transverse XX chain with a correlated disorder: dynamics of the transverse correlations

Similar documents
Dimer and Trimer Fluctuations in the s=1/2 Transverse XX Chain

arxiv:cond-mat/ v1 12 Jan 2001

Spinon Excitations in the XX Chain: Spectra, Transition Rates, Observability

Chiral sound waves from a gauge theory of 1D generalized. statistics. Abstract

Figure 1 The momentum dependence of the ratios R(; p; N) (3.1) at = 1 ; 1 ; 1 ;

Quantum Oscillations in Graphene in the Presence of Disorder

Temperature Correlation Functions in the XXO Heisenberg Chain

Introduction to the Mathematics of the XY -Spin Chain

Application of Mean-Field Jordan Wigner Transformation to Antiferromagnet System

arxiv: v1 [quant-ph] 23 Jan 2019

Thermal transport in the Kitaev model

Entanglement Dynamics for the Quantum Disordered XY Chain

arxiv:cond-mat/ v2 [cond-mat.mes-hall] 29 Apr 2004

Magnets, 1D quantum system, and quantum Phase transitions

arxiv:cond-mat/ v2 [cond-mat.str-el] 17 Sep 2007

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 11 Sep 1997

Topological Phases in One Dimension

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 13 May 1998

arxiv:cond-mat/ v1 12 Dec 2006

The continuum limit of the integrable open XYZ spin-1/2 chain

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 26 Sep 2001

arxiv: v1 [cond-mat.mes-hall] 1 Nov 2011

Solving the Schrödinger equation for the Sherrington Kirkpatrick model in a transverse field

Dynamical Correlation Functions for Linear Spin Systems

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 3 Aug 2004

Quantum Spin Chains: Simple Models with Complex Dynamics

arxiv:cond-mat/ v1 6 Oct 1995

On the Random XY Spin Chain

arxiv: v2 [cond-mat.mes-hall] 19 Nov 2018

Quantum magnetism and the theory of strongly correlated electrons

Introduction to Recent Developments on p-band Physics in Optical Lattices

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 18 Mar 1998

Quantum Lattice Models & Introduction to Exact Diagonalization

Two Posts to Fill On School Board

arxiv:cond-mat/ v1 [cond-mat.other] 4 Aug 2004

Ferromagnetism in an orbitally degenerate Hubbard model

Constructing Landau Formalism for Topological Order: Spin Chains and Ladders

arxiv:cond-mat/ v2 6 Nov 1993

Antiferromagnetic Long-Range Order in the Anisotropic Quantum Spin Chain

Magnetic Field Effects on the Spin Dynamics of the Linear Spin-1/2 Heisenberg Antiferromagnet

Supplementary Figures.

Part III: Impurities in Luttinger liquids

Self-compensating incorporation of Mn in Ga 1 x Mn x As

Random phase approximation for the 1D anti-ferromagnetic Heisenberg model.

Novel Magnetic Properties of Carbon Nanotubes. Abstract

Physics 607 Exam 2. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Department of Electrical and Electronic Engineering, Ege University, Bornova 3500, Izmir, Turkey

Excitonic Phase Transition in Electronic Systems

arxiv:cond-mat/ Jan 2000

arxiv:cond-mat/ v1 6 Oct 1998

arxiv: v1 [cond-mat.mes-hall] 16 Nov 2007

Microcanonical scaling in small systems arxiv:cond-mat/ v1 [cond-mat.stat-mech] 3 Jun 2004

arxiv:cond-mat/ v1 18 Mar 2003

A Cu-Zn-Cu-Zn heterometallomacrocycle shows significant antiferromagnetic coupling between paramagnetic centres mediated by diamagnetic metal

arxiv:cond-mat/ v2 [cond-mat.str-el] 12 Dec 2003

Conductance of a quantum wire at low electron density

arxiv:cond-mat/ v2 [cond-mat.str-el] 25 Jun 2003

arxiv:cond-mat/ v1 22 Jul 2002

Precise electronic and valleytronic nanodevices based on strain engineering in graphene and carbon nanotubes

arxiv:cond-mat/ v1 [cond-mat.str-el] 11 Jul 2002

arxiv:cond-mat/ v1 [cond-mat.other] 5 Jun 2004

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 25 Apr 2000

Lecture #6 NMR in Hilbert Space

Effect of the Bloch Siegert Shift on the Frequency Responses of Rabi Oscillations in the Case of Nutation Resonance

Extended quantum critical phase in a magnetized spin- 1 2 antiferromagnetic chain. Abstract

Current flow paths in deformed graphene and carbon nanotubes

Schwinger-boson mean-field theory of the Heisenberg ferrimagnetic spin chain

Current flow paths in deformed graphene and carbon nanotubes

Effect of next-nearest-neighbour interaction on d x 2 y2-wave superconducting phase in 2D t-j model

Physics 127b: Statistical Mechanics. Landau Theory of Second Order Phase Transitions. Order Parameter

A Monte Carlo Study of the Order-Disorder Layering Transitions in the Blume-Capel Model

arxiv: v1 [cond-mat.str-el] 18 Jul 2007

arxiv: v2 [quant-ph] 12 Aug 2008

arxiv:cond-mat/ v1 7 Nov 1997

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 28 Dec 2004

Slow Spin Dynamics in Non-Fermi-Liquid UCu 5 x Pd x, x = 1.0 and 1.5 arxiv:cond-mat/ v1 [cond-mat.str-el] 5 Sep 2001

arxiv:cond-mat/ v2 [cond-mat.soft] 28 Mar 2007

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 14 Jan 2000

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 2 Apr 1998

Generalized Entropy Composition with Different q Indices: A Trial

Thermodynamics of quantum Heisenberg spin chains

Frustrated Magnets as Magnetic Refrigerants

H ψ = E ψ. Introduction to Exact Diagonalization. Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden

arxiv: v1 [cond-mat.mes-hall] 26 Sep 2013

Entanglement in Many-Body Fermion Systems

The Quantum Hall Effect

The Quantum Heisenberg Ferromagnet

Transition from the macrospin to chaotic behaviour by a spin-torque driven magnetization precession of a square nanoelement

Two-time correlation functions and the Lee-Yang zeros for an interacting Bose gas

arxiv:cond-mat/ v1 29 Dec 1996

arxiv:cond-mat/ v1 [cond-mat.str-el] 7 Dec 2006

A theoretical approach to controlling quantum spin dynamics

arxiv: v1 [cond-mat.other] 11 Sep 2008

One-dimensional magnetism of one-dimensional metallic chains in bulk MnB 4.

OWELL WEEKLY JOURNAL

Dynamics of interacting vortices on trapped Bose-Einstein condensates. Pedro J. Torres University of Granada

r/lt.i Ml s." ifcr ' W ATI II. The fnncrnl.icniccs of Mr*. John We mil uppn our tcpiiblicnn rcprc Died.

W i n t e r r e m e m b e r t h e W O O L L E N S. W rite to the M anageress RIDGE LAUNDRY, ST. H E LE N S. A uction Sale.

H A M M IG K S L IM IT E D, ' i. - I f

Transcription:

Spin- 1 transverse XX chain with a correlated disorder: dynamics of the transverse correlations Oleg Derzhko, and Taras Krokhmalskii Institute for Condensed Matter Physics, arxiv:cond-mat/0001013v1 3 Jan 000 1 Svientsitskii St., L viv 11, 90011, Ukraine Chair of Theoretical Physics, Ivan Franko State University of L viv, 1 Drahomanov St., L viv 5, 90005, Ukraine October 30, 018 Abstract We examine numerically the dynamics of zz correlations in the spin- 1 isotropic XY chain with random intersite coupling and on site transverse field that depends linearly on the neighbouring couplings (correlated off diagonal and diagonal disorder). We discuss the changes in the frequency profiles of zz dynamic structure factor caused by disorder. PACS numbers: 75.10.-b Keywords: Spin- 1 XY chain; Correlated disorder; Dynamic structure factor Postal address: Dr. Taras Krokhmalskii (corresponding author) Institute for Condensed Matter Physics 1 Svientsitskii St., L viv 11, 90011, Ukraine Tel: (03) 76 09 08 Fax: (03) 76 19 78 E-mail: krokhm@icmp.lviv.ua 1

Recently the properties of the spin- 1 transverse XX chain with correlated disorder have been discussed in some detail [1, ]. Such a model consists of N spins 1 on a circle governed by the Hamiltonian N N H = Ω n s z n + ( J n s x n s x n+1 +sy n n+1) sy. (1) n=1 n=1 It is assumed that the intersite couplings J n are independent random variables each with the probability distribution p(j n ) and the on site transverse field Ω n is determined by the surrounding couplings J n 1 and J n according to the formula Ω n = Ω+ a ( Jn 1 +J n J ) () where Ω and J are the mean values of Ω n and J n, respectively, and a is a real parameter. The models with correlated disorder should arise while describing materials with topological disorder. Although there are a few examples of real materials which are reasonably well described by the one dimensional spin- 1 isotropic XY model (see, for example, [3]) the introduced model (1), () to our best knowledge was not related to any particularly compound. However, it is still of much use for understanding the generic effects of disorder since in the case of the Lorentzian probability distribution p(j n ) and a 1 it is possible to find explicitly the exact expression for the random averaged density of states ρ(e) ((...)... dj np(j n )...(...)) and thus to examine rigorously the thermodynamic properties of a magnetic model with randomness [1]. The obtained up till now exact analytical results pertain only to thermodynamics. In the present paper we study the effects of correlated disorder on the dynamics of spin correlations examining for this purpose the zz dynamic structure factor S zz (κ,ω) = N dte ǫ t e iωt e iκn[ s z j(t)s z j+n s z j s z j+n ], ǫ +0. (3) n=1 The evaluation of the zz time dependent spin correlation functions s z j(t)s z j+n cannot be performed analytically but it can be done numerically [] (see also [5, 6, 7, 8]). In what follows we

consider the rectangle (but not Lorentzian) probability distribution p(j n ) = 1 Θ(J n J + ) [ 1 Θ(J n J ) ], () where controls the strength of disorder. From (), () one can find the probability distribution for the random variable Ω n p(ω n ) = 1 ( 1 1 ) a a Ω n Ω Θ(Ω n Ω+ a ) [ 1 Θ(Ω n Ω a ) ]. (5) To reveal the effects of correlated disorder besides the model defined by (1), (), () we consider the case of non correlated disorder for model (1) assuming that J n and Ω n are independent random variables with probability distributions () and (5), respectively. In our computations we considered chains of N = 00 spins with J = 1, Ω = 0.5 at low temperature β = 1000. We took = 0.5 for correlated disorder with a = ±1.01 and for non correlated disorder and performed the random averaging of the zz dynamic correlation functions over 3000 random realizations. We put in (3) j = 150 and computed correlation functions with n up to 100 for the times up to 15,...,160 (depending on the value of κ). We adopted ǫ = 0.001. To prove that our results for the taken values of parameters already pertain to thermodynamic systems we performed many additional calculations similar to that described in []. The main results of our study are shown in Fig. 1 where we displayed the frequency dependence of S zz (κ,ω) at κ =,, 3 disorder. for different types of Let us turn to a discussion of the obtained results. Dynamics of the transverse correlations in the non random case is well known[9, 10, 11]. In the Jordan Wigner picture the zero temperature zz dynamic properties of the spin- 1 transverse XX chain are conditioned by exciting of two fermionswithenergies Λ κ = Ω+J cosκ < 0andΛ κ = Ω+J cosκ > 0, forwhich ω = Λ κ +Λ κ and κ = κ κ. Consider, for example, S zz (,ω) (dashed curve in Fig. 1a). Evidently, 3 < κ < 1, Λ κ +Λ κ = sin 8 sin( κ 8) and hence the lower frequency at which Szz (,ω) 3

κω ω ω ω Figure 1: Frequency dependence of S zz (κ,ω) at κ = (a), κ = (b), κ = 3 (c) at low temperature β = 1000 for model (1) with J = 1, Ω = 0.5, = 0.5; 1 correlated disorder with a = 1.01, correlated disorder with a = 1.01, 3 non correlated disorder. Dashed curves correspond to the non random case. appears is equal to 0.66 (two fermions with the energies Λ 1 0.66 and Λ 3 = 0, respectively), the upper frequency after which S zz (,ω) disappears is equal to 0.759 (two fermionswiththeenergiesλ 3 = 0andΛ 7 1 0.759, respectively). We may relate the changes in the transverse dynamic structure factor due to randomness to the changes in the random averaged density of states for different types of disorder (Fig. ). Indeed, the pair of fermions determining the lower frequency roughly speaking does exist for a = 1.01 and does not exist for a = 1.01 and for non correlated disorder, whereas the density of states for the energies corresponding to the pair of fermions determining the upper frequency is diminished equally because of disorder in all three cases. Consider further S zz (,ω). Repeating the above arguments one concludes that two fermions with the energies Λ 6 0.366 and Λ 3 = 0 determine the lower frequency 0.366, starting from the frequency 1.366 two pairs of fermions contribute to the transverse dynamic properties (e.g., at that frequency one finds two fermions with the energies Λ 6 0.366 and Λ 3 = 1 and another pair of fermions with the energies Λ 3 = 0 and Λ 5 6 1.366), and two fermions with the energies Λ 0.07 and Λ 3 1.07 determine the upper frequency 1.1. Analysing ρ(e) in Fig. one observes, for example, that ρ(e) at the energies related to the lower frequency is almost not diminished for the correlated disorder with a = 1.01, whereas ρ(e) is diminished

ρ -1 0 1-1 0 1-1 0 1 Figure : ρ(e) evaluated numerically (see []) for model (1) with J = 1, Ω = 0.5, = 0.5; a correlated disorder with a = 1.01, b correlated disorder with a = 1.01, c non correlated disorder. Dashed curves correspond to the non random case. essentially for a = 1.01 and non correlated disorder. This is in agreement with the changes in S zz (,ω) seen in Fig. 1b. Consider finally S zz ( 3,ω). Similarly to the previous cases one finds that the lower frequency 0.1 is conditioned by two fermions with the energies Λ 3 = 0 and Λ 5 1 0.1, starting from the frequency 1.66 S zz ( 3,ω) is determined by two pairs of fermions (e.g., at that frequency one finds two fermions with the energies Λ 1 0.66 and Λ 3 = 1 and another pair of fermions with the energies Λ 3 = 0 and Λ 13 1 1.66), and the upper frequency 1.88 is conditioned by two fermions with the energies Λ 8 0. and Λ 7 8 1.. From Fig. one notes that in the case of lower frequency the disorder decreases ρ(e) at the corresponding energies for non correlated disorder and the correlated one with a = 1.01 stronger than for the correlated disorder with a = 1.01, whereas in the case of the upper frequency ρ(e) at the corresponding energies is diminished more for non correlated disorder than for correlated disorder that is consistent with frequency profiles seen in Fig. 1c. To summarize, we examined the low temperature dynamics of the transverse spin correlations in the spin- 1 transverse XX chain with correlated disorder computing the transverse dynamic structure factor S zz (κ,ω). We found that within certain frequency regions the introducing of disorder may yield almost no changes in the value of S zz (κ,ω) (e.g., S zz (,ω) at ω 0.5 for a = 1.01 or S zz (,ω) at ω 1 for non correlated disorder). We observed that the changes in 5

S zz (κ,ω) caused by disorder may be explained by the changes in the random averaged density of states. Evidently, because of the Jordan Wigner mapping the obtained results may be useful for understanding the conductivity in a chain of tight binding fermions with random correlated hopping and on site energy. The authors are grateful to Prof. M. Shovgenyuk for providing a possibility to perform numerical calculations. They are indebted to the organizers of the International Conference LOCAL- IZATION 1999 (Hamburg, 1999) for the financial support for attending the conference. References [1] O. Derzhko and J. Richter, Phys. Rev. B 55 (1997) 198; ibid. 59 (1999) 100 [] L. L. Gonçalves and A. P. Vieira, J. Magn. Magn. Mater. 177-181 (1998) 79; O. Derzhko and T. Krokhmalskii, J. Phys. Stud. (L viv) (1998) 63 [3] M. D Iorio, R. L. Armstrong, and D. R. Taylor, Phys. Rev. B 7 (1983) 166; M. D Iorio, U. Glaus, and E. Stoll, Solid State Commun. 7 (1983) 313 [] O. Derzhko and T. Krokhmalskii, Phys. Rev. B 56 (1997) 11659; Phys. Status Solidi B 08 (1998) 1 [5] G. A. Farias and L. L. Gonçalves, Phys. Status Solidi B 139 (1987) 315 [6] J. Stolze, A. Nöppert and G. Müller, Phys. Rev. B 5 (1995) 319 [7] H. Asakawa, Physica A 33 (1996) 39 [8] A. P. Young and H. Rieger, Phys. Rev. B 53 (1996) 886; A. P. Young, ibid. 56 (1997) 11691 [9] Th. Niemeijer, Physica 36 (1967) 377 6

[10] G. Müller, H. Thomas, H. Beck, and J. Bonner, Phys. Rev. B (1981) 19; G. Müller, H. Thomas, M. W. Puga, and H. Beck, J. Phys. C 1 (1981) 3399; J. H. Taylor and G. Müller, Physica A 130 (1985) 1 [11] O. Derzhko and T. Krokhmalskii, cond-mat/981101 7