CHAPTER 9 Compressible Flow

Similar documents
CHAPTER 9 Compressible Flow

CHAPTER 9. Compressible Flow. Btu ft-lb lbm ft-lb c p = = ft-lb slug- R. slug- R. 1 k. p p. p v p v. = ρ ρ

3.4 Repeated Roots; Reduction of Order

Control System Engineering (EE301T) Assignment: 2

In this lecture... Subsonic and supersonic nozzles Working of these nozzles Performance parameters for nozzles

H is equal to the surface current J S

EXERCISE - 01 CHECK YOUR GRASP

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is

( ) = 0.43 kj = 430 J. Solutions 9 1. Solutions to Miscellaneous Exercise 9 1. Let W = work done then 0.

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t

Double Slits in Space and Time

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

AerE 344: Undergraduate Aerodynamics and Propulsion Laboratory. Lab Instructions

IX. COMPRESSIBLE FLOW. ρ = P

CSE 245: Computer Aided Circuit Simulation and Verification

EE 350 Signals and Systems Spring 2005 Sample Exam #2 - Solutions

CHAPTER 1 Basic Considerations

Wave Equation (2 Week)

Fundamentals of Gas Dynamics (NOC16 - ME05) Assignment - 10 : Solutions

Decline Curves. Exponential decline (constant fractional decline) Harmonic decline, and Hyperbolic decline.

On the Speed of Heat Wave. Mihály Makai

Midterm exam 2, April 7, 2009 (solutions)

On General Solutions of First-Order Nonlinear Matrix and Scalar Ordinary Differential Equations

We do not consider too small nozzles, say with chamber size <10 mm and neck size <1 mm, where the effect of boundary layers become predominant.

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

2013/5/22. ( + ) ( ) = = momentum outflow rate. ( x) FPressure. 9.3 Nozzles. δ q= heat added into the fluid per unit mass

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

ME3250 Fluid Dynamics I

a dt a dt a dt dt If 1, then the poles in the transfer function are complex conjugates. Let s look at f t H t f s / s. So, for a 2 nd order system:

C From Faraday's Law, the induced voltage is, C The effect of electromagnetic induction in the coil itself is called selfinduction.

CHAPTER 4 The Integral Forms of the Fundamental Laws

Elementary Differential Equations and Boundary Value Problems

Introduction to Aerospace Engineering

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

Microscopic Flow Characteristics Time Headway - Distribution

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

Ch.1. Group Work Units. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

ln 2 1 ln y x c y C x

CHAPTER 1 Basic Considerations

1973 AP Calculus AB: Section I

CHAPTER 2 Fluid Statics

Transfer function and the Laplace transformation

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016

ME 391 Mechanical Engineering Analysis

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields!

Some Basic Information about M-S-D Systems

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

In which of the following scenarios is applying the following form of Bernoulli s equation: steady, inviscid, uniform stream of water. Ma = 0.

The model proposed by Vasicek in 1977 is a yield-based one-factor equilibrium model given by the dynamic

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

Derivation of Eigenvalue Matrix Equations

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics

MATH 31B: MIDTERM 2 REVIEW. x 2 e x2 2x dx = 1. ue u du 2. x 2 e x2 e x2] + C 2. dx = x ln(x) 2 2. ln x dx = x ln x x + C. 2, or dx = 2u du.

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

Y 0.4Y 0.45Y Y to a proper ARMA specification.

2008 AP Calculus BC Multiple Choice Exam

A Condition for Stability in an SIR Age Structured Disease Model with Decreasing Survival Rate

Circuit Variables. AP 1.1 Use a product of ratios to convert two-thirds the speed of light from meters per second to miles per second: 1 ft 12 in

The first practical supersonic wind tunnel, built by A. Busemann in Germany in the mid-1930s.

Ma/CS 6a Class 15: Flows and Bipartite Graphs

Applied Gas Dynamics Flow With Friction and Heat Transfer

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers:

Charging of capacitor through inductor and resistor

EE 434 Lecture 22. Bipolar Device Models

2. The Laplace Transform

Introduction to Fluid Mechanics. Chapter 13 Compressible Flow. Fox, Pritchard, & McDonald

Lecture 2: Current in RC circuit D.K.Pandey

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall.

The Arcsine Distribution

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser

1997 AP Calculus AB: Section I, Part A

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

46. Let y = ln r. Then dy = dr, and so. = [ sin (ln r) cos (ln r)

Final Exam : Solutions

Fundamentals of Gas Dynamics (NOC16 - ME05) Assignment - 8 : Solutions

Lecture 1: Growth and decay of current in RL circuit. Growth of current in LR Circuit. D.K.Pandey

SUPERSONIC WIND TUNNEL Project One. Charles R. O Neill School of Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK 74078

Exam I. Name. Answer: a. W B > W A if the volume of the ice cubes is greater than the volume of the water.

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

Intro to QM due: February 8, 2019 Problem Set 12

AS 5850 Finite Element Analysis

A Flowing Gas. Continuum Mechanics. Continuum Mechanics. Hydrodynamics

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu

1997 AP Calculus AB: Section I, Part A

THE 2-BODY PROBLEM. FIGURE 1. A pair of ellipses sharing a common focus. (c,b) c+a ROBERT J. VANDERBEI

EECS20n, Solution to Midterm 2, 11/17/00

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

Title: Vibrational structure of electronic transition

Isentropic Duct Flows

ENGI 9420 Engineering Analysis Assignment 2 Solutions

Fluid Dynamics Exam #1: Introduction, fluid statics, and the Bernoulli equation March 2, 2016, 7:00 p.m. 8:40 p.m. in CE 118

Question Details Int Vocab 1 [ ] Question Details Int Vocab 2 [ ]

CHAPTER 2 Fluid Statics

Lecture # 12: Shock Waves and De Laval Nozzle

Week #13 - Integration by Parts & Numerical Integration Section 7.2

Entry Aerodynamics MARYLAND U N I V E R S I T Y O F. Entry Aerodynamics. ENAE Launch and Entry Vehicle Design

Transcription:

CHPTER 9 Comrssibl Flow Char 9 / Comrssibl Flow Inroducion 9. c c cv + R. c kcv. c + R or c R k k Rk c k Sd of Sound 9.4 Subsiu Eq. 4.5.8 ino Eq. 4.5.7 and nglc onial nrgy chang: Q WS + + u~ u~. m ρ ρ Enhaly is dfind in Thrmodynamics as h u~ + v u~ + / ρ. Thrfor, Q WS + h h. m ssum h fluid is an idal gas wih consan scific ha so ha Δh cδt. Thn Q W S + c ( T T). m Nx, l c cv + R and k c/ cv so ha c / R k/( k ). Thn, wih h idal gas law ρrt, h firs law aks h form Q WS k +. m k ρ ρ Th sd of sound is givn by 9.6 c d/ dρ. For an isohrmal rocss TR / ρ K, whr K is a consan. This can b diffrniad: d Kdρ RTdρ. Hnc, h sd of sound is c RT. 9 0 Cngag Larning. ll Righs Rsrvd. May no b scannd, coid or dulicad, or osd o a ublicly accssibl wbsi, in whol or in ar.

Char 9 / Comrssibl Flow 9.8 9.0 d For war Bulk modulus ρ d 0 0 6 Pa ρ Sinc ρ 000 kg/m, w s ha d 0 0 c 45 m/s dρ 000 Sinc c 450 m/s for h small wav, h im incrmn is d Δ c 0 450 0. 0069 sconds 6 9. c krt.4 87 6 5 m/s. d c 56. 9 m. 9.4 c c.4 87 6 56 m/s. sin α. M 000 sinα 0.56. anα 0.648. L 776 m L 776 Δ 000. 776 s. 000 m Δ Δ 0. Eq. 9..4: Δ 0. fs. ρc ρ krt 0.007.4 76 59 Enrgy Eq: L 9.6 ( +Δ) ( Δ) + ct + c( T+ΔT). 0 Δ + + cδt. Δ c.4 76 59 f/sc( 0. f/sc) Δ T 0.0 R or 0.0 F c 60 f-lb/slug- R No: Us slug lb-sc /f (m F/a). (Unis can b a ain!) 0 0 Cngag Larning. ll Righs Rsrvd. May no b scannd, coid or dulicad, or osd o a ublicly accssibl wbsi, in whol or in ar.

Char 9 / Comrssibl Flow Isnroic Flow 9.8 a) am + 0 69.9 + 0 79.9 kpa abs. s 69.9 kpa abs. From s : / k /.4 s s 79.9 +. ρs ρ 0.906 0.997 kg/m. ρ ρs 69.9 + 69 900 79 900. 77. m/s. 0.906 0.997 s 0 s Is r < 0.58 0? 0.58 00 05.7 kpa. 9.0 r 0 a) < 0.58. chokd flow. M. krt. 05.7 kpa..4 87T 000 98 + 000 T. T 48. K, 5.8 m/s. 05.7 ρ.484 kg/m. m.484 π 0.0 5.8 0.47 kg/s. 0.87 48. b).4.4 0 000 0 ρ r > 0.58 0. M <. 000 98 +. 0.4 ρ 00.8 00 ρ0.8. ρ.787 kg/m. 57.9 m/s. 0.87 98 m.787 π 0.0 57.9 0.9 kg/s. a) r < 0.58 0. M. 0.58 00 05.7 kpa. T 0.8 98 48. K. 05.7 ρ.48 kg/m..4 87 48. 5.9 m/s. 0.87 48. m.48 π 0.0 5.9 0.47 kg/s. 9. b) r > 0.58 0. 0 kpa, 0.65. M 0.8, T 0.884T0 0 0 ρ.79 kg/m, 0.8.4 87 6.4 6.5 m/s. 0.87 6.4 m.79 π 0.0 6.5 0.4 kg/s. 0 Cngag Larning. ll Righs Rsrvd. May no b scannd, coid or dulicad, or osd o a ublicly accssibl wbsi, in whol or in ar.

Char 9 / Comrssibl Flow 9.4 0.58 400. kpa abs. T 0.8 0 5.5 K...4 87 5.5 8.5 m/s. m π 0.05 8.5 7.9 kg/s. 0.87 5.5 0.58 4.7 sia. 7.8 sia. T 0.8 500 46.6 R. 0 0.4 76 46.6 000 fs. 9.6 m [4.7 44 / (76 46.6)] π (.5 /) 000 0.0 slug/sc. 0 0 7.8. 0.58 9.4 sia, T 46.6 R, 000 fs. m [9.4 44 / (76 46.6)] π (.5 /) 000 0.0 slug/sc..667 077 T 5 59 00 + 59 T. T 5 K. 00 00.667/0.667 97.45 kpa abs. 9.8 Nx, T 5 K, 97.45 kpa;.667 077 5 88.6 m/s. 97.45 ρ π ρ π.077 5 0.085 kg/m. 0.085 0.0 88.6 0.075.667 ρ.667 59 00 +. 00 0 ρ kpa. 0.667 ρ 00 /.077 00 0.667 + 4 0 9.54..667 6 0.667 or.6 0 + 6 40 0. Trial-and-rror: 9.8 m/s. ρ 0.0 kg/m and 99.4 kpa abs. 9.0 W nd o drmin h Mach numbr a h xi. Sinc h M a h hroa, hn hroa 9.7 cm. Hnc, h ara raio a h xi is 9.7.4. Using h air abls, w find wo ossibl soluions, on for subsonic flow, and h ohr for sursonic flow in h divrging scion of h nozzl. h xi: Subsonic Flow: M 0.5, T T0 0.954, and 0 0.840. Hnc, c krt ( ) M M 0.5.4 87 0.954 95 68 m/s Sursonic Flow: M.76, T T0 0.675, and 0 0.850. 0 Cngag Larning. ll Righs Rsrvd. May no b scannd, coid or dulicad, or osd o a ublicly accssibl wbsi, in whol or in ar.

Char 9 / Comrssibl Flow Hnc, c krt ( ) M M.76.4 87 0.675 95 476 m/s ρ / RT (45 + 4.7)44 / (76 50) 0.00964 slug/f. 9. /.4 50.7 ρ 0.00964 0.00857 slug/f. 59.7 0.00964 4 0.00857. 4.495. 4.495.4 59.7 44.4 50.7 44 + +..9 fs. 0.4 0.00964 0.4 0.00857 m 0.00964 π (/).9 0.05 slug/sc. 9.4 9.6.4 87 T krt. 000 9 + 000 T. T 44.0 K.. m/s..4/0.4 44 6.5 500 6.5 kpa abs. ρ.76 kg/m. 9 0.87 44.4 π ρ 6 500 π 0.4 ρ.4.4 ρ.76 000 9 +..76 0.05. 0.075. 6 0.4 9 000 +.04 0. Trial-and-rror:. m/s, 659 m/s. 5. 897, 0. 987 kg / m. 494. kpa, 4. 9 kpa abs. ρ M. 0.58 0 6.4 sia, T 0.8 50 4. R. ρ. 08 slug. f π d m 0.08.4 76 4.. d 0.9 f. 4 5 0.5. M.04, T 0.55 50 87 R,.04.4 76 87 0 0 684 fs. 0.9 π d π.708..708. d 0.47 f. 4 4 0 Cngag Larning. ll Righs Rsrvd. May no b scannd, coid or dulicad, or osd o a ublicly accssibl wbsi, in whol or in ar.

Char 9 / Comrssibl Flow 9.8 Using comrssibl flow abls for air, w drmin h rssur raio and mraur raio for M.8 o b: T 0.0685, and 0.894. 0.0685 0 9 kpa abs T 0 0 and T 0.894 T 5 K 0 Mc.8 krt.8.4 87 0 004 m/s. 9.40 9.4 50 L M. Nglc viscous ffcs. M 0.40..4 87 0 π 0.05 π d.5007.. 0.086 m or 8.6 cm. d.5007.5007 4 Isnroic flow. Sinc k.4 for nirogn, h isnroic flow abl may b usd. M, i 4.5. M > M 00 i.4 97 7 8 m/s. ρ i 0.907 kg/m. 0.97 7 m 0 0.0098 i 0.0098 m. 0.00 m. ρ 0.907 8 4.5 i i M, T 0.57 T, 0.07. 0 0 M < ~ 0 7 00 T0 T 044 K or 77 C. 0 670 kpa abs. 0.57 0.07 9.44 9.46 ssum 0 0 kpa. Thn ρ 0.498 kg/m. 0.89 7 80 000 9.8 F m ρ. 0.498π 0.5. 60 m/s. 6 M. 4; M.94, 0.0980 0. T 0.665 T 0.665 00 0.0 K, 0 00 0.098. 56 kpa abs. 0 0.94.4 87 09.95 68 m/s. 0 0 F 4 0 Cngag Larning. ll Righs Rsrvd. May no b scannd, coid or dulicad, or osd o a ublicly accssibl wbsi, in whol or in ar.

Char 9 / Comrssibl Flow 00 FB π 0.05 68 + 56 000π 0. 4 000 N. 0.87 09.95 Normal Shock a) ρ 0.9850 000. 80 000 0.985 000( 000) 9.48 000.4 80 + 0.4 0.87 8 000.4 87 8 0. ρ 0.9850 kg/m. ρ + ( 985 + 065 000) 84 00 0 0.4 985 784 + 784 00 0. 6 m/s. ρ.774 kg/m. Subsiu in and find 808 kpa abs. ρ ρ 000 808 M.966. T 746 K or 47 C..4 87 8 0.87.774 6 M. 4 87 746 0477.. T km k+ ( k+ ) M ( k+ )M. T k+ k M ( )M [4kM k ] + k + + k + + k. (This is Eq. 9.4.). Subsiu ino abov: k k M 9.50 ρ ρ ( k+ ) ( k+ ) + ( k ) ( k+ ) ( k+ ) + k k+ ( k ) ( k+ ) + ( k ) ( k+ ) + ( k )( k+ ) 4 k + ( k + ) / k + + ( k ) / For a srong schock in which. k >>, ρ + ρ k.. 9.5 If M 0.5, hn M.645..645.4 87 9 908 m/s. 5 0 Cngag Larning. ll Righs Rsrvd. May no b scannd, coid or dulicad, or osd o a ublicly accssibl wbsi, in whol or in ar.

Char 9 / Comrssibl Flow 600 8.00 00 600 kpa abs. ρ 8. kg/m. 0.87 (.85 9) 9.54 9.56 0.65 0 6.4 kpa. T. K. M 000 /.4 87..4. M 0.4578..85 6.4 9 kpa. T.0. 69.5 K. For isnroic flow from 0: For M 0.458, 0.866 0 and T 0.960 T. 9 / 0.866 9 kpa abs. T 69.5 / 0.96 7 K or 448 C. 0 0 0 0 4. M 0.47. 0.985 0.5 kpa abs. 0 0 0.985 M. 0.58 0.5 54.5 kpa. T 0.8 98 48. K. 54.5 ρ 0.7599 kg/m..4 87 48. 5.9 m/s. 0.87 48. m 0.7599 π 0.05 5.9 0.47 kg/s. If hroa ara is rducd, M rmains a, ρ 0.7599 kg/m and m 0.7599 π 0.0 5.9 0.0 kg/s. 4.7 sia. 4. M.94, and / 9.98. 4.7 9.98.48 sia. M.94, / 0.098. 0 0 M, 0.58 49.7 6. sia. T 0.8 50 4. R..48 49.7 sia. 0.098 9.58. 4 76 4. 00 fs. M.94,.48 sia. T 0.665 50 90.6 R.. 94. 4 76 90. 6 989 fs. M 0.4788, 4.7 sia. T T.609 90.6 497. R. 0.4788.4 76 497. 5 fs. 6 0 Cngag Larning. ll Righs Rsrvd. May no b scannd, coid or dulicad, or osd o a ublicly accssibl wbsi, in whol or in ar.

Char 9 / Comrssibl Flow aor Flow 9.60 0./. 655 0.546 0 0.546 00 655 kpa. T 67 585 K. 00 655 ρ.4 kg/m.. 46 585 59 m/s. (M.) 0.46 585 π d m ρ. 4 4. 59. d 0. 060 m or 6 cm. 4 T 0./. 0 0 67 80. K ρ 0.575 kg/m. 00 0.46 80. + 87 80. 87 67. (Enrgy from 0.) ( c 87 J/kg K) π 050 m/s. 4 0.575( d /4) 050. d 0.09 m or 9. cm. 9.6 0./. 8.9 M, 0.546 50 8.9 sia. T 60 009 R. 50 8.9 44 ρ 0.004 slug/f.. 760 009 90 fs. 76 009 πd 0.5 0.004 90. d 0.99 f. or.9". 4 Obliqu Shock Wav 800 M 9... 4 87 0 From Fig. 9.5, β 46, 79. 0 o 9.64 a) n β 46. M.9sin 46.65. M 0.654 M sin(46 0 ). n M 49... 0 40 0. 4 kpa abs. T. 4 0 4 K..4 87 4.49 60 m/s. 7 0 Cngag Larning. ll Righs Rsrvd. May no b scannd, coid or dulicad, or osd o a ublicly accssibl wbsi, in whol or in ar.

Char 9 / Comrssibl Flow c) a dachd shock 5o n n T M.5sin 5.0. M 0.576..696 0 54 K. 9.66 θ θ β M 0.576/ sin(5 0 ).6. 0. 47. n n M.6sin 47.65. M 0.654 M sin(47 0 ). M.44. T.4 54 7 K. M krt.44.4 87 7 780 m/s. 9.68 θ β n n M, 0. 8. M sin 8.4. M 0.76..5 40 86. kpa abs. 0.76 M.8. 6.44 86. 555 kpa abs. sin(8 0 ) ( ) normal 0. 40 4 kpa abs. Exansion Wavs 9.70 θ 6. 4. For M 4, θ 65. 8. (S Fig. 9.8.) θ 65. 8 6. 4 9. 4. T T0 T T 7 0.8 7 K. T T 0.5556 0 4.4 87 7 867 m/s. T 56 C. a) θ θ u u 9.. 9.+ 5 44.. M.7. (0/0.0585) 0.0465 9.7 4.4 kpa abs. For θ β n n 5 and M.5, 7. M.5sin 7.. M 0.889.. 0 6.4 kpa abs. M M 0.889/ sin(7 5 ).7. 8 0 Cngag Larning. ll Righs Rsrvd. May no b scannd, coid or dulicad, or osd o a ublicly accssibl wbsi, in whol or in ar.

Char 9 / Comrssibl Flow If θ 5 wih M 4, hn Fig. 9.5 β 8. M 4sin8.4. M 0.88. n n.67 0.5 kpa. 0.88 M.64. sin(8 5 ) shock M M l M u shock C C L D 0.0077 0 M 4, θ 65.8. 75.8, Mu 4.88. u 0 0 0.006586 6.6 kpa. Lif.5cos5 0 / 6.6 ( /) cos0 0.0854. ρ.4 4 0 Drag.5sin 5 6.6 ( /) sin0 0.00. ρ.4 4 0 9 0 Cngag Larning. ll Righs Rsrvd. May no b scannd, coid or dulicad, or osd o a ublicly accssibl wbsi, in whol or in ar.