalized Energy

Solutions to exam in SF1811 Optimization, Jan 14, 2015

Chapter 9: Statistical Inference and the Relationship between Two Variables

Advanced Circuits Topics - Part 1 by Dr. Colton (Fall 2017)

Numerical Heat and Mass Transfer

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 )

Mechanics Physics 151

MEM 255 Introduction to Control Systems Review: Basics of Linear Algebra

Group Analysis of Ordinary Differential Equations of the Order n>2

PHYS 705: Classical Mechanics. Newtonian Mechanics

Advanced Quantum Mechanics

Chapter 3 Differentiation and Integration

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

PHYS 705: Classical Mechanics. Hamilton-Jacobi Equation

Hidden Markov Models

Lecture 10 Support Vector Machines II

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur

Classical Field Theory

where the sums are over the partcle labels. In general H = p2 2m + V s(r ) V j = V nt (jr, r j j) (5) where V s s the sngle-partcle potental and V nt

Modelli Clamfim Equazioni differenziali 7 ottobre 2013

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Support Vector Machines. Vibhav Gogate The University of Texas at dallas

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential

Numerical Solution of Ordinary Differential Equations

Quantum Mechanics I Problem set No.1

Kernel Methods and SVMs Extension

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

EEE 241: Linear Systems

Calculus of Variations Basics

coordinates. Then, the position vectors are described by

The Finite Element Method

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

Mechanics Physics 151

CHAPTER 5: Lie Differentiation and Angular Momentum

Georgia Tech PHYS 6124 Mathematical Methods of Physics I

Spring Force and Power

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS)

Chapter Newton s Method

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD

Chapter 4 The Wave Equation

Neuro-Adaptive Design II:

A new Approach for Solving Linear Ordinary Differential Equations

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 12 10/21/2013. Martingale Concentration Inequalities and Applications

CHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics)

One-sided finite-difference approximations suitable for use with Richardson extrapolation

Physics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding.

APPENDIX A Some Linear Algebra

Linear Feature Engineering 11

Elementary work, Newton law and Euler-Lagrange equations

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography

Polynomial Regression Models

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before

Transcription:

Lecture 16 Integrals and Invarants of Euler Lagrange Equatons NPTEL Course Varatonal Methods and Structural Optmzaton G. K. Ananthasuresh Professor, Mechancal Engneerng, Indan Insttute of Scence, Banagalore suresh@mecheng.sc.ernet.n 1

Outlne of the lecture Frst ntegrals of Euler Lagrange equatons Noether s ntegral Parametrc form of E L equatons Invarance of E L equatons What we wll learn: How to smplfy the E L equatons to easy to solve dfferental equatons n some cases How to take advantage of parametrc forms and change of varables G. K. Ananthasuresh, IISc NPTEL course: Varatonal Methods and Structural Optmzaton

More than formulatng equatons So far, we have learnt how to get dfferental equatons and boundary condtons usng the technques of calculus of varatons. Indeed t s powerful. We have learnt varous generalzatons: Multple dervatves Multple functons Two and three ndependent varables Equalty and nequalty constrants Varable end condtons Broken extremals and corner condtons There are a few concepts that become useful when we also want to solve them usng analytcal (rather than numercal) technques. We wll stll not get a soluton rght away but we get a smpler or easly solvable form of dfferental equatons. In some cases, we get some nsght nto the problem. Ths s the am of the content of ths lecture. G. K. Ananthasuresh, IISc NPTEL course: Varatonal Methods and Structural Optmzaton 3

Consder the brachstochrone problem From Slde 14 n Lecture 11 A L 1 Mnmze T dx y(x) ( ) 0 g(h y) y H g y(x) ) L B And we have Drchlet (essental) boundary condtons at both the ends. G. K. Ananthasuresh, IISc NPTEL course: Varatonal Methods and Structural Optmzaton 4

Looks formdable to solve At frst sght, ths dfferental equaton looks to be too complcated to solve analytcally And we are far from showng that the soluton of ths s a cyclod. Frst ntegrals of Euler Lagrange equatons provdes a way out of ths. G. K. Ananthasuresh, IISc NPTEL course: Varatonal Methods and Structural Optmzaton 5

Frst ntegrals of specal forms Solvng dfferental dff equatons means that we are ntegratng them. Ths s what we do whether we do t analytcally or numercally. So, frst ntegrals mply that we are ntegratng the dfferental equaton to some extent. For Euler Lagrange g equatons, some specal forms, are amenable for wrtng the frst ntegrals and thereby reduce ther degree and hence ther complexty. J x 1 x 1 x 1 F(x, y)dx J F(x, y )dx J F(y, y )dx J F(x, ( y, y )dx f (x, y) 1 y dx x 1 x 1 G. K. Ananthasuresh, IISc NPTEL course: Varatonal Methods and Structural Optmzaton 6

Integrand of the form F(x, y) Mn y(x) J F y 0 x x 1 F(x, y)dx Euler Lagrange equaton has only one term, n ths case. f (x, y) 0 It s smply an algebrac equaton; not a dfferental equaton. So, there s nothng to ntegrate here. Notce also that t does not have a boundary condton too. Recall that the smplest boundary condton term nvolves y. See Slde 13 n Lecture 11 for an example. G. K. Ananthasuresh, IISc NPTEL course: Varatonal Methods and Structural Optmzaton 7

Integrand of the form F(x, y') Mn J y(x) d dx x 1 F(x, (, y )dx F Euler Lagrange equaton has only one term, n ths y 0 F C constant y y f (x,c) Euler Lagrange equaton has only one term, n ths case too. We can express y n ths form and now t can be drectly ntegrated ether analytcally (when t s possble to do) or numercally. 8

Integrand of the form F(y, Mn y(x) J x 1 F(y, y )dx F y d F dx y 0 F y y F y y y F y F y d dx F yf y 0 y ) Euler Lagrange equaton has two terms. y dy F y y dy y 0 F y yy 0 Expanded. A smple contracton of the terms. F yf y C constant t An elegant frst ntegral. Multply by y through out. G. K. Ananthasuresh, IISc NPTEL course: Varatonal Methods and Structural Optmzaton 9

Brachstochrone problem has the form F(y, y ) L 1 Mnmze T dx y(x) 0 g(h y) y Now, nstead of that, we get ths. F yf y C constant G. K. Ananthasuresh, IISc NPTEL course: Varatonal Methods and Structural Optmzaton 10

Smplfcaton of the Brachstochrone dfferental equaton A much smpler form to solve. G. K. Ananthasuresh, IISc NPTEL course: Varatonal Methods and Structural Optmzaton 11

An nsght wth the frst ntegral Consder the Hamltonan for the dynamcs of a sprng mass system: Sde 33 n Lecture 3 k m x F Mn x(t ) T 1 Mn H m dx 1 kx Fx dt x(t ) dt 0 T Mn H KE PEdt x(t ) Mn H x(t ) 0 T 0 L dt J t t 1 F(x, x)dt Ths s of the form and hence s amenable for the elegant frst ntegral. Hamlton s prncple for dynamcs. G. K. Ananthasuresh, IISc NPTEL course: Varatonal Methods and Structural Optmzaton 1

An nsght wth the frst ntegral: conservaton of energy T 1 Mn H m dx 1 kx Fx dt x(t ) dt 0 F y F y C constant F - xf x C 1 mx 1 kx Fx x mx C 1 mx 1 kx Fx c KE PE constant Thus, the frst ntegral gave rse to the prncple of conservaton of energy. G. K. Ananthasuresh, IISc NPTEL course: Varatonal Methods and Structural Optmzaton 13

An ntegrand of the form f (x, y) 1 y Mn y(x) J x x 1 f (x, y) 1 y dx F f (x, y) 1 y F y F y 0 f y f y 1 y 1 y f x fy 1 y y 0 1 y f y y 1 y f f y (1 y ) f x y f y y fy 1 y 0 y 1 y 0 3/ f y f x y f y y fy 0 Not ntegrated, but s a smpler form to deal wth. 1 y G. K. Ananthasuresh, IISc NPTEL course: Varatonal Methods and Structural Optmzaton 14

Now, try to solve ths functonal Mn y(x) J x x 1 y y dx It s of the form: F(y, y ) Therefore, F yf y C constant Thus, y y y y y y y C y y yy C Let us try change of varables: y y x u cosv y usnv No sght of soluton yet! (despte usng the frst ntegral) G. K. Ananthasuresh, IISc NPTEL course: Varatonal Methods and Structural Optmzaton 15

Change of varables Mn y(x) J Mn v(u) F(x, y, y )dx x x(u,v) dx x u x v du x 1 y y(u,v) dy y u y v dv J dx x u x v dv du F(x(u,v), y(u,v), y u y v v x u x v v )( x u x v v )du du x u x v vdu dv dy y u y v du du y u y v vdu x 1 Now, ths s a new functonal n u and v where we need fnd v(u). What would be the Euler Lagrange g equatons for ths? G. K. Ananthasuresh, IISc NPTEL course: Varatonal Methods and Structural Optmzaton 16

New functonal satsfes the old equaton! Mn v(u) J F(x(u,v), y(u,v), y u y v v x x v )( x u x v v )du u v x 1 Mn v(u) J u u 1 F 1 (u,v, v )du F 1 v d F 1 s satsfed by v(u) F du v 0 just as y(x) satsfes y d F dx yv 0 So, we need to get the new functonal n the form shown above, when we change varables G. K. Ananthasuresh, IISc NPTEL course: Varatonal Methods and Structural Optmzaton 17

An example Wth x u v x u x v y u y v y tan 1 (v / u) ) u u v v x u vv u x v v u v y uv v u y v v u v And notng that Mn v(u) u v v Mn J y(x) u v x 1 u u v J F(x(u,v), y(u,v), y y u vv x u x v v )( x u x v v )du x 1 Check the algebra by workng t out n detal. y y dx Mn v(u) ( ) becomes J u u 1 1 v du G. K. Ananthasuresh, IISc NPTEL course: Varatonal Methods and Structural Optmzaton 18

Example (contd.) Mn J v(u) u u 1 v du F 1 du u 1 u 1 d F 1 F t Thus the soluton of du v 0 1 v constant c v C 1 v C 1u C Thus, Wth x u v y tan 1 (v / u) ) Thus, the soluton of the dfferental equaton n slde 15 s y y yy C y y u x cos y or v xsn y xsn y C 1 x cos y C G. K. Ananthasuresh, IISc NPTEL course: Varatonal Methods and Structural Optmzaton 19

A note about change of varables Change of varables s a great way to solve an otherwse dffcult problem to solve. But nobody can tell us whch change of varables wll work for a gven problem. You just have to guess. But note that calculus of varatons lets you use change of varables. G. K. Ananthasuresh, IISc NPTEL course: Varatonal Methods and Structural Optmzaton 0

Parametrc form and Euler Lagrange equatons Mn y(x) ) J x x(t) x 1 Parametrc form y y(t) Where F(x, y, y )dx dx x dt y' x y y F x(t), y(t), x ( x y x d xx dt x Then, we have Mn y(x) Mn x(t ),y(t ) J t F(x, y, y )dx F x(t), y(t), x y x 1 t J (x, y, x, y) t 1 and t satsfes the followng EL equatons. 0 and y d y dt t 1 should not depend on t explctly. y 0 G. K. Ananthasuresh, IISc NPTEL course: Varatonal Methods and Structural Optmzaton 1 dt y xdt

A comment We saw that change of varables or parametrc form do not alter the form of Euler Lagrange equatons. It s very useful n a number of stuatons. Parametrc form s especally useful when y(x) s to denote a closed curve. It s also useful n dealng wth dynamcs problems too. There s a more general theorem related to nvarance of Euler Lagrange theorem. It s called Noether s theorem. Noether s theorem s related to the frst ntegrals we dscussed earler n ths lecture. It leads to conserved quanttes. Proved by German mathematcan Emmy Noether, ths theorem was prased by Ensten for ts penetratng thnkng. It s used wdely n mathematcal physcs. G. K. Ananthasuresh, IISc NPTEL course: Varatonal Methods and Structural Optmzaton Noether s theorem next

Invarance under transformatons Consder ˆx (x, y, y ) ŷ (x, y, y ) Mn J y(x) F x, dy dx Mn Ĵ F ˆx, ŷ, dŷ, y, dˆx dx y, ŷ(x) dˆx x 1 ˆ ˆx 1 If J Ĵ, we say that the functonal s nvarant under the transformaton shown above. G. K. Ananthasuresh, IISc NPTEL course: Varatonal Methods and Structural Optmzaton 3

Noether s theorem Consder ˆx (x, y, y, ) ŷ (x, y, y, ) A one parameter transformaton. dy Ĵ ˆx, ŷ, dŷ If J F x, y, dˆx dx dx J F y, dˆx dx x 1 we say that the functonal s nvarant under the transformaton shown above. Then, ˆ ˆx 1 Fy F yf y 0 0 constant G. K. Ananthasuresh, IISc NPTEL course: Varatonal Methods and Structural Optmzaton 4

Noether s theorem (case of many functons) If Consder xˆ ( x, y, y,, y, y, y,, y, ) 1 n 1 yˆ ( x, y, y,, y, y, y,, y, ), 1,,,n 1 n 1 n x dy ˆ dyˆ J F x, y, dx J F xˆ, yˆ, dxˆ dx dxˆ x x ˆ 1 1 we say that the functonal s nvarant under the transformaton shown above. Then, x ˆ n n Fy F yf y 1 0 0 constant G. K. Ananthasuresh, IISc NPTEL course: Varatonal Methods and Structural Optmzaton 5

An applcaton of Noether s theorem Consder a system of n partcles wth poston coordnates: x (t), y (t), z ( t) ( 1,,, n) n 1 KE m x y z 1 Let the potental energy be = PE U ( x 1, y 1, z 1,, xn, yn, zn ) The knetc energy of such a system = Consder the Hamltonan = Consder x x cos y * * sn y y x y z * z sn cos t 1 H KE PE dt t 0 A one parameter famly of transformatons for the rotaton of the system of partcles about the z axs. Suppose that H s nvarant under the above transformaton. G. K. Ananthasuresh, IISc NPTEL course: Varatonal Methods and Structural Optmzaton 6

Compare wth the generc transformaton. xˆ ( x, y, y, ) yˆ ( x, y, y, ) (t,,y,,,y,, ) x (t, x,y, z, x,y, z, ) y (t, x,y, z, x,y, z, ) z (t, x,y, z, x,y, z, ) * t x z x z * 1 * * 3 t t No transformaton n the ndependent varable. x x cos y * y x sn y z * * z sn cos Now, as per Noether s theorem, we have n Fy F y constant Fy 1 0 0 n KE KE KE 1 3 constant 1 x 0 y 0 z 0 0 (contd.) G. K. Ananthasuresh, IISc NPTEL course: Varatonal Methods and Structural Optmzaton 7 Note that t 0

Noether s theorem applcaton (contd.) Note that x x * y * 0 0 y x and 0 0 * z 0 0 n (contd.) KE KE KE 3 n constant 1 1 x 0 y 0 z 0 mxy myx constant p r 1 1 where p mx,my,m z ad n r x, y, z Lnear momentum vector n Poston vector constant Conservaton of angular momentum! G. K. Ananthasuresh, IISc NPTEL course: Varatonal Methods and Structural Optmzaton 8

Why s Noether s theorem mportant? Because t lets us fnd conserved quanttes for any calculus of varatons problems leadng to frst ntegrals. It can be extended to multple functons. It can be extended to multple dervatves. In mechancs, conservaton of energy, conservaton of lnear momentum, and conservaton of angular momentum, etc., follow from Noether s theorem. The prevous example llustrated the for conservaton of angular momentum. G. K. Ananthasuresh, IISc NPTEL course: Varatonal Methods and Structural Optmzaton 9

The end note Frst ntegrals for varous forms of functonals Frst nteg grals and nvaranc ce of Eule er Lagrange equaton ns Ways to smplfy Euler Lagrange equatons and thereby solve them analytcally. Change of varables does not alter the form of Euler Lagrange equatons. Parametrc form too does not alter the form of the El equatons. Invarant transformatons and conserved quanttes usng Noether s theorem Thanks G. K. Ananthasuresh, IISc NPTEL course: Varatonal Methods and Structural Optmzaton 30