MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

Similar documents
The University of Sydney MATH 2009

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

(4, 2)-choosability of planar graphs with forbidden structures

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Tangram Fractions Overview: Students will analyze standard and nonstandard

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

Weighted Graphs. Weighted graphs may be either directed or undirected.

Present state Next state Q + M N

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1

Lecture 20: Minimum Spanning Trees (CLRS 23)

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4

QUESTIONS BEGIN HERE!

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

(Minimum) Spanning Trees

1 Introduction to Modulo 7 Arithmetic

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

OpenMx Matrices and Operators

QUESTIONS BEGIN HERE!

0.1. Exercise 1: the distances between four points in a graph

d e c b a d c b a d e c b a a c a d c c e b

CS 103 BFS Alorithm. Mark Redekopp

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

MCS100. One can begin to reason only when a clear picture has been formed in the imagination.

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

Planar Upward Drawings

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

c 2009 Society for Industrial and Applied Mathematics

Graph Algorithms and Combinatorial Optimization Presenters: Benjamin Ferrell and K. Alex Mills May 7th, 2014

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling.

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano

BASIC CAGE DETAILS SHOWN 3D MODEL: PSM ASY INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SPRING FINGERS CLOSED TOP

In which direction do compass needles always align? Why?

CS 461, Lecture 17. Today s Outline. Example Run

DFA Minimization. DFA minimization: the idea. Not in Sipser. Background: Questions: Assignments: Previously: Today: Then:

Edge-Triggered D Flip-flop. Formal Analysis. Fundamental-Mode Sequential Circuits. D latch: How do flip-flops work?

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

BASIC CAGE DETAILS D C SHOWN CLOSED TOP SPRING FINGERS INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY

Trees as operads. Lecture A formalism of trees

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Theorem 1. An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices.

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CMSC 451: Lecture 4 Bridges and 2-Edge Connectivity Thursday, Sep 7, 2017

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Designing A Concrete Arch Bridge

Seven-Segment Display Driver

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e)

Numbering Boundary Nodes

Minimum Spanning Trees

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Constructive Geometric Constraint Solving

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

Garnir Polynomial and their Properties

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

CS150 Sp 98 R. Newton & K. Pister 1

Solutions to Homework 5

Planar convex hulls (I)

Slide-and-swap permutation groups. Onyebuchi Ekenta, Han Gil Jang and Jacob A. Siehler. (Communicated by Joseph A. Gallian)

Section 10.4 Connectivity (up to paths and isomorphism, not including)

a g f 8 e 11 Also: Minimum degree, maximum degree, vertex of degree d 1 adjacent to vertex of degree d 2,...

24CKT POLARIZATION OPTIONS SHOWN BELOW ARE REPRESENTATIVE FOR 16 AND 20CKT

N=4 L=4. Our first non-linear data structure! A graph G consists of two sets G = {V, E} A set of V vertices, or nodes f

Physics 222 Midterm, Form: A

Closed Monochromatic Bishops Tours

Steinberg s Conjecture is false

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

Two Approaches to Analyzing the Permutations of the 15 Puzzle

Functions and Graphs 1. (a) (b) (c) (f) (e) (d) 2. (a) (b) (c) (d)

VLSI Testing Assignment 2

CS 241 Analysis of Algorithms

Indices. Indices. Curriculum Ready ACMNA: 209, 210, 212,

COMP108 Algorithmic Foundations

Combinatorial Optimization

Strongly connected components. Finding strongly-connected components

Designing A Uniformly Loaded Arch Or Cable

CS September 2018

EE1000 Project 4 Digital Volt Meter

Outline. Binary Tree

Transcription:

MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri

SOLUTIONS TO ASSIGNMENT 01 (SEMESTER 1) CLOSING DATE: 10 Mr 2017 UNIQUE NR.: 691528 T nswrs to only som o t qustions will mrk. 1. Drw () tr non-isomorpi rps wit 4 vrtis n 3 s. (3) T tr rps r non-isomorpi us t irst rp s two vrtis o r on, t son rp s no vrtis o r on n t tir rp s tr vrtis o r on. () two non-isomorpi rps wit 5 vrtis n 6 s. (2) T two rps r non-isomorpi us t son rp s vrtx o r our wil t irst rp os not v su vrtx. Explin in s wy your rps r non-isomorpi. 2. T list o rs o t vrtis o rp, rrn in non-rsin orr, is ll t r squn o t rp. () Drw rp wit r squn 1, 1, 1, 5 or sy wy no su rp xists. (2) Su rp os not xist us t vrtx o r iv s to v iv niours wil t rp only s our vrtis. () Drw rp wit r squn 1, 1, 1, 1, 1, 5 or sy wy no su rp xists. (2) 2

MAT3707/201/1/2017 () Drw two non-isomorpi rps wit r squn 1, 1, 1, 2, 2, 3. (4) n () Prov tt up to isomorpism, tr is only on rp wit r squn 2, 3, 3, 4, 5, 5. (5) W iv onstrutiv proo s ollows. T rp s six vrtis, two o wi v r iv. Hn ts two vrtis v to jnt to otr n lso to t otr our rminin vrtis: I w lt ts two vrtis o r 5 rom t rp (n tir inint s), wt rmins is rp on our vrtis wit r squn 0, 1, 1, 2. (T rminin our vrtis in t oriinl rp rs 2, 3, 3, n 4 n i w lt t two s twn o ts vrtis n t two vrtis o r 5, t rs o vrtx rss y two.) Tr is only on su rp, nmly rp onsistin o n isolt vrtx totr wit pt o orr 3: Tis mns tt t only possil wy to s to t irst rp is y in two s su tt ty sr niour: 3. () Lt G rp wit vrtx st V (G) n st E(G). Din t omplmnt G o G. (2) Lt t vrtx st n st o G ivn y V (G) n E(G) rsptivly. Tn V (G) = V (G) n E(G) i n only i / E(G). () Giv n xmpl o rp n its omplmnt on our vrtis. (2) n 3

() Drw sl-omplmntry rp (i.. rp wi is isomorpi to its omplmnt) wit i. our vrtis (3) n T two rps r isomorpi sin ty r ot pts o orr our. ii. iv vrtis (3) n T two rps r isomorpi sin ty r ot iruits on iv vrtis. Explin in s wy your rp is sl-omplmntry. 4. Prov tt i rp is not onnt, tn its omplmnt must onnt. (6) Suppos tt G is isonnt rp. Lt x n y ny two vrtis in G. W will now prov tt tr xists n x y pt in G, t omplmnt o G. W n to onsir t ollowin two ss. First suppos tt x n y li in t sm omponnt o G. Sin G is isonnt, tr xists notr omponnt tt ontins t lst on vrtx, sy v. Sin xv / E(G) n yv / E(G) it ollows y t inition o G tt xv E(G) n yv E(G). Hn xvy is n x y pt in G. Now suppos tt x n y li in two irnt omponnts o G. Tn xy / E(G) n in y t inition o o G, xy E(G). Hn xy is n x y pt in G. Sin x n y wr osn ritrrily w v sown tt tr is pt twn ny two vrtis o G n tror G is onnt. 5. Lt G rp wit itn s, n wit ll vrtis o t sm r. Dtrmin ll t possil vlus or t numr o vrtis o G, n iv n xmpl o su rp or possil vlu. Suppos tr r n vrtis, o r r. Lt (v) not t r o t vrtx v n m t numr o s o G. Sin (v) = 2m n m = 15, it ollows tt n tus v V (G) rn = 30 n = 30 r. (5) 4

MAT3707/201/1/2017 So, t ivisors o 30 r {1, 2, 3, 5, 6, 10, 15, 30}. I r = 1, tn tr r 30 vrtis, r = 2, tn tr r 15 vrtis, r = 3, tn tr r 10 vrtis, r = 5, tn tr r 6 vrtis. T nxt ivisor o 30 is 6 - ut oviously tr is no rp wit iv vrtis, o r 6. T sm is tru i r {10, 15, 30}. Nxt w iv n xmpl o su rp or o r {1, 2, 3, 5}. I r = 1 n n = 30, tn 15K 2 is su rp: I r = 2 n n = 15, t rp onsistin o tr iruits o orr 5 is su rp (3C 5 ): For r = 3 n n = 10 t ollowin is n xmpl: Finlly, i r = 5 n n = 6, t only possiility is t omplt rp on 6 vrtis, K 6 : 5

6. () Wt is t smllst numr o vrtis tt iprtit plnr rp wit 18 s n v? Giv n xmpl o iprtit plnr rp ttinin tis numr o vrtis. (4) Lt v t numr o vrtis o su rp. From Eulr s Corollry in t stuy ui or plnr iprtit rps it ollows tt 18 2v 4. Hn v 11. So w n t lst 11 vrtis. To k tt 11 vrtis is possil w onstrut t ollowin iprtit plnr rp wit 11 vrtis n 18 s: () I onnt plnr rp wit n vrtis, ll o r 3 s 6 rions, trmin n. Skt n xmpl o su onnt plnr rp. (4) Lt not t numr o s. Eulr s ormul ivs T sum o t rs is 3n, so w lso v Sustitut k in t irst qution: 6 = n + 2. 3n = 2 i.. = 3n/2. 6 = 3n/2 n + 2 i.. n = 8. Hr is n xmpl o onnt plnr rp wit 8 vrtis, ll o r 3 wit 6 rions. T rions r numr rom 1 to 6. Not tt t outsi is lso rion! 1 2 3 4 5 6 6

MAT3707/201/1/2017 7. Dtrmin wtr t ollowin rp s i j k () n Eulr tril (2) : Sin t rp s xtly two vrtis o o r (vrtis n o r 3) t rp ontins n Eulr tril. () n Eulr yl (2) : Sin not vry vrtx is o vn r, t rp os not ontin n Eulr yl. () Hmilton pt (2) : Tr r mny Hmilton pts; or xmpl ijk. () Hmilton iruit (2) : Tr r mny Hmilton iruits; or xmpl ijk. 8. For o t ollowin pirs o rps, trmin wtr ty r isomorpi or not. I ty r, iv vrtx orrsponn. I ty r not, iv rson wy. () 1 2 5 6 8 7 4 3 (5) 7

() : T two rps r not isomorpi. T irst rp ontins 5-iruit nmly wil t son rp is iprtit. 1 2 3 4 5 6 : (5) T two rps v two vrtis o r 2 n o tm r jnt to two vrtis o r our. Witout loss o nrlity w my ssum tt 1 n 6. T our niours o ts two vrtis in rp inu K 4. Hn t two rps r isomorpi. T ollowin is vrtx orrsponn twn t vrtis o t two rps: 1 2 3 4 5 6 9. Prov tt no Hmilton iruit in t rp low xists. i j k l m (6) 8

MAT3707/201/1/2017 : By rul 1 o Tukr w v to us t two s n inint wit n t two s k n kl inint wit k. Now onsir t vrtx. W nnot us ot t s n inint wit otrwis w will t propr suiruit violtin rul 2. By t symmtry o t rp w n lt n tn us t s n (rul 1). At w tn v to lt t s n (rul 3). Now w r or to us t s n inint wit (rul 1). By rul 3 w v to lt t s n i inint wit. But now vrtx is o r 1 n tror nnot li on ny Hmilton iruit. Hn t rp os not ontin Hmilton iruit. 10. Us t irl-or mto to trmin wtr t ollowin rp is plnr. I it is, iv plnr rwin. I it is not, in K 3,3 - or K 5 - oniurtion. : (8) W us t Hmilton iruit. By insi-outsi symmtry w oos t to rwn insi. Tn t s to rwn outsi. Now t nnot rwn insi or outsi. Hn t rp is not plnr: 9

T ollowin is K 3,3 oniurtion o t rp, 11. Dtrmin t romti numr o o t ollowin rps. Giv miniml olourin n proo tt smllr numr o olours nnot us. () () (5) : Sin t rp s s, χ(g) 2. Sin t rp is iprtit, χ(g) 2. Hn χ(g) = 2. T ollowin is 2-olourin o t vrtis o G lu r,,,,,, j i (5) : Sin t rp ontins n o iruit (.. ), χ(g) 3. T ollowin is 3-olourin o t vrtis o G: lu r rn,, i, j,,,, 10

MAT3707/201/1/2017 () i j k (5) : Sin t rp ontins trinls (.. k), χ(g) 3. W will now try to or 3-olourin o t vrtis o G. So lt us olour k r, rn n lu. Tn j is jnt to rn n r vrtx n s to olour lu. Now i s to rn. T vrtx is jnt to lu n rn vrtx n is or to olour r. Now s to lu n s to olour rn. Tis ors to r. But now is jnt to r (), lu () n rn () vrtx n nnot olour. Hn tr olours r not nou to olour t vrtis o t rp. I w olour vrtx wit ourt olour, sy yllow, tn w n olour t vrtis o t rp in our olours: lu r rn yllow,,, j,, k,, i Tis sows tt χ(g) 4 n n χ(g) = 4. 12. Lt G onnt rp wit 30 s. Dtrmin t mximum possil numr o vrtis o G. Lt v t numr o vrtis o G. Sin G is onnt, G s spnnin tr T. Lt t numr o s o T. Tn 30. Also, = v 1 (Torm 2 in Stion 3.1 o Tukr). Tror v 1 30 n so v 31. Tis mns tt G nnot v mor tn 31 vrtis. W still v to sow tt 31 vrtis is possil. For tis w just lt G ny tr wit 31 vrtis (n tror 30 s). Tis sows tt t mximum quls 31. 13. Lt T tr (not root) on 10 vrtis wit vrtx o r itr 1 or 3. () How mny vrtis o T v r 3? (3) Consir ny tr T wit 10 vrtis, o r 1 or 3. Lt t t numr o vrtis o r 3. Tn t sum o t rs qul 3t + 1 (10 t) = 2t + 10. (4) 11

T numr o s o T is 10 1 = 9, n it ollows y t ountin torm tt t sum o t rs lso qul 2 9 = 18, i.. 2t + 10 = 18, n t = 4. So w v tt tr r 4 vrtis o r 3, n 6 o r 1. () I w rmov ll t vrtis o r 1, will t rp tt rmins still tr? Explin. (2) I w rmov ll t vrtis o r 1 n tir inint s, t rminin rp will still onnt. So wt is lt is still tr, ut now wit 4 vrtis. () List ll su non-isomorpi trs (not root) on 10 vrtis wit vrtx o r itr 1 or 3 n xplin wy t trs in your list r non-isomorpi. (3) Tr r two: n Consir t surps o t ov two rps orm y t vrtis o r 3. In t irst rp w otin n in t son rp Ty r lrly not isomorpi. Hn nitr r t oriinl rps. () Us () n () ov to prov tt your list ontins ll su trs. (3) From () w know tt i w rmov ll t vrtis o r 1 n tir inint s, w r still lt wit tr. From () w know tt tis tr s 4 vrtis. It is sy to list ll trs wit 4 vrtis: n 12

MAT3707/201/1/2017 In s tr is only on wy o puttin k t vrtis o r 1: n So tr r only ts two, n t list in () is omplt. 14. Dtrmin t numr o s o () inry tr on 67 vrtis. (2) A inry tr on 67 vrtis s 66 s y Torm 2 o Stion 3.1 o Cptr 3. () trnry tr on 67 vrtis. (2) Ain t nswr is 66, or t sm rson. 15. For o t ollowin, trmin i it xists. I it os, iv n xmpl. I it osn t iv rson wy. () A 4-ry tr wit 11 lvs. (2) In t nottion o Stion 3.1 o Tukr w v i = l 1 m 1 = 11 1 4 1 = 10 3, wi is not n intr. Tror, su tr os not xist. () A 4-ry tr wit 13 lvs. (2) Now w v i = l 1 m 1 = 13 1 4 1 = 12 = 4 intrnl vrtis. 3 Tis osn t yt tll us tt it xists; w v to try n onstrut on: Tror su tr xists. 13

16. In t rp low, trmin i j () pt-irst spnnin tr wit s root. (4) i j () rt-irst spnnin tr wit s root. (4) i j 14

MAT3707/201/1/2017 17. Fin miniml spnnin tr o t wit rp low, usin 2 1 i 2 1 4 1 4 3 2 4 3 j 1 k 2 5 3 1 4 5 1 3 m n o p 2 2 3 1 l () Kruskl s loritm (4) () Prim s loritm. (4) In spnnin tr sow t orr in wi t s v n slt y numrin tm orinly (i.. o not iv t wits). () Kruskl s loritm: W strt wit n mpty T, n t stp to T sortst tt os not orm iruit wit s lry in T. (Not tt tr n mor tn on su sortst. You n oos ny on o tm. So it is possil to otin irnt miniml spnnin trs pnin on your oi, ut ty will ll v t sm totl wit.) In t spnnin tr low w sow t orr in wi t s v n slt (not t wits). 9 2 10 3 8 j i 1 5 11 12 4 k l 15 6 7 14 m n o p 13 T totl ost is 28. 15

() Prim s loritm: W strt wit T onsistin o ny sortst, n t stp, to T sortst twn T n vrtx not in T. (Ain tr is mor tn on oi. Coos nyon. ) In t spnnin tr low w sow t orr in wi t s v n slt (not t wits). 4 2 6 5 3 j i 1 9 10 k l 15 11 12 14 m n o p 7 13 8 T totl ost is 28. 16