Supporting Information for First thia-diels Alder reactions of thiochalcones with 1,4- quinones

Similar documents
Diradical reaction mechanisms in [3 + 2]- cycloadditions of hetaryl thioketones with alkyl- or trimethylsilyl-substituted diazomethanes

Supporting Information

Electronic Supplementary Information for: Gram-scale Synthesis of a Bench-Stable 5,5 -Unsubstituted Terpyrrole

Supporting Information

Supplementary File. Modification of Boc-protected CAN508 via acylation and Suzuki-Miyaura Coupling

Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin

APPENDIX E. Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

Oxidation of cobalt(ii) bispidine complexes with dioxygen

Sodium 3,5-dinitrobenzoate

Supporting information. (+)- and ( )-Ecarlottones, Uncommon Chalconoids. from Fissistigma latifolium with Proapoptotic

Supporting Information

Supporting Information. Molecular Iodine-Catalyzed Aerobic α,β-diamination of Cyclohexanones with 2- Aminopyrimidine and 2-Aminopyridines

Manganese-Calcium Clusters Supported by Calixarenes

White Phosphorus is Air-Stable Within a Self-Assembled Tetrahedral Capsule

Stereoselective Synthesis of Ezetimibe via Cross-Metathesis of Homoallylalcohols and α- Methylidene-β-Lactams

Supporting Information

Total Synthesis of Gonytolides C and G, Lachnone C, and. Formal Synthesis of Blennolide C and Diversonol

Reactivity of Diiron Imido Complexes

,

Redetermination of Crystal Structure of Bis(2,4-pentanedionato)copper(II)

One-dimensional organization of free radicals via halogen bonding. Supporting information

1,4-Dihydropyridyl Complexes of Magnesium: Synthesis by Pyridine. Insertion into the Magnesium-Silicon Bond of Triphenylsilyls and

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra*

Supporting Information. Chiral phosphonite, phosphite and phosphoramidite η 6 -areneruthenium(ii)

Supporting Information

Supplementary Information. Single Crystal X-Ray Diffraction

Development of a New Synthesis for the Large-Scale Preparation of Triple Reuptake Inhibitor (-)-GSK

organic papers 2-[(Dimethylamino)(phenyl)methyl]benzoic acid

J. Med. Chem., 1996, 39(14), , DOI: /jm960098l

Supplementary Information: Selective Catalytic Oxidation of Sugar Alcohols to Lactic acid

metal-organic compounds

2-Methoxy-1-methyl-4-nitro-1H-imidazole

metal-organic compounds

Supporting Information

= (8) V = (8) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

organic papers Acetone (2,6-dichlorobenzoyl)hydrazone: chains of p-stacked hydrogen-bonded dimers Comment Experimental

Methyl acetoacetate at 150 K. The crystal structure of methyl acetoacetate, C 5 H 8 O 3, at 150 K contains discrete molecules.

= (1) V = (12) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Orthorhombic, Pbca a = (3) Å b = (15) Å c = (4) Å V = (9) Å 3. Data collection. Refinement

Reversible dioxygen binding on asymmetric dinuclear rhodium centres

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2013 ISSN SUPPORTING INFORMATION

metal-organic compounds

Supplementary Information

Photoactive and physical properties of an azobenzene-containing coordination framework

Supplementary Information

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex.

International Journal of Innovative Research in Science, Engineering and Technology. (An ISO 3297: 2007 Certified Organization)

metal-organic compounds

Decomposition of Ruthenium Olefin Metathesis. Catalysts

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Supporting Information

metal-organic compounds

addenda and errata [N,N 0 -Bis(4-bromobenzylidene)-2,2-dimethylpropane-j Corrigendum Reza Kia, a Hoong-Kun Fun a * and Hadi Kargar b

organic papers Malonamide: an orthorhombic polymorph Comment

Synthesis of Vinyl Germylenes

(+-)-3-Carboxy-2-(imidazol-3-ium-1-yl)- propanoate

Sigma Bond Metathesis with Pentamethylcyclopentadienyl Ligands in Sterically. Thomas J. Mueller, Joseph W. Ziller, and William J.

Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 155 parameters 10 restraints

Supporting Information

Experimental. Crystal data. C 18 H 22 N 4 O 6 M r = Monoclinic, P2=n a = (5) Å b = (4) Å c = (5) Å = 104.

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

metal-organic compounds

SUPPLEMENTARY INFORMATION

Electronic Supplementary Information

Supplementary Information

organic papers 2-Iodo-4-nitro-N-(trifluoroacetyl)aniline: sheets built from iodo nitro and nitro nitro interactions

Supporting Information

Supporting Information

Ethylene Trimerization Catalysts Based on Chromium Complexes with a. Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or

A Facile and General Approach to 3-((Trifluoromethyl)thio)- 4H-chromen-4-one

b = (9) Å c = (7) Å = (1) V = (16) Å 3 Z =4 Data collection Refinement

Supporting Information

b = (13) Å c = (13) Å = (2) V = (19) Å 3 Z =2 Data collection Refinement

Formation and Properties of Cyclo[6]pyrrole and Cyclo[7]pyrrole.

Supporting Information

Rapid Cascade Synthesis of Poly-Heterocyclic Architectures from Indigo

Electronic Supplementary Information (ESI)

organic papers 2,6-Diamino-3,5-dinitro-1,4-pyrazine 1-oxide Comment

Electronic Supplementary Information (ESI)

Supporting Information. Table of Contents

Electronic Supplementary Information. Iridium(III) phosphors with bis(diphenylphorothioyl)amide ligand for

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 92 parameters

Iron Complexes of a Bidentate Picolyl NHC Ligand: Synthesis, Structure and Reactivity

metal-organic compounds

Electronic Supplementary Information

Phthalocyanine-Based Single-Component

= (3) V = (4) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = 1.

ion, as obtained from a search of the Cambridge Structural database (CSD), December 2013.

From Double-Shelled Grids to Supramolecular Frameworks

oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex

CIF access. Redetermination of biphenylene at 130K. R. Boese, D. Bläser and R. Latz

Organocatalytic Doubly Annulative Approach to 3,4-Dihydrocoumarins Bearing a Fused Pyrrolidine Scaffold. Dorota Kowalczyk, and Łukasz Albrecht*

Spontaneous racemic resolution towards control of molecular recognition nature

Supporting information. for. isatins and α-amino acids

Supporting Information

metal-organic compounds

metal-organic compounds

Hassan Osseili, Debabrata Mukherjee, Klaus Beckerle, Thomas P. Spaniol, and Jun Okuda*

Transcription:

upporting Information for First thia-diels Alder reactions of thiochalcones with 1,4- quinones Grzegorz Mlostoń *1, Katarzyna Urbaniak 1, Paweł Urbaniak 2, Anna Marko 1, Anthony Linden 3, and Heinz Heimgartner 3 Address: 1 Department of rganic and Applied Chemistry, University of Łódź, Tamka 12, PL 91-403 Łódź, Poland, 2 Department of Inorganic and Analytical Chemistry, University of Łódź, Tamka 12, PL 91-403 Łódź, Poland and 3 Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH- 8057 Zurich, witzerland Email: Grzegorz Mlostoń - grzegorz.mloston@chemia.uni.lodz.pl *Corresponding author Experimental data for selected compounds 4, details of the crystal structure determination, and copies of 1 H and 13 C NMR spectra for all products. 1

Experimental data for compounds 4d j, 4l n, details of the crystal structure determination, and the original 1 H and 13 C NMR spectra for all described compounds 2,4-Bis(thiophen-2-yl)-4H-benzo[g]thiochromene-5,10-dione (4d): Yield: 370 mg (94%). Red-orange crystals; mp = 158 C (dec.); 1 H NMR: 5.76 (d, J H,H = 6.7 Hz, thiophen-2-yl-ch); 6.48 (d, J H,H = 6.5 Hz, C=CH); 6.94 (dd, J H,H = 5.0 Hz, J H,H = 3.5 Hz, 1CH arom ); 7.05 (d, J H,H = 3.5 Hz, 1CH arom ); 7.09 (dd, J H,H = 5.2 Hz, J H,H = 3.7 Hz, 1CH arom ); 7.19 (dd, J H,H = 5.0 Hz, J H,H = 1.1 Hz, 1CH arom ); 7.34 (dd, J H,H = 5.0 Hz, J H,H = 1.1 Hz, 1CH arom ); 7.39 (dd, J H,H = 3.7 Hz, J H,H = 1.1 Hz, 1CH arom ); 7.72 7.79 (m, 2CH arom ); 8.14 (dd, J H,H = 7.5 Hz, J H,H = 1.1 Hz, 1CH arom ); 8.18 (dd, J H,H = 7.4 Hz, J H,H = 1.2 Hz, 1CH arom ) ppm; 13 C NMR: 34.9 (thiophen-2-yl-ch); 118.8, 125.4, 125.7, 126.1, 126.7, 127.1, 127.2, 127.7, 133.5, 134.4 (10CH arom, C=CH); 127.3, 131.8 132.0, 134.4, 135.8, 139.9, 143.6 (6C arom, C=CH); 180.4, 181.2 (2C=) ppm; IR: 3069w, 3009w, 1652vs (2C=), 1611m, 1589s, 1567m, 1424m, 1338m, 1327m, 1281vs, 1228m, 1148m, 1108m, 1047m, 854m, 820s, 815m, 708s cm 1 ; UV-VI (CH 2 Cl 2 ): λ max /nm (lg ε) 252 (4.48); 459 (3.29); anal. calcd for C 21 H 12 2 3 (392.51): C, 64.26; H, 3.08;, 24.51; found: C, 64.40; H, 3.19;, 24.53. 2,4-Diphenyl-4H-naphtho[2,3-g]thiochromene-5,12-dione (4e): Yield: 415 mg (96%). Red-orange crystals; mp = 222 C (dec.); 1 H NMR: 5.55 (d, J H,H = 6.4 Hz, Ph-CH); 6.38 (d, J H,H = 6.4 Hz, C=CH); 7.22 7.24 (m, 1CH arom ); 7.33 7.34 (m, 2CH arom ); 7.41 7.43 (m, 3CH arom ); 7.55 7.57 (m, 2CH arom ); 7.63 7.65 (m, 2CH arom ); 7.68 7.70 (m, 2CH arom ); 8.08 8.10 (m, 2CH arom ); 8.63 (s, 1CH arom ); 8.68 (s, 1CH arom ) ppm; 13 C NMR: 41.1 (Ph-CH); 121.1, 126.7, 127.5, 128.4, 128.8, 128.9, 129.0, 129.2, 129.3, 129.5, 129.7, 130.1, 130.2 (16CH arom, C=CH); 128.1, 128,4, 132.2, 134.6, 135.2, 137.4, 138.0, 142.3, 146.0 (8C arom, C=CH); 180.4, 181.0 (2C=) ppm; IR: 3085w, 3063w, 1660vs (2C=), 1615s, 1582s, 1491m, 1445m, 1401m, 1355m, 1283vs, 1255m, 1197m, 1074w, 854m, 754s, 695s cm 1 ; UV-VI (CH 2 Cl 2 ): λ max /nm (lg ε) 304 (4.45), 420 (3.81); anal. calcd for C 29 H 18 2 (430.52): C, 80.91; H, 4.21;, 7.45; found: C, 80.96; H, 4.32;, 7.23. 2

2-Phenyl-4-(thiophen-2-yl)-4H-naphto[2,3-g]thiochromene-5,12-dione (4f): Yield: 390 mg (89%). Red-orange crystals; mp = 215 C (dec.); 1 H NMR: 5.88 (d, J H,H = 6.6 Hz, thiophen-2-yl-ch); 6.41 (d, J H,H = 6.6 Hz, C=CH); 6.95 6.97 (m, 1CH arom ); 7.10 (d, J H,H = 3.4 Hz, 1CH arom ); 7.20 (d, J H,H = 5.1 Hz, 1CH arom ); 7.43 7.45 (m, 3CH arom ); 7.66 7.70 (m, 4CH arom ); 8.00 8.01 (m, 2CH arom ); 8.66 (s, 1CH arom ); 8.69 (s, 1CH arom ) ppm. 13 C NMR: 35.4 (thiophen-2-yl-ch); 120.0, 125.3, 125.6, 127.0, 127.1, 128.8, 129.2, 129.3, 129.5, 129.6, 129.8, 130.1, 130.2 (14CH arom, C=CH); 128.0, 128.3, 133.7, 134.6, 135.2, 136.9, 137.2, 144.2, 145.7 (8C arom, C=CH); 180.2, 181.3 (2C=) ppm. IR: 3060w, 3028w, 1659vs (2C=), 1615s, 1582s, 1492m, 1459s, 1403m, 1351m, 1283vs, 1255m, 1197m, 1103w, 1078w, 913m, 853s, 762s, 747s, 712s, 695m cm 1 ; UV-VI (CH 2 Cl 2 ): λ max /nm (lg ε) 275 (4.33), 304 (4.46), 421 (3.48); anal. calcd for C 27 H 16 2 2 (436.54): C, 74.29; H, 3.69;, 14.69; found: C, 74.06; H, 3.90;, 14.55. 4-Phenyl-2-(thiophen-2-yl)-4H-naphtho[2,3-g]thiochromene-5,12-dione (4g): Yield: 385 mg (88%). Red-orange crystals; mp = 226 C (dec.); 1 H NMR: 5.53 (d, J H,H = 6.5 Hz, Ph-CH); 6.45 (d, J H,H = 6.5 Hz, C=CH); 7.08 7.11 (m, 2CH arom ); 7.23 7.24 (m, 1CH arom ); 7.30 7.34 (m, 2CH arom ); 7.38 (dd, J H,H = 3.7 Hz, J H,H = 1.0 Hz, 1CH arom ); 7.53 7.55 (m, 2CH arom ); 7.68 7.71 (m, 2CH arom ); 8.08 8.10 (m, 2CH arom ); 8.64 (s, 1CH arom ); 8.67 (s, 1CH arom ) ppm. 13 C NMR: 40.7 (Ph-CH); 120.0, 125.3, 125.7, 127.6, 127.7, 128.5, 128.9, 129.2, 129.5, 129.6, 129.8, 130.1, 130.2 (14CH arom, C=CH); 126.0, 128.0, 128.3, 134.6, 135.2, 138.5, 140.3, 141.8, 145.5 (8C arom, C=CH); 180.3, 181.0 (2C=) ppm. IR: 3069w, 3018w, 1661vs and 1644s (2C=), 1616s, 1587s, 1581s, 1459s, 1404m, 1360m, 1288vs, 1255m, 1232m, 1223m, 1199m, 1042m, 872m, 846m, 754s, 716s, 695m cm 1 ; UV-VI (CH 2 Cl 2 ): λ max /nm (lg ε) 301 (4.68), 412 (3.82); anal. calcd for C 27 H 16 2 2 (436.54): C, 74.29; H, 3.69;, 14.69; found: C, 74.26; H, 3.71;, 14.52. 2,4-Bis(thiophen-2-yl)-4H-naphtho[2,3-g]thiochromene-5,12-dione (4h): Yield: 420 mg (95%). Red-orange crystals; mp = 205 C (dec.); 1 H NMR: 5.84 (d, J H,H = 6.7 Hz, thiophen-2-yl-ch); 6.51 (d, J H,H = 6.7 Hz, C=CH); 6.95 (dd, J H,H = 5.1 Hz, J H,H = 3.7 Hz, 1CH arom ); 7.08 7.12 (m, 2CH arom ); 7.19 (dd, J H,H = 5.1 Hz, J H,H = 1.0 Hz, 1CH arom ); 7.35 (dd, J H,H = 5.1 Hz, J H,H = 1.0 Hz, 1CH arom ); 7.42 (dd, J H,H = 3.7 Hz, J H,H 3

= 1.0 Hz, 1CH arom ); 7.70 7.73 (m, 2CH arom ); 8.06 8.08 (m, 2CH arom ); 8.68 (s, 1CH arom ); 8.70 (s, 1CH arom ) ppm. 13 C NMR: 35.1 (thiophen-2-yl-ch); 118.9, 125.4, 125.7, 125.8, 126.1, 127.1, 127.8, 129.3, 129.6, 129.7, 129.8, 130.2, 130.3 (12CH arom, C=CH); 127.4, 128.0, 128.2, 134.6, 135.2, 137.5, 140.0, 143.6, 145.2 (8C arom, C=CH); 180.3, 180.9 (2C=) ppm. IR: 3063w, 3028w, 1662vs and 1645s (2C=), 1615s, 1583s, 1459s, 1403m, 1348m, 1286vs, 1255m, 1198m, 848m, 824m, 808m, 760s, 749m, 690m cm 1 ; UV-VI (CH 2 Cl 2 ): λ max /nm (lg ε) 302 (4.83), 420 (3.89), 773 (2.29); anal. calcd for C 25 H 14 2 3 (442.58): C, 67.85; H, 3.19;, 21.74; found: C, 67.55; H, 3.29;, 21.68. 11-Chloro-6-hydroxy-2,4-diphenyl-4H-naphtho[2,3-g]thiochromene-5,12-dione (4i): Yield: 310 mg (65%). Dark red crystals; mp = 164 C (dec.); 1 H NMR: 5.47 (d, J H,H = 6.4 Hz, Ph-CH); 6.34 (d, J H,H = 6.4 Hz, C=CH); 7.24 7.25 (m, 2CH arom ); 7.33 7.36 (m, 2CH arom ); 7.40 7.44 (m, 2CH arom ); 7.54 7.56 (m, 2CH arom ); 7.60 7.62 (m, 2CH arom ); 7.73 7.75 (m, 1CH arom ); 7.82 7.84 (m, 1CH arom ); 8.15 (d, J H,H = 8.3 Hz, 1CH arom ); 8.60 (d, J H,H = 8.3 Hz, 1CH arom ); 14.94 (s, H) ppm. 13 C NMR: 40.6 (Ph- CH); 121.0, 124.9, 126.7, 127.5, 127.6, 128.3, 128.8, 129.0, 129.1, 130.0, 132.0 (14CH arom, C=CH); 108.8, 128.4, 128.6, 132.1, 132.3, 134.8, 135.7, 137.3, 142.2, 148.4, 162.4 (10C arom, C=CH); 179.2, 184.4 (2C=) ppm. IR: 3056w, 3025w, 1665vs and 1640s (2C=), 1599s, 1576vs, 1490s, 1444s, 1396s, 1359s, 1335s, 1241vs, 1193m, 1169m, 898s, 871s, 857s, 758s, 743s, 698s cm 1 ; UV-VI (CH 2 Cl 2 ): λ max /nm (lg ε) 245 (4.81), 280 (4.22), 313 (4.23), 484 (3.98); anal. calcd for C 29 H 17 Cl 3 (480.96): C, 72.42; H, 3.56;, 6.67; found: C, 72.19; H, 3.76;, 6.58. 11-Chloro-6-hydroxy-2-phenyl-4-(thiophen-2-yl)-4H-naphtho[2,3- g]thiochromene-5,12-dione (4j): Yield: 290 mg (60%). Dark red crystals; mp = 162 C (dec.); 1 H NMR: 5.60 (d, J H,H = 6.5 Hz, thiophen-2-yl-ch); 5.95 (d, J H,H = 6.5 Hz, C=CH); 6.71 (dd, J H,H = 5.1 Hz, J H,H = 3.7 Hz, 1CH arom ); 6.81 (dd, J H,H = 3.7 Hz, J H,H = 1.0 Hz, 1CH arom ); 7.07 7.11 (m, 4CH arom ); 7.16 7.18 (m, 2CH arom ); 7.44 7.46 (m, 2CH arom ); 8.32 (d, J H,H = 8.3 Hz, 1CH arom ); 8.41 (d, J H,H = 8.3 Hz, 1CH arom ); 14.94 (s, H) ppm. 13 C NMR: 34.8 (thiophen-2-yl-ch); 119.8, 124.5, 125.2, 125.8, 126.8, 127.0, 127.1, 128.7, 128.9, 129.2 (12CH arom, C=CH); 109.1, 122.8, 128.4, 128.5, 133.6, 134.1, 134.7, 137.3, 144.4, 147.7, 162.1 (10C arom, C=CH); 178.1, 184.1 4

(2C=) ppm. IR: 3050w, 3025w, 1653vs (2C=), 1622m, 1597vs, 1571vs, 1490s, 1427s, 1394s, 1362s, 1332s, 1243vs, 1225s, 1192m, 1112m, 957m, 902s, 871m, 859m, 761s, 709s, 692s cm 1 ; UV-VI (CH 2 Cl 2 ): λ max /nm (lg ε) 246 (4.87), 312 (4.28), 492 (4.07), 981 (2.30); anal. calcd for C 27 H 15 Cl 3 2 (486.99): C, 66.59; H, 3.10;, 13.17; found C, 66.62; H, 3.13;, 13.10. 11-Chloro-6-hydroxy-2,4-bis(thiophen-2-yl)-4H-naphtho[2,3-g]thiochromene- 5,12-dione (4l): Yield: 285 mg (58%). Dark red crystals; mp = 168 C (dec.); 1 H NMR: 5.45 (d, J H,H = 6.5 Hz, Ph-CH); 6.43 (d, J H,H = 6.5 Hz, C=CH); 7.08 (dd, J H,H = 5.0 Hz, J H,H = 3.7 Hz, 1CH arom ); 7.23 7.38 (m, 3CH arom ); 7.52 7.53 (m, 2CH arom ); 7.67 7.70 (m, 2CH arom ); 7.86 7.88 (m, 2CH arom ); 8.55 (d, J H,H = 8.2 Hz, 1CH arom ); 8.64 (d, J H,H = 8.2 Hz, 1CH arom ); 14.93 (s, H) ppm. 13 C NMR: 40.3 (Ph-CH); 119.9, 124.5, 125.2, 125.4, 127.0, 127.5, 127.6, 128.6, 128.9, 129.2 131.4 (12CH arom, C=CH); 108.9, 122.7, 126.2, 127.2, 128.5, 134.7, 135.6, 140.4, 142.1, 147.5, 162.1 (10C arom, C=CH); 178.0, 184.2 (2C=) ppm. IR: 3088w, 2924s, 2854s, 1655vs, (2C=), 1575vs, 1489s, 1425s, 1396s, 1380s, 1357s, 1336m, 1241s, 1168m, 902s, 902s, 863m, 809m, 765s, 742s, 699vs, 680m cm 1 ; UV-VI (CH 2 Cl 2 ): λ max /nm (lg ε) 245 (4.79), 294 (4.44), 490 (4.05); anal. calcd for C 25 H 13 Cl 3 3 (493.01): C 60.90, H 2.66, 19.51; found: C 60.79, H 2.79, 19.77. 2,4-Diphenyl-4H-thiochromene-5,8-dione (4m): Yield: 230 mg (70%). Maroon colored, viscous oil; 1 H NMR: 5.37 (d, J H,H = 7.0 Hz, Ph-CH); 6.44 (d, J H,H = 7.0 Hz, C=CH); 6.61, 6.72 (AB-system, J H,H = 8.5 Hz, 2CH arom ); 7.23 7.24 (m, 1CH arom ); 7.29 7.46 (m, 7CH arom ); 7.58 7.60 (m, 2CH arom ) ppm. 13 C NMR: 40.5 (Ph-CH); 120.9, 126.7, 127.6, 128.3, 128.8, 128.9, 129.1, 135.6, 137.5 (12CH arom, C=CH); 131.9, 134.2, 136.3, 142.0, 142.1 (4C arom, C=CH); 189.9, 183.4 (2C=) ppm. IR: 3053m, 3025m, 2923m, 1645vs (C=), 1569s, 1490s, 1444m, 1289s, 1119m, 1074m, 1033m, 929m, 903m, 756s, 695s cm 1 ; UV-VI (CH 2 Cl 2 ): λ max /nm (lg ε) 233 (4.37), 359 (3.43), 499 (2.99); EI-M (for C 21 H 14 2 ): 352 (100, [M 1+Na] + ), 353 (27, [M+Na] + ). 2-Phenyl-4-(thiophen-2-yl)-4H-thiochromene-5,8-dione (4n): Yield: 215 mg (64%). Maroon colored, viscous oil; 1 H NMR: 5.56 (d, J H,H = 6.7 Hz, thiophen-2-yl-ch); 5

6.34 (d, J H,H = 6.7 Hz, C=CH); 6.82, 6.85 (AB-system, J H,H = 10.0 Hz, 2CH arom ); 6.99 (dd, J H,H = 5.0 Hz, J H,H = 3.5 Hz, 1CH arom ); 7.00 7.02 (m, 1CH arom ); 7.21 (dd, J H,H = 5.0 Hz, J H,H = 1.1 Hz, 1CH arom ); 7.42 7.44 (m, 3CH arom ); 7.60 7.62 (m, 2CH arom ) ppm. 13 C NMR: 34.8 (thiophen-2-yl-ch); 119.9, 125.4, 125.5, 127.0, 127.2, 128.9, 129.3, 135.8, 137.3 (10CH arom, C=CH); 133.1, 133.4, 137.5, 41.7, 144.2 (4C arom, C=CH); 182.7, 183.3 (2C=) ppm. IR: 3098w, 3073w, 3025m, 1666s (C=), 1645vs (C=), 1574s, 1489s, 1442m, 1366m, 1292s, 1220m, 1119m, 1030m, 926m, 903m, 830s, 761s, 691s cm 1 ; UV-VI (CH 2 Cl 2 ): λ max /nm (lg ε) 237 (4.46), 355 (3.45), 405 (3.37), 486 (3.18); EI-M (for C 19 H 12 2 2 ): 335 (100, [M 1] + ); 336 (25, [M] + ). X-ray crystallography Crystal data for 4k: C 27 H 15 Cl 3 2, M r = 486.96, red, prism, 0.06 0.15 0.27 mm, T = 160(1) K, triclinic, P 1, Z = 2, a = 7.3545(3), b = 9.6157(3), c = 16.2246(6) Å, = 80.036(3), = 84.669(3), = 68.352(3), V = 1049.84(7) Å 3, D x = 1.540 g cm 3, μ(mokα) = 0.411 mm 1, ω scans, 2 (max) = 60.7, transmission factors (min; max) = 0.520; 1.000, 25895 reflections measured, 5808 symmetry independent reflections, 5095 reflections with I > 2σ(I), 5808 reflections used in refinement, 312 parameters refined, 8 restraints, R(F) [I > 2σ(I) reflections] = 0.0332, wr(f 2 ) (all data) = 0.0923, w = [σ 2 (F o 2 ) + (0.0457P) 2 + 0.3507P] 1 where P = (Fo 2 + 2Fc 2 )/3, goodness of fit = 1.057, final Δ max /σ = 0.001, Δρ(max; min) = 0.41; 0.25 e Å 3. Crystals from petroleum ether/ch 2 Cl 2. All measurements were made on a Rigaku xford Diffraction upernova areadetector diffractometer [1], using MoKα radiation (λ = 0.71073 Å) from a microfocus X-ray source and an xford Instruments Cryojet XL cooler. Data reduction was performed with CrysAlisPro [1]. The intensities were corrected for Lorentz and polarization effects, and a numerical absorption correction [2] was applied. Equivalent reflections were merged. The data collection and refinement parameters are given above, and views of the two conformations of molecule 4k are shown in Figure 1 and in Figure 1. The structure was solved by dual space methods using HELXT-2018 [3], which revealed the positions of all non-h-atoms. The -atom of the thiophene ring is disordered as a result of slight but opposite directions of envelope puckering of the ring. Two positions were defined for the -atom and the 6

site occupation factor of the major conformation refined to 0.78(2). imilarity restraints were applied to the chemically equivalent C bond lengths, while the atomic displacement parameters of these two -atoms were restraint to be similar. The hydroxy H-atom was placed in the position indicated by a difference electron density map and its position was allowed to refine together with an isotropic displacement parameter. All remaining H-atoms were placed in geometrically calculated positions and refined by using a riding model where each H-atom was assigned a fixed isotropic displacement parameter with a value equal to 1.2U eq of its parent C-atom. The refinement of the structure was carried out on F 2 by using fullmatrix least-squares procedures, which minimized the function w(f 2 o F c2 ) 2. The weighting scheme was based on counting statistics and included a factor to downweight the intense reflections. A correction for secondary extinction was not applied. Neutral atom scattering factors for non-h atoms were taken from Maslen, Fox and 'Keefe [4], and the scattering factors for H-atoms were taken from tewart, Davidson and impson [5]. Anomalous dispersion effects were included in F c [6]; the values for f' and f" were those of Creagh and McAuley [7]. The values of the mass attenuation coefficients are those of Creagh and Hubbel [8]. The HELXL-2018 program [9] was used for all calculations. CCDC-1838975 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre, via www.ccdc.cam.ac.uk/structures. 7

Figure 1: RTEP plot [11] of the molecular structure of 4k showing the minor conformation of the disordered thiophene ring (50% probability ellipsoids; arbitrary numbering of the atoms). References [1] CrysAlisPro, Version 1.171.39.46, Rigaku xford Diffraction, Chalgrove, xfordshire, England, 2018. [2] Coppens, P.; Leiserowitz, L.; Rabinovich, D. Acta Crystallogr. 1965, 18, 1035 1038. [3] heldrick, G. M. Acta Crystallogr. ect. A, 2015, 71, 3 8. [4] Maslen, E. N.; Fox, A. G.; 'Keefe, M. A. in 'International Tables for Crystallography', Ed. Wilson, A. J. C. Kluwer Academic Publishers, Dordrecht, 1992, Vol. C, Table 6.1.1.1, pp. 477 486. [5] tewart, R. F.; Davidson, E. R.; impson, W. T. J. Chem. Phys. 1965, 42, 3175 3187. doi: 10.1063/1.1696397. 8

[6] Ibers, J. A.; Hamilton, W. C. Acta Crystallogr. 1964, 17, 781 782. doi: 10.1107/0365110X64002067. [7] Creagh, D. C.; McAuley, W. J. in 'International Tables for Crystallography', Ed. Wilson, A. J. C. Kluwer Academic Publishers, Dordrecht, 1992, Vol. C, Table 4.2.6.8, pp. 219 222. [8] Creagh, D. C.; Hubbell, J. H. in 'International Tables for Crystallography', Ed. Wilson, A. J. C. Kluwer Academic Publishers, Dordrecht, 1992, Vol. C, Table 4.2.4.3, pp. 200 206. [9] heldrick, G. M. Acta Crystallogr. ect. C, 2015, 71, 3 8. doi: 10.1107/2053229614024218. [11] Johnson, C. K. RTEP II, Report RNL-5138, ak Ridge National Laboratory, ak Ridge, Tennessee, 1976. 9

181.44 180.76 144.45 142.30 137.35 136.35 134.32 133.37 132.16 132.05 131.72 129.06 128.95 128.79 128.52 128.38 127.53 127.00 126.75 121.04 126.58 40.91 2.08 1.20 2.36 3.16 2.14 2.02 2.06 1.06 1.00 7.73 7.73 7.72 7.72 7.71 7.71 7.63 7.62 7.61 7.61 7.54 7.53 7.43 7.41 7.35 7.34 7.32 7.29 7.27 7.25 6.35 6.34 5.48 5.47 Copies of the 1 H, 13 C NMR and UV vis spectra for compounds 4a m 4a 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm Figure 2: The 1 H NMR spectrum for 4a 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Figure 3: The 13 C NMR spectrum for 4a 10

2.00 2.09 2.10 3.21 1.04 1.00 0.98 1.03 1.00 7.76 7.76 7.74 7.74 7.73 7.73 7.72 7.66 7.65 7.65 7.64 7.64 7.46 7.45 7.44 7.44 7.43 7.29 7.20 7.20 7.20 7.19 7.07 7.07 6.96 6.96 6.95 6.95 6.41 6.40 5.82 5.80 2 1.5 Abs 1 0.5 0 220 400 600 800 1000 1100 Wavelength [nm] Figure 4: The UV-VI spectrum for 4a 4b 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm Figure 5: The 1 H NMR spectrum for 4b 11

180.57 181.37 119.94 125.28 125.56 125.64 126.65 126.91 127.02 127.05 127.14 128.52 128.85 129.26 131.78 132.10 133.48 133.64 134.38 135.35 137.15 144.16 144.26 35.20 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Figure 6: The 13 C NMR spectrum for 4b 1.7 1.5 Abs 1 0.5 0 220 400 600 800 1000 1100 Wavelength [nm] Figure 7: The UV-VI spectrum for 4b 12

180.63 181.30 143.94 141.79 140.28 136.85 134.36 133.42 132.09 131.65 128.95 128.41 127.65 127.58 127.05 126.59 125.86 125.68 125.29 119.95 40.58 1.94 0.98 0.97 3.18 0.99 2.00 2.01 0.98 1.00 7.73 7.73 7.73 7.72 7.71 7.71 7.70 7.70 7.52 7.51 7.50 7.36 7.36 7.36 7.36 7.34 7.33 7.32 7.31 7.30 7.30 7.29 7.26 7.25 7.24 7.09 7.08 7.08 7.07 6.42 6.41 5.44 5.42 4c 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm Figure 8: The 1 H NMR spectrum for 4c 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Figure 9: The 13 C NMR spectrum for 4c 13

2.08 2.01 0.98 0.97 0.99 0.94 0.95 0.99 1.00 1.00 7.77 7.75 7.75 7.74 7.74 7.73 7.73 7.40 7.40 7.39 7.39 7.35 7.35 7.34 7.34 7.29 7.20 7.20 7.19 7.19 7.11 7.10 7.10 7.09 7.06 7.05 6.95 6.95 6.94 6.94 6.48 6.47 5.77 5.76 1.5 1 Abs 0.5 0 220 400 600 800 1000 1100 Wavelength [nm] Figure 10: The UV-VI spectrum for 4c 4d 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 ppm Figure 11: The 1 H NMR spectrum for 4d 14

181.25 180.45 143.65 139.93 135.90 134.43 133.55 132.02 131.70 127.77 127.32 127.12 127.10 126.67 126.13 125.71 125.40 118.82 34.93 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Figure 12: The 13 C NMR spectrum for 4d 1.6 1.5 1 Abs 0.5 0 220 400 600 800 1000 1100 Wavelength [nm] Figure 13: The UV-VI spectrum for 4d 15

180.39 181.08 145.99 142.28 137.99 137.39 135.23 134.58 132.19 130.22 130.13 129.72 129.49 129.39 129.17 129.04 128.93 128.78 128.42 128.39 128.07 127.50 126.77 121.08 41.06 1.92 2.03 0.94 1.96 2.86 1.95 1.91 1.97 1.00 1.00 8.08 8.07 8.07 8.05 8.05 8.04 8.04 7.71 7.70 7.70 7.69 7.65 7.65 7.64 7.64 7.63 7.57 7.57 7.56 7.44 7.43 7.42 7.42 7.42 7.35 7.34 7.32 7.25 6.37 6.38 5.56 5.57 4e 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm Figure 14: The 1 H NMR spectrum for 4e 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 ppm Figure 15: The 13 C NMR spectrum for 4e 16

1.97 2.08 4.09 3.01 0.99 0.98 0.94 1.02 1.00 6.42 6.43 6.96 6.96 6.97 7.10 7.11 7.20 7.21 7.44 7.45 7.45 7.46 7.47 7.47 7.67 7.68 7.68 7.69 7.69 7.70 7.70 8.05 8.06 8.07 8.66 8.69 5.89 5.90 2 1.5 Abs 1 0.5 0 220 400 600 800 1000 1100 Wavelength [nm] Figure 16: The UV-VI spectrum for 4e 4f 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm Figure 17: The 1 H NMR spectrum for 4f 17

180.96 180.17 145.66 144.24 137.19 136.93 135.21 134.60 133.74 130.24 130.16 129.76 129.55 129.45 129.24 128.84 128.33 128.06 127.13 127.03 125.59 119.97 125.27 35.37 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Figure 18: The 13 C NMR spectrum for 4f 2 1.5 Abs 1 0.5 0 220 400 600 800 1000 1100 Wavelength [nm] Figure 19: The UV-VI spectrum for 4f 18

180.27 180.95 119.99 125.30 125.66 125.99 127.56 127.66 127.98 128.30 128.46 128.95 129.22 129.49 129.54 129.77 130.15 130.23 134.59 135.24 138.48 140.33 141.79 145.48 40.72 1.82 2.03 0.96 0.87 2.61 0.93 1.82 1.84 0.96 1.00 7.71 7.70 7.70 7.69 7.69 7.55 7.55 7.55 7.54 7.54 7.53 7.46 7.39 7.39 7.39 7.39 7.34 7.34 7.33 7.32 7.32 7.32 7.31 7.31 7.26 7.26 7.26 7.25 7.25 7.24 7.24 7.23 7.23 7.11 7.10 7.09 7.09 7.08 6.46 6.45 5.53 5.52 4g 9 8 7 6 5 4 3 2 1 0 ppm Figure 20: The 1 H NMR spectrum for 4g 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 ppm Figure 21: The 13 C NMR spectrum for 4g 19

2.02 2.32 2.04 1.00 1.98 0.95 1.00 0.97 1.06 1.05 5.85 5.86 6.50 6.51 6.95 6.95 6.95 6.96 7.09 7.09 7.10 7.11 7.11 7.12 7.20 7.20 7.20 7.21 7.29 7.35 7.35 7.36 7.36 7.42 7.42 7.42 7.43 7.71 7.71 7.71 7.72 7.72 7.72 8.07 8.07 8.08 8.08 8.09 2.5 2 Abs 1 0 220 400 600 800 1000 1100 Wavelength [nm] Figure 22: The UV-VI spectrum for 4g 4h 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ppm Figure 23: The 1 H NMR spectrum for 4h 20

180.07 180.88 118.86 125.39 125.71 125.74 126.10 127.10 127.44 127.77 127.99 128.24 129.32 129.57 129.61 129.82 130.19 130.27 134.63 135.24 137.49 139.99 143.64 145.18 35.10 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 ppm Figure 24: The 13 C NMR spectrum for 4h 4 3 Abs 2 1 0 220 400 600 800 1000 1100 Wavelength [nm] Figure 25: The UV-VI spectrum for 4h 21

184.38 179.19 148.41 142.22 137.32 135.65 134.75 132.25 132.05 132.01 129.98 129.09 128.98 128.80 128.64 128.37 128.31 127.63 127.45 126.74 124.90 124.86 122.63 120.96 108.84 40.58 0.85 1.20 1.21 2.47 2.56 3.82 2.56 2.56 2.64 1.36 1.38 5.48 5.49 6.34 6.35 7.26 7.27 7.28 7.34 7.35 7.36 7.41 7.42 7.43 7.44 7.44 7.45 7.54 7.56 7.61 7.61 7.62 7.62 7.73 7.73 7.75 7.76 7.83 7.83 7.84 7.85 7.85 8.52 8.53 8.60 8.61 4i H Cl 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ppm Figure 26: The 1 H NMR spectrum for 4i H Cl 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 ppm Figure 27: The 13 C NMR spectrum for 4i 22

0.95 2.44 1.26 1.21 0.69 5.20 1.77 0.44 2.46 1.34 1.29 0.37 15.22 8.42 8.42 8.40 8.33 8.32 7.46 7.46 7.46 7.45 7.45 7.29 7.22 7.22 7.21 7.21 7.20 7.20 7.15 7.14 7.13 7.13 7.11 7.11 7.10 7.10 7.10 7.09 7.08 7.02 6.82 6.82 6.81 6.81 6.72 6.71 6.71 6.71 5.97 5.96 5.62 5.60 4.30 0.4 0.3 Abs 0.2 0.1 0 220 300 400 500 600 Wavelength [nm] Figure 28: The UV-VI spectrum for 4i 4j H Cl 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ppm Figure 29: The 1 H NMR spectrum for 4j 23

184.14 178.13 162.14 147.66 144.43 137.33 134.72 134.17 133.57 131.41 129.21 128.93 128.74 128.45 127.02 126.99 126.82 125.80 125.25 124.50 122.84 119.85 109.14 34.79 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm Figure 30: The 13 C NMR spectrum for 4j 0.4 0.3 Abs 0.2 0.1 0 220 300 400 500 600 Wavelength [nm] Figure 31: The UV-VI spectrum for 4j 24

184.21 178.07 162.11 108.97 119.90 122.70 124.48 125.22 125.35 126.21 126.99 127.22 128.07 128.46 128.60 128.87 129.21 131.38 134.65 135.63 140.36 142.07 147.49 52.90 40.25 1.00 2.24 2.25 2.61 1.37 1.47 1.21 15.12 4.29 5.19 5.20 6.14 6.15 6.61 6.62 6.62 6.63 6.71 6.71 6.72 6.72 6.99 7.00 7.01 7.02 7.10 7.11 7.12 7.13 7.13 7.18 7.18 7.20 7.21 7.29 7.58 7.60 8.31 8.33 8.36 8.37 4k H Cl 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 ppm Figure 32: The 1 H NMR spectrum for 4k H Cl 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Figure 33: The 13 C NMR spectrum for 4k 25

1.00 2.38 1.53 1.14 2.23 1.08 1.07 1.07 2.53 1.45 14.97 5.80 5.81 6.48 6.49 6.96 6.96 6.97 6.97 7.09 7.10 7.10 7.11 7.11 7.12 7.21 7.21 7.22 7.35 7.35 7.36 7.40 7.41 7.78 7.79 7.81 7.87 7.87 7.88 7.90 8.58 8.60 8.64 8.65 0.3 0.2 Abs 0.1 0 220 300 400 500 600 Wavelength [nm] Figure 34: The UV-VI spectrum for 4k 4l H Cl 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 ppm Figure 35: The 1 H NMR spectrum for 4l 26

184.00 179.03 162.60 108.80 118.65 122.54 124.99 125.48 125.72 125.77 126.16 127.15 127.54 127.59 127.81 128.65 128.67 130.12 132.21 134.82 135.25 139.88 143.49 147.44 34.50 H Cl 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Figure 36: The 13 C NMR spectrum for 4l 0.4 0.3 Abs 0.2 0.1 0 220 300 400 500 600 Wavelength [nm] Figure 37: The UV-VI spectrum for 4l 27

183.39 182.94 142.03 141.99 137.51 137.24 135.62 134.10 131.92 129.12 128.96 128.79 128.30 127.59 120.91 126.72 40.45 0.81 4.04 3.72 1.88 1.20 1.82 0.93 0.92 0.98 1.00 7.46 7.46 7.45 7.43 7.43 7.42 7.42 7.42 7.41 7.41 7.41 7.40 7.40 7.36 7.36 7.36 7.35 7.34 7.32 7.31 7.28 7.27 7.11 6.85 6.83 6.78 6.76 6.30 6.29 5.24 5.22 4m 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ppm Figure 38: The 1 H NMR spectrum for 4m 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Figure 39: The 13 C NMR spectrum for 4m 28

2.02 3.18 0.98 2.24 1.00 0.99 1.66 1.25 6.35 6.36 6.82 6.84 6.85 6.86 6.96 6.96 6.97 6.97 7.00 7.01 7.01 7.01 7.21 7.21 7.22 7.22 7.43 7.43 7.43 7.44 7.44 7.45 7.60 5.56 5.57 5.33 3.78 1.56 1.8 1.5 Abs 1 0.5 0 220 400 600 800 1000 1100 Wavelength [nm] Figure 40. UV-VI spectrum for 4m 4n 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 ppm Figure 41: The 1 H NMR spectrum for 4n 29

182.71 183.29 119.85 125.36 125.50 126.99 127.18 128.86 128.96 129.32 133.14 133.41 135.81 137.03 137.34 141.74 144.14 53.40 180 170 160 150 140 130 120 110 100 90 80 70 60 50 ppm Figure 42: The 13 C NMR spectrum for 4n 1.5 1 Abs 0.5 0 220 400 600 800 1000 1100 Wavelength [nm] Figure 43: The UV-VI spectrum for 4n The 1 H and 13 C NMR spectra for the cycloadduct 6 30

193.92 194.16 120.02 126.28 126.77 126.97 127.26 128.05 128.50 128.55 129.51 132.39 133.79 134.14 134.29 134.53 138.96 139.54 55.87 57.99 42.68 26.41 1.10 0.97 1.90 1.92 1.02 1.95 4.65 1.05 0.41 0.95 1.08 3.00 7.80 7.80 7.80 7.81 7.81 7.92 6.50 6.51 4.18 4.19 4.19 3.76 3.77 1.94 1.55 6 Me H 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm Figure 44: The 1 H NMR spectrum for 6 Me H 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 ppm Figure 45: The 13 C NMR spectrum for 6 31