Open-shell and Magnetic Systems with CRYSTAL Tools

Similar documents
Gaussian Basis Sets for Solid-State Calculations

Luigi Paolasini

Principles of Quantum Mechanics

Introduction to Heisenberg model. Javier Junquera

LUMO + 1 LUMO. Tómas Arnar Guðmundsson Report 2 Reikniefnafræði G

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

Exchange Mechanisms. Erik Koch Institute for Advanced Simulation, Forschungszentrum Jülich. lecture notes:

Metal-insulator transitions

DFT calculations of NMR indirect spin spin coupling constants

QUANTUM CHEMISTRY FOR TRANSITION METALS

Ab initio structure prediction for molecules and solids

2 B B D (E) Paramagnetic Susceptibility. m s probability. A) Bound Electrons in Atoms

Electronic structure calculations results from LDA+U method

CHEM6085: Density Functional Theory Lecture 10

Calculation of exchange integrals and electronic structure for manganese ferrite

Electronic correlation and Hubbard approaches

University of Bristol. 1 Naval Research Laboratory 2 II. Physikalisches Institut, Universität zu Köln

Metal-insulator and magnetic transition of NiO at high pressures

Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory

DFT EXERCISES. FELIPE CERVANTES SODI January 2006

Lecture B6 Molecular Orbital Theory. Sometimes it's good to be alone.

Teoría del Funcional de la Densidad (Density Functional Theory)

Band calculations: Theory and Applications

DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY

Introduction to Density Functional Theory

The Gutzwiller Density Functional Theory

An ab initio study of Fe-doped Nickel Oxide. Kamaludin Dingle

Transition Elements. pranjoto utomo

Magnetism in transition metal oxides by post-dft methods

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić

2.1 Experimental and theoretical studies

Electronic Supplementary Information

Magnetic Oxides. Gerald F. Dionne. Department of Materials Science and Engineering Massachusetts Institute of Technology

MOLECULAR MAGNETISM. Leigh Jones Room 133 School of Chemistry NUI Galway. Introduction to Molecular Magnetism

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Electron Correlation

First principle calculations of plutonium and plutonium compounds: part 1

Mott insulators. Mott-Hubbard type vs charge-transfer type

First-Principles Calculation of Exchange Interactions

7/29/2014. Electronic Structure. Electrons in Momentum Space. Electron Density Matrices FKF FKF. Ulrich Wedig

Oslo node. Highly accurate calculations benchmarking and extrapolations

Electronic structure of correlated electron systems. G.A.Sawatzky UBC Lecture

Joint ICTP-IAEA Workshop on Fusion Plasma Modelling using Atomic and Molecular Data January 2012

Supplementary Information

Electronic structure of correlated electron systems. Lecture 2

v(r i r j ) = h(r i )+ 1 N

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn

Pseudopotentials for hybrid density functionals and SCAN

OVERVIEW OF QUANTUM CHEMISTRY METHODS

Multi-Scale Modeling from First Principles

Mott insulators. Introduction Cluster-model description Chemical trend Band description Self-energy correction

André Schleife Department of Materials Science and Engineering

Molecules in strong magnetic fields

Electronic communication through molecular bridges Supporting Information

Lecture contents. Magnetic properties Diamagnetism Band paramagnetism Atomic paramagnetism Ferromagnetism. Molecular field theory Exchange interaction

Correlation effects in MgO and CaO: Cohesive energies and lattice constants

X-Ray Magnetic Dichroism. S. Turchini ISM-CNR

Hybrid density functional theory applied to magnetite: Crystal structure, charge order, and phonons

DFT: Exchange-Correlation

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials

Competing Ferroic Orders The magnetoelectric effect

Quantum chemical modelling of molecular properties - parameters of EPR spectra

Key concepts in Density Functional Theory (II)

Electronic band structure, sx-lda, Hybrid DFT, LDA+U and all that. Keith Refson STFC Rutherford Appleton Laboratory

IFM Chemistry Computational Chemistry 2010, 7.5 hp LAB2. Computer laboratory exercise 1 (LAB2): Quantum chemical calculations

X-ray absorption spectroscopy.

ASSESSMENT OF DFT METHODS FOR SOLIDS

CHEM6085: Density Functional Theory

Interaction of matter with magnetic fields

Magnetism at finite temperature: molecular field, phase transitions

DFT with Hybrid Functionals

Exchange-Correlation Functional

CHAPTER 4. ELECTRONIC AND MAGNETIC PROPERTIES OF MX 2 (M = V, Nb; X = Al, Ga, In, Cl, Br AND I) COMPOUNDS IN CdI 2 -TYPE STRUCTURE

Supplementary material for Electronic Structure of IrO 2 : the Role of the Metal D Orbitals

Supporting Information for Ultra-narrow metallic armchair graphene nanoribbons

Density Functional Theory - II part

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

College of Chemistry, Peking University, Beijing, China. Fritz-Haber-Institut der MPG, Berlin, Germany

Density Functional Theory

Time-Dependent Density-Functional Theory

Crystalline and Magnetic Anisotropy of the 3d Transition-Metal Monoxides

Winter School for Quantum Magnetism EPFL and MPI Stuttgart Magnetism in Strongly Correlated Systems Vladimir Hinkov

MODULE 2: QUANTUM MECHANICS. Principles and Theory

Module 6 1. Density functional theory

Crystal structure prediction

Ab-initio Electronic Structure Calculations β and γ KNO 3 Energetic Materials

Computational Material Science Part II. Ito Chao ( ) Institute of Chemistry Academia Sinica

c E If photon Mass particle 8-1

Lecture 19: Building Atoms and Molecules

1.1 Atoms. 1.1 Atoms

CHAPTER 8. EXPLORING THE EFFECTS OF STRUCTURAL INSTABILITIES AND OF TRIPLET INSTABILITY ON THE M-I PHASE TRANSITION IN (EDO-TTF)2PF6.

Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory

Disturbing the dimers: electron- and hole-doping in the nonmagnetic intermetallic insulator FeGa 3

Quantum Chemical Simulations and Descriptors. Dr. Antonio Chana, Dr. Mosè Casalegno

Magnetism (FM, AFM, FSM)

RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear Force Nuclear and Radiochemistry:

Orbital Density Dependent Functionals

Key concepts in Density Functional Theory (II) Silvana Botti

The high-pressure phase transitions of silicon and gallium nitride: a comparative study of Hartree Fock and density functional calculations

The electronic structure of materials 1

Transcription:

Open-shell and Magnetic Systems with CRYSTAL Tools Klaus Doll Molpro Quantum Chemistry Software Institute of Theoretical Chemistry, D-70569 Stuttgart, Germany MSSC 2018, Turin, September 2018

Contents Introduction Hints for the input Examples

Magnetism Considered here: Ferro-, Antiferro-, Ferrimagnetism typically in periodic systems with: d- or f-electrons but also with p-electrons defects Molecules: molecules with unpaired electrons Questions: Strength : exchange interaction J magnetic moments, spin and charge densities, electrical field gradient dependence on pressure

Types of exchange interaction, I Direct (between neighbouring atoms) Indirect (superexchange): via bridging ion here: antiferromagnetic

Types of exchange interaction, II Double exchange: ferromagnetic exchange interaction which occurs because the magnetic ion can show mixed valency Indirect exchange: around defect, mediated by conduction electrons

Types of exchange interaction, III Itinerant magnetism: 3d metals (Fe, Co, Ni) with partially filled shells different description with models which take into account kinetic energy

Computational methods for periodic systems and analogously KS, UKS (Kohn-Sham)

An atom: oxygen Atomic configuration: 1s2 2s2 2p4 Ground state: 3P2 (Hund s rules) 1) maximise spin: 2 unpaired electrons => spin 1 (2*ħ/2), 2S+1 =3 2) maximise L: (3 up-electrons: Lup=0, 1 down electron, Ldown=1) 1 => P J = L+ S => 2 3) more than half full p-shell: Eigenvalues: S2 : S(S+1) =2 L2 : L(L+1) = 2

O with Molpro (www.molpro.net) Input file, part 1: gprint,basis,orbital basis=vdz geometry={o} {rhf,throrb=0; occ,2,1,1,0,1;closed,2,0,0,0,1 wf,8,4,2 } i=1 meth(i) = 'RHF' e(i)= energy {multi;noextra occ,2,1,1,0,1;closed,2,0,0,0,1;frozen,2,0, 0,0,1 wf,8,4,2 expec2,lxx,lyy,lzz} i=i+1 meth(i) = 'MULTI - 1 state' e(i)= energy part 2 (copy+paste below part 1): {multi occ,2,1,1,0,1;closed,2,0,0,0,0;frozen,0,0, 0,0,0 wf,8,4,2; wf,8,6,2; wf,8,7,2; expec2,lxx,lyy,lzz} i=i+1 meth(i) = 'MULTI-stateaveraged' e(i)= energy {uhf,throrb=0; occ,2,1,1,0,1;closed,2,0,0,0,1 wf,8,4,2 } i=i+1 meth(i) = 'UHF' e(i)= energy table,meth,e;

O with Molpro Output: Energies: METH RHF MULTI - 1 state MULTI-stateaveraged UHF E -74.78751307-74.78751307-74.78618804-74.79216606 RHF: symmetry-broken: 2 pz electrons, 1 px, 1 py electron Not spherically symmetric, no L2 eigenstate! <1.4 L**2 1.4> 2.005004608348 MCSCF state-averaged: 3 states, one with 2 px electrons, one with 2 py, one with 2pz!MCSCF expec <1.4 L**2 1.4> 2.000000000000!MCSCF expec <1.6 L**2 1.6> 2.000000000000!MCSCF expec <1.7 L**2 1.7> 2.000000000000 => spherically symmetric! UHF: symmetry-broken, not an eigenstate of S2 EXPECTATION VALUE OF S**2: 2.00436680

O with CRYSTAL Input file, part 1: Oxygen Atom MOLECULE 1 1 8 0. 0. 0. END 86 0 0 9 2.0 1.0 11720.000000 0.000710 1759.000000 0.005470 400.800000 0.027837 113.700000 0.104800 37.030000 0.283062 13.270000 0.448719 5.025000 0.270952 1.013000 0.015458 0.302300-0.002585 0 0 9 2.0 1.0 11720.000000-0.000160 1759.000000-0.001263 400.800000-0.006267 113.700000-0.025716 37.030000-0.070924 13.270000-0.165411 5.025000-0.116955 1.013000 0.557368 0.302300 0.572759 part 2 (copy+paste below part 1): 0 0 1 0.0 1.0 0.302300 1. 0 2 4 4.0 1.0 17.700000 0.043018 3.854000 0.228913 1.046000 0.508728 0.275300 0.460531 0 2 1 0.0 1.0 0.275300 1.000000 0 3 1 0.0 1.0 1.185000 1.000000 99 0 END UHF ATOMSPIN 1 11 SPINLOCK 23 MAXCYCLE 60 FMIXING 70 PPAN END spin-polarised atom with spin initial spin state (2 more up electrons than down electrons, fix for 3 cycles)

O with CRYSTAL Output: Energies: ATOMIC WAVEFUNCTION(S) NUCLEAR CHARGE 8.0 SYMMETRY SPECIES S P N. ELECTRONS 8.0 NUMBER OF PRIMITIVE GTOS 19 5 NUMBER OF CONTRACTED GTOS 3 2 NUMBER OF CLOSED SHELLS 2 0 OPEN SHELL OCCUPATION 0 4 ZNUC SCFIT TOTAL HF ENERGY KINETIC ENERGY VIRIAL THEOREM ACCURACY 8.0 12-7.478618804E+01 7.478582785E+01-2.000004816E+00 3.1E-06 Identical to Molpro, state-averaged (-74.78618804) == SCF ENDED - CONVERGENCE ON ENERGY Identical to Molpro, UHF (-74.79216606) E(AU) -7.4792165768403E+01 CYCLES 7

Exchange interaction: mathematically Triplet: Singlet: [ ](Φa (1) Φb (2) Φb (1)Φ a (2)) [ ](Φa (1) Φb (2)+Φb (1) Φa (2)) compute energy difference Esinglet-Etriplet fit models: 1 S 2) Heisenberg: H= J ( S Ising: H= J (S1 S 2)

Calculations for solids: only Sz Eigenstate feasible, fit Ising model ferromagnet versus antiferromagnet: energy difference: njsz2 n: neighbors energy scale: ~J (~TN) order of mev total energy: H-atom 13.6 ev ; Ni atom ~ 40000 ev => code must be accurate (little numerical noise)

Keywords general: look at test cases, tutorials for examples Always: UHF or DFT SPIN Geometry: often a SUPERCEL is necessary Usually: ATOMSPIN Often: SPINLOCK (keep number of cycles smaller than number necessary to converge otherwise artificial solution) Sometimes: EIGSHIFT LEVSHIFT MODISYMM

NiO: band gap with various functionals LDA: K. Terakura, T. Oguchi, A. R. Williams, J. Kübler, Phys. Rev. B 30, 4734 (1984) B3LYP: I. Moreira et al, Phys. Rev. B 65, 155102 (2002) Hartree-Fock: M. D. Towler et al, Phys. Rev. B 50, 5041 (1994)

Band gaps: difficult with density functional theory GaAs NiO ZnO TiO2 LDA 0.1 0.2 0.9 1.8 B3LYP 1.5 4.1 3.2 3.4 HF 15.1 11.7 10 Expt. (ev) 1.4 4.0 3.4 3.0 Hartree-Fock: correct self-interaction, but Coulomb-repulsion unscreened LDA: self-interaction error (e.g. hydrogen: 1 electron interacts with itself) B3LYP: mixed Hartree-Fock and LDA, is in between Practical approach: use several methods, compare, this gives approximate result Luckily not all properties are so difficult to compute! Geometries, frequencies, charges usually match well occupied bands, unoccupied bands match well, but not the gap

Superexchange calculation for NiO FM: -43043.1899 ev AF2: -43043.2065 ev energy difference: 0.0166 ev = 3JS2 => J = 5.5 mev exp.: J=20 mev M. D. Towler, N.L. Allan, N.M.Harrison, V.R. Saunders, W. C. Mackrodt, E. Aprà, Phys. Rev. B 50, 5041 (1994) today: ~ 1 minute CPU time for NiO

Superexchange calculation for KMnF3 J=0.1 mev J ~ d-14 exp.:j=0.3 mev d -12 +/- 2 J. M. Ricart, R. Dovesi, C. Roetti, V.R. Saunders, Phys. Rev. B 52, 2381 (1995) R. Dovesi, F. Freyria-Fava, C. Roetti, V. R. Saunders, Faraday Discuss. 106, 173 (1997)

NiO: spin density plot Hartree-Fock magn. moment J Ni O 1.9 0.1-5.4 mev B3LYP 1.8 0.2-29 mev LDA 1.6 0.4-94 mev exp.: -20 mev

Some more examples Hartree-Fock B3LYP LDA exp. NiO -5.5 mev -29 mev -94 mev -20 mev KNiF3-2.6 mev -15 mev La2CuO4-36 mev -130 mev MnF2 0.2 mev 0.05 mev -0.07 mev -0.3 mev J1 J2-9 mev systematic deviation; LDA too delocalized; HF too localized prediction possible for 180º angle

Fe(pyrimidine)2Cl2:a molecule based magnet canted =>weakly ferromagnetic Orientation of the magnetic moment from Mössbauer spectroscopy and calculation (electrical field gradient) R. Feyerherm, A. Loose, T. Ishida, T. Nogami, J. Kreitlow, D. Baabe, F. J. Litterst, S. Süllow, H.-H. Klauss, K. Doll, Phys. Rev. B 69,134427 (2004)

Exchange interaction FePM2Cl2 NiPM2Cl2 J exp. th. (B3LYP) -0.03 mev -0.08 mev -0.25 mev -0.6 mev Increase of J when compressing by 5%: ~15% (Experiment and theory)

Bulk modulus exp.: very soft: 15 GPa calculated: 18 GPa What happens under pressure? a;c Fe-N Fe-Cl N-C C-H 7.0972; 19.840 7.5331; 20.623 2.14 2.26 2.46 2.45 1.34 1.35 1.08 1.09 C-C (Å) 1.38 1.38 A. U. B. Wolter, H.-H. Klauss, F. J. Litterst, T. Burghardt, A. Eichler, R. Feyerherm, S. Süllow, Polyhedron 22, 2139 (2003) J. Kreitlow, D. Menzel, A. U. B. Wolter, J. Schoenes, S. Süllow, K. Doll, Phys. Rev. B 72, 134418 (2005)

Rb4O6: magnetism in p-shell most favorable solution: Rb4(O2-)2 (O22-) O22- (peroxide) nonmagnetic, O2- (superoxide) magnetic moment ~1 μb 1 peroxide, bond length 1.56 Å 2 superoxides, bond length 1.36 Å symmetry becomes I-42d (in case of ferromagnetic order) J. Winterlik, G. H. Fecher, C. A. Jenkins, C. Felser, C. Mühle, K. Doll, M. Jansen, L. M. Sandratskii, J. Kübler, Phys. Rev. Lett. 102, 016401 (2009)

Raman spectra Mn3O4: Raman Tetragonal at room temperature Becomes ferrimagnetic below 42 K red: Oxygen green: Mn, octahedral site (6-fold coordinated) sky blue: Mn, tetrahedral site (4-fold coordinated) simulated as ferromagnetic (all Mn up spin) T. Larbi, K. Doll, T. Manoubi, J. Alloys Compd. 688, 692 (2016)

Raman spectra Mn3O4: ferrimagnetic red: Oxygen green: Mn, octahedral site, up spin dark blue: Mn, octahedral site, down spin sky blue: Mn, tetrahedral site, up spin symmetry reduced in simulation, becomes orthorhombic magnetic states discussed in A. Chartier, Ph. D Arco, R. Dovesi, V. R. Saunders, Phys. Rev. B 60, 14042 (1999)

Symmetry change of modes Mn3O4: Raman http://www.cryst.ehu.es/cryst/gsrelraman.html Space group, high symmetry: 141 Point group: Oh (4/mmm) Point group, low symmetry: mmm

Example for f-elements: GdN LDA: metallic, very good agreement with previous calculations, e.g. P. Larson and W. R. L. Lambrecht, Phys. Rev. B 74, 085108 (2006) B3LYP: only points of band structure touch Fermi surface K. Doll, J. Phys.: Cond. Matt. 20, 075214 (2008)

Conclusion Methods: UHF, spin-polarised DFT magnetism: systematic deviation for exchange interaction J, hybrid functionals give relatively good agreement with experiment vibrational spectra well reproduced unusual magnetism (p-electrons involved)