Numerical Solutions of Second Order Boundary Value Problems by Galerkin Residual Method on Using Legendre Polynomials

Similar documents
DECOMPOSITION METHOD FOR SOLVING A SYSTEM OF THIRD-ORDER BOUNDARY VALUE PROBLEMS. Park Road, Islamabad, Pakistan

A collocation method for singular integral equations with cosecant kernel via Semi-trigonometric interpolation

Comparison Study of Series Approximation. and Convergence between Chebyshev. and Legendre Series

μ are complex parameters. Other

Chapter 2 The Solution of Numerical Algebraic and Transcendental Equations

wavelet collocation method for solving integro-differential equation.

THE TRANSFORMATION MATRIX OF CHEBYSHEV IV BERNSTEIN POLYNOMIAL BASES

Some New Iterative Methods for Solving Nonlinear Equations

Higher-order iterative methods by using Householder's method for solving certain nonlinear equations

x x x 2x x N ( ) p NUMERICAL METHODS UNIT-I-SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS By Newton-Raphson formula

x x x Using a second Taylor polynomial with remainder, find the best constant C so that for x 0,

Solution of Differential Equation from the Transform Technique

Taylor polynomial solution of difference equation with constant coefficients via time scales calculus

Chapter 2: Numerical Methods

ME NUMERICAL METHODS Fall 2007

CS537. Numerical Analysis and Computing

THE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0.

L 5 & 6: RelHydro/Basel. f(x)= ( ) f( ) ( ) ( ) ( ) n! 1! 2! 3! If the TE of f(x)= sin(x) around x 0 is: sin(x) = x - 3! 5!

POWER SERIES SOLUTION OF FIRST ORDER MATRIX DIFFERENTIAL EQUATIONS

Linear Differential Equations of Higher Order Basic Theory: Initial-Value Problems d y d y dy

Chapter 4. Fourier Series

Solving a Nonlinear Equation Using a New Two-Step Derivative Free Iterative Methods

(a) (b) All real numbers. (c) All real numbers. (d) None. to show the. (a) 3. (b) [ 7, 1) (c) ( 7, 1) (d) At x = 7. (a) (b)

Numerical Solution of the Two Point Boundary Value Problems By Using Wavelet Bases of Hermite Cubic Spline Wavelets

Some Variants of Newton's Method with Fifth-Order and Fourth-Order Convergence for Solving Nonlinear Equations

CS321. Numerical Analysis and Computing

Numerical Conformal Mapping via a Fredholm Integral Equation using Fourier Method ABSTRACT INTRODUCTION

Numerical Study on the Boundary Value Problem by Using a Shooting Method

Chapter 10: Power Series

Subject: Differential Equations & Mathematical Modeling -III. Lesson: Power series solutions of Differential Equations. about ordinary points

METHOD OF FUNDAMENTAL SOLUTIONS FOR HELMHOLTZ EIGENVALUE PROBLEMS IN ELLIPTICAL DOMAINS

Modified Decomposition Method by Adomian and. Rach for Solving Nonlinear Volterra Integro- Differential Equations

A NEW CLASS OF 2-STEP RATIONAL MULTISTEP METHODS

f t dt. Write the third-degree Taylor polynomial for G

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

Newton Homotopy Solution for Nonlinear Equations Using Maple14. Abstract

Most text will write ordinary derivatives using either Leibniz notation 2 3. y + 5y= e and y y. xx tt t

A numerical Technique Finite Volume Method for Solving Diffusion 2D Problem

We are mainly going to be concerned with power series in x, such as. (x)} converges - that is, lims N n

Taylor expansion: Show that the TE of f(x)= sin(x) around. sin(x) = x - + 3! 5! L 7 & 8: MHD/ZAH

Notes on iteration and Newton s method. Iteration

(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is

Numerical Solution of the First-Order Hyperbolic Partial Differential Equation with Point-Wise Advance

Subject: Differential Equations & Mathematical Modeling-III

Calculus with Analytic Geometry 2

Introduction to Optimization Techniques. How to Solve Equations

Solving third order boundary value problem with fifth order block method

NTMSCI 5, No. 1, (2017) 26

Castiel, Supernatural, Season 6, Episode 18

Find a formula for the exponential function whose graph is given , 1 2,16 1, 6

Numerical Method for Blasius Equation on an infinite Interval

Seed and Sieve of Odd Composite Numbers with Applications in Factorization of Integers

8. Applications To Linear Differential Equations

Calculus 2 Test File Spring Test #1

Assignment 5: Solutions

PAijpam.eu ON TENSOR PRODUCT DECOMPOSITION

Exact Solutions for a Class of Nonlinear Singular Two-Point Boundary Value Problems: The Decomposition Method

2. Fourier Series, Fourier Integrals and Fourier Transforms

Finite Difference Approximation for Transport Equation with Shifts Arising in Neuronal Variability

Power Series: A power series about the center, x = 0, is a function of x of the form

Two-step Extrapolated Newton s Method with High Efficiency Index

Common Coupled Fixed Point of Mappings Satisfying Rational Inequalities in Ordered Complex Valued Generalized Metric Spaces

SOLUTIONS TO EXAM 3. Solution: Note that this defines two convergent geometric series with respective radii r 1 = 2/5 < 1 and r 2 = 1/5 < 1.

Chapter 10 Partial Differential Equations and Fourier Series

The Method of Least Squares. To understand least squares fitting of data.

Calculus 2 - D. Yuen Final Exam Review (Version 11/22/2017. Please report any possible typos.)

Sequence A sequence is a function whose domain of definition is the set of natural numbers.

THE NUMERICAL SOLUTION OF THE NEWTONIAN FLUIDS FLOW DUE TO A STRETCHING CYLINDER BY SOR ITERATIVE PROCEDURE ABSTRACT

Using An Accelerating Method With The Trapezoidal And Mid-Point Rules To Evaluate The Double Integrals With Continuous Integrands Numerically

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j

Lecture 8: Solving the Heat, Laplace and Wave equations using finite difference methods

1.3 Convergence Theorems of Fourier Series. k k k k. N N k 1. With this in mind, we state (without proof) the convergence of Fourier series.

Topic 5 [434 marks] (i) Find the range of values of n for which. (ii) Write down the value of x dx in terms of n, when it does exist.

PC5215 Numerical Recipes with Applications - Review Problems

Sequences of Definite Integrals, Factorials and Double Factorials

A comparative study of a system of Lotka-Voltera type of PDEs through perturbation methods

Similarity Solutions to Unsteady Pseudoplastic. Flow Near a Moving Wall

Finite Difference Approximation for First- Order Hyperbolic Partial Differential Equation Arising in Neuronal Variability with Shifts

LOWER BOUNDS FOR THE BLOW-UP TIME OF NONLINEAR PARABOLIC PROBLEMS WITH ROBIN BOUNDARY CONDITIONS

Chapter 9: Numerical Differentiation

Differentiable Convex Functions

CO-LOCATED DIFFUSE APPROXIMATION METHOD FOR TWO DIMENSIONAL INCOMPRESSIBLE CHANNEL FLOWS

A widely used display of protein shapes is based on the coordinates of the alpha carbons - - C α

Calculus 2 Test File Fall 2013

Chapter 4 : Laplace Transform

Fourier Series and their Applications

Pellian sequence relationships among π, e, 2

Find quadratic function which pass through the following points (0,1),(1,1),(2, 3)... 11

-ORDER CONVERGENCE FOR FINDING SIMPLE ROOT OF A POLYNOMIAL EQUATION

w (1) ˆx w (1) x (1) /ρ and w (2) ˆx w (2) x (2) /ρ.

NICK DUFRESNE. 1 1 p(x). To determine some formulas for the generating function of the Schröder numbers, r(x) = a(x) =

NUMERICAL SOLUTIONS OF THE FRACTIONAL KdV-BURGERS-KURAMOTO EQUATION

AP Calculus BC Review Applications of Derivatives (Chapter 4) and f,

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j.

A Pseudo Spline Methods for Solving an Initial Value Problem of Ordinary Differential Equation

Chapter 7: The z-transform. Chih-Wei Liu

f(x) dx as we do. 2x dx x also diverges. Solution: We compute 2x dx lim

The Phi Power Series

Recurrence Relations

Transcription:

IOSR Joural of Mathematics (IOSR-JM) e-issn: 78-578, p-issn: 319-765X. Volume 11, Issue 6 Ver. IV (Nov. - Dec. 15), PP 1-11 www.iosrjourals.org Numerical Solutios of Secod Order Boudary Value Problems by Galeri Residual Method o Usig Legedre Polyomials M. B. Hossai 1*, M. J. Hossai, M. M. Rahama 3, M. M. H. Sidar 4 M.A.Rahama 5 1, 3 Departmet of Mathematics,,5 Departmet of CIT, 4 Departmet of Statistics Patuahali Sciece ad Techology Uiversity, Dumi, Patuahali-86 Abstract: I this paper, a aalysis is preseted to fid the umerical solutios of the secod order liear ad oliear differetial equatios with Robi, Neuma, Cauchy ad Dirichlet boudary coditios. We use the Legedre ecewise polyomials to the approimate solutios of secod order boudary value problems. Here the Legedre polyomials over the iterval [,1] are chose as trial fuctios to satisfy the correspodig homogeeous form of the Dirichlet boudary coditios i the Galeri weighted residual method. I additio to that the give differetial equatio over arbitrary fiite domai [a,b] ad the boudary coditios are coverted ito its equivalet form over the iterval [,1]. Numerical eamples are cosidered to verify the effectiveess of the derivatios. The umerical solutios i this study are compared with the eact solutios ad also with the solutios of the eistig methods. A reliable good accuracy is obtaied i all cases. Keywords: Galeri Method, Liear ad Noliear VBP, Legedre polyomials I. Itroductio I order to fid out the umerical solutios of may liear ad oliear problems i sciece ad egieerig, amely secod order differetial equatios, we have see that there are may methods to solve aalytically but a few methods for solvig umerically with various types of boudary coditios. I the literature of umerical aalysis solvig a secod order boudary value problem of differetial equatios, may authors have attempted to obtai higher accuracy radly by usig umerical methods. Amog various umerical techiques, fiite differece method has bee widely used but it taes more computatioal costs to get higher accuracy. I this method, a large umber of parameters are required ad it ca ot be used to evaluate the value of the desired poits betwee two grid poits. For this reaso, Galeri weighted residual method is widely used to fid the approimate solutios to ay poit i the domai of the problem. Cotiuous or ecewise polyomials are icredibly useful as mathematical tools sice they are precisely defied ad ca be differetiated ad itegrated easily. They ca be approimated ay fuctio to ay accuracy desired [1], splie fuctios have bee studied etesively i [-9]. Solvig boudary value problems oly with Dirichlet boudary coditios has bee attempted i [4] while Berstei polyomials [1, 11] have bee used to solve the two poit boudary value problems very recetly by the authors Bhatti ad Brace [1] rigorously by the Galeri method. But it is limited to the secod order boudary value problems with Dirichlet boudary coditios ad to first order oliear differetial equatio. O the other had, Ramada et al. [] has studied liear boudary value problems with Neuma boudary coditios usig quadratic cubic polyomial splies ad opolyomial splies. We have also foud that the liear boudary value problems with Robi boudary coditios have bee solved usig fiite differece method [1] ad Sic-Collocatio method [13], respectively. Thus ecept [9], little cocetratio has bee give to solve the secod order oliear boudary value problems with dirichlet, Neuma ad Robi boudary coditios. Therefore, the aim of this paper is to preset the Galeri weighted residual method to solve both liear ad oliear secod order boudary value problems with all types of boudary coditios. But oe has attempted, to the owledge of the preset authors, usig these polyomials to solve the secod order boudary value problems. Thus i this paper, we have give our attetio to solve some liear ad oliear boudary value problems umerically with differet types of boudary coditios though it is origiated i [1]. However, i this paper, we have solved secod order differetial equatios with various types of boudary coditios umerically by the techique of very well-ow Galeri method [15] ad Legedre ecewise polyomials [14] are used as trial fuctio i the basis. Idividual formulas for each boudary value problem cosistig of Dirichlet, Neuma, Robi ad Cauchy boudary coditios are derived respectively. Numerical eamples of both liear ad oliear boudary value problems are cosidered to verify the effectiveess of the derived formulas ad are also compared with the eact solutios. All derivatios are performed by MATLAB programmig laguage. DOI: 1.979/578-1164111 www.iosrjourals.org 1 Page

Numerical Solutios of Secod Order Boudary Value Problems by Galeri Residual Method II. Legedre Polyomials The solutio of the Legedre s equatio is called the Legedre polyomial of degree ad is deoted by p (. The p ( N r ( 1) where N for eve ad N 1 for odd The first few Legedre polyomials are p1 ( 1 p ( (3 1) 1 3 p3( (5 3 1 4 p 4 ( (35 3 3) 8 1 5 3 p5 ( (63 7 15 8 1 6 4 p ( (31 315 15 16 r ( r)! r!( r)!( r)! 6 1 3 7 5 p7 (49 693 315 35 etc 16 Graphs of first few Legedre polyomials 5) r 1.8.6.4. -. -.4 -.6 -.8 p1 p p3 p4 p5 p6 p7-1 -1 -.8 -.6 -.4 -...4.6.8 1 Shifted Legedre polyomials Here the "shiftig" fuctio (i fact, it is a affie trasformatio) is chose such that it bijectively maps the iterval [, 1] to the iterval [ 1, 1], implyig that the polyomials are A eplicit epressio for the shifted Legedre polyomials is give by orthogoal o [, 1]: DOI: 1.979/578-1164111 www.iosrjourals.org Page

Numerical Solutios of Secod Order Boudary Value Problems by Galeri Residual Method ~ p( ( 1) ( The aalogue of Rodrigues' formula for the shifted Legedre polyomials is ~ 1 d p ( (! To satisfy the coditio p ( ) p(1), 1, we modified the shifted Legedre polyomials give above i the followig form 1 d p ( ( ( 1) ( 1).! Sice Legedre polyomials have special properties at ad 1: p ( ) ad p ( 1), 1 respectively, so that they ca be used as set of basis fuctio to satisfy the correspodig homogeeous form of the Dirichlet boudary coditios to derive the matri formulatio of secod order BVP over the iterval [,1]. III. Formulatio Of Secod Order Bvp We cosider the geeral secod order liear BVP [15]: d du p( q( u r(, a b (1a) u( a) 1u( a) c1, u( b) 1u( b) c (1b) where p (, q( ad r are specified cotiuous fuctios ad, 1,, 1, c1, c are specified umbers. Sice our aim is to use the Legedre polyomials as trial fuctios which are derived over the iterval [,1], so the BVP (1) is to be coverted to a equivalet problem o [,1] by replacig by ( b a) a, ad thus we have: d ~ du p( q~ ( u r(, 1 (a) 1 1 u( ) u() c1, u(1) u(1) c b a b a (b) where ~ 1 p ( p(( b a) a), q~ ( q(( b a) a), ~ r ( r(( b a) a) ( b a) Usig Legedre polyomials, p i ( we assume a approimate solutio i a form, u~ ( ai (, 1 (3) i1 Now the Galeri weighted residual equatios correspodig to the differetial equatio (1a) is give by 1 d du~ ~ p q~ u ~ ~ ( ) ( r ( p j (, j 1,,, (4) After mior simplificatio, from () we ca obtai 1 dp dp j b a p p i i p j b a p p j ~ p q~ ( ) ~ (1) (1) (1) ( ) ~ () () () ( ) ( ( p j ( ai i 1 1 1 ~ c ( b a) ~ p(1) p j (1) c1( b a) ~ p() p j () r ( p j ( (5) 1 1 Or, equivaletly i matri form DOI: 1.979/578-1164111 www.iosrjourals.org 3 Page

Numerical Solutios of Secod Order Boudary Value Problems by Galeri Residual Method Ki, jai Fj, j 1,,3,, (6a) i1 1 where ~ dp ( ) ~ (1) (1) (1) ( ) ~ () () (), ( ) i dp j ~ b a p p j b a p p j Ki j p q ( ( p j( (6b) 1 1 1 c b a p p c b a p p F ~ ( ) ~ (1) j (1) 1( ) ~ () j () j r ( p j (, j 1,,, (6c) 1 1 Solvig the system (6a), we fid the values of the parameters a i ( i 1,,, ) ad the substitutig these parameters ito eq. (3), we get the approimate solutio of the boudary value problem (). If we replace a by i u ~ ( ), the we get the desired approimate solutio of the boudary value problem (1). b a Now we discuss the differet types of boudary value problems usig various types of boudary coditios as follows: Case 1: The matri formulatio with the Robi boudary coditios (, 1,, 1 ), are already discussed i equatio (6). Case : The matri formulatio of the differetial equatio (1a) with the Dirichlet boudary coditios ( i. e.,, 1,, 1 ) is give by Ki, j ai Fj, j 1,,, (7a) i1 where 1, ~ dp dp K p( ~ q ( ( p j (, i, j 1,,, (7b) 1 ~ ~ d dp j F ~ j r ( p j ( p ( q ( ( p j (, j 1,, (7c) Case 3: The approimate solutio of the differetial equatio (1a) cosistig of Neuma boudary coditios ( i. e.,, 1,, 1 ) is give by Ki, j ai Fj, j 1,,, (8a) i1 where 1, ~ dp dp K p( ~ q ( ( p j (, i, j 1,,, (8b) 1 c b a p p c b a p p F ~ ( ) ~ (1) j (1) 1( ) ~ () j () j r ( p j (, j 1,,, (8c) 1 1 Case 4(i): The approimate solutio of the differetial equatio (1a) cosistig of Cauchy boudary coditios ( i. e., 1, 1 ) is give by Ki, j ai Fj, j 1,,, (9a) i1 where 1, ~ ~ dp dp j ~ p () p () p () K p( i q ( ( p j (, i, j 1,,, (9b) 1 1 ~ ~ ~ ~ d dp j 1 ~ c p () p j () p () () p j () F j r ( p j ( p ( q ( ( p j ( (9c) 1 1 Case 4(ii): The matri formulatio with the Cauchy boudary coditios ( i. e., 1, 1 ) is give by DOI: 1.979/578-1164111 www.iosrjourals.org 4 Page

Numerical Solutios of Secod Order Boudary Value Problems by Galeri Residual Method Ki, j ai Fj, j 1,,, (1a) i1 where 1, ~ ~ dp dp j ~ p (1) p (1) p (1) K p( i q ( ( p j (, i, j 1,,, (1b) 1 1 ~ ~ ~ ~ d dp j ~ c p (1) p j (1) p (1) (1) p j (1) Fj r ( p j ( p ( q ( ( p j (, j 1,, (1c) 1 1 Similar calculatio for oliear boudary value problems usig the Legedre polyomials ca be derived which will be discussed through umerical eamples i et portio. IV. Numerical Eamples I this sectio, we eplai four liear ad two oliear boudary value problems which are available i the eistig literatures, cosiderig four types of boudary coditios to verify the effectiveess of the preset formulatios described i the previous sectios. The covergece of each liear boudary value problem is calculated by E u 1( u( where u ( represets the approimate solutio by the proposed method usig -th degree polyomial approimatio. The covergece of oliear boudary value problem is assumed whe the absolute error of two cosecutive iteratios is recorded below the covergece criterio such that ~ N 1 ~ N u u where N is the Newto s iteratio umber ad varies from 1-8. Eample1. First we cosider the boudary value problem with Robi boudary coditios [15]: d u u cos, (11a) u 3u 1, u( ) 4u( ) 4 (11b) The eact solutio is u( cos. The boudary value problem (11) over [, 1] is equivalet to the BVP 1 d u u cos, 1 u() 3u() 1, u(1) 4u(1) 4 Usig the formula derived i Case-1, equatio (6) ad usig differet umber of Legedre polyomials, the approimate solutios are show i Table 1. It is observe that the accuracy is foud early the order 1-5, 1-6, 1-6, 1-7 o usig 6, 7, 8, ad 9 Legedre polyomials respectively. DOI: 1.979/578-1164111 www.iosrjourals.org 5 Page

Numerical Solutios of Secod Order Boudary Value Problems by Galeri Residual Method Table 1: Eact, approimate solutios ad absolute differeces for the eample 1 π/ 11π/ 3π/5 13π/ 7π/1 3π/4 4π/5 17π/ 9π/1 19π/ π π/ 11π/ 3π/5 13π/ 7π/1 3π/4 4π/5 17π/ 9π/1 19π/ π Eact -.156434465 -.39169944 -.453994997 -.58778553 -.7716781 -.89169944 -.891654 -.951565163 -.987688346-1. -.156434465 -.39169944 -.453994997 -.58778553 -.7716781 -.89169944 -.891654 -.951565163 -.987688346-1. Approimate Error Approimate Error 6 Legedre polyomials 7 Legedre polyomials -.156395198 3.94566397E-5 -.1564361741 1.7941794E-6 -.398695 6.56968539E-5 -.3993644 1.377419E-5 -.454545634 6.46364331E-5 -.4539871936 3.361433E-6 -.5877674749 1.7777435319E-5 -.5877757 1.36583116E-5 -.773186 7.4995816E-5 -.77138639.917939944E-6 -.88969169 4.777751913E-5 -.8974888 1.49447349E-5 -.89136369.983867961E-5 -.89113546 6.9839611E-6 -.9511166917 6.1754579E-5 -.951489959 7.53691469E-6 -.98767846 9.9179536835E-6 -.9876846996 3.6498139E-6-1. -1. 8 Legedre polyomials 9 Legedre polyomials -.156435985 -.3917634 -.453988914 -.587784961 -.77188461 -.8917547 -.8914781 -.9515639 -.9876895985-1. 1.463435917E-6 6.9748865E-7.8959843E-6 3.46456477E-7.64999E-6 5.463365533E-7 1.81697849E-6 1.667194E-7 1.579438687E-6 -.15643485 -.39167598 -.453993134 -.58778561 -.7716844 -.89166411 -.89165885 -.951567651 -.987688856-1. 3.3747539643E-7.34577337E-7 1.863984755E-7 3.598597813E-7 6.78198989E-8 3.53333E-7 6.499355618E-8.487554448E-7.5495931E-7 Eample. We cosider the boudary value problem with Dirichlet boudary coditios [1]: d u u e, 1 (1a) u ( ), u(1) (1b) 1 The eact solutio is: e 1 e cos e The boudary value problem (1) is similar to the VBP cot1 11cos ec1 si 1 e 1 d u 1 u e, 1 1 (13a) u ( ) u(1) (13b) Usig the formula calculated i Case-, equatio (7), the approimate solutios are summarized i Table. It is show that the accuracy up to 3, 5, 6 ad 8 sigificat digits are obtaied for 8, 1, 1 ad 15 Legedre polyomials respectively. Table : Eact, approimate solutios ad absolute differeces for the eample Eact Approimate Error Approimate Error 8 Legedre Polyomials 1 Legedre Polyomials..1..3.4.5.6.7.8.9 1. 1.118778396 1.5914 1.8335888 -.3168166 -.7648884663 -.63644844.1619814.8543645.7816345 1.11793697 1.575119317.999164965 -.33574959 -.7616775 -.638114936.1584875515.858965755.77999631 E+ 1.68434887E-3 4.618895155E-3 3.668635984E-3 1.893698166E-3 4.7616938417E-3 1.87936538E-3 3.7157545E-3 4.66319949E-3 1.7781994E-3 E+ 1.1187696958 1.595477 1.86173 -.317936975 -.7647484694 -.6363187413.161711868.854378518.7815831186 E+ 8.343759517E-6.4434769731E-5.8584174599E-5 1.143135195E-4 1.3999696859E-4 7.389888488E-5.693718385E-5 7.85358555E-5 4.8963764E-5 E+ 1 Legedre Polyomials 15 Legedre Polyomials DOI: 1.979/578-1164111 www.iosrjourals.org 6 Page

Numerical Solutios of Secod Order Boudary Value Problems by Galeri Residual Method..1..3.4.5.6.7.8.9 1. 1.118778396 1.5914 1.8335888 -.3168166 -.7648884663 -.63644844.1619814.8543645.7816345 1.118786841 1.589475 1.8413857 -.3169175 -.7648764993 -.636555845.166945.8549317.781643137 E+ 8.784518331E-6 6.96776579E-6 7.79699351E-6 1.4845163E-5 1.1967683E-5 1.74144593E-5 8.174839E-6 7.163794648E-6 8.686651681E-6 E+ 1.1187788 1.59173 1.8335785 -.31681686 -.7648884575 -.63644856.161981449.8543369.781635 E+ 1.87567117E-8 3.956165631E-8 1.975158E-8.416875567E-9 8.795381863E-9 1.383168386E-8.84498581E-8.758456634E-8 6.94744384E-9 E+ Eample3. I this case we cosider the boudary value problem with Neuma boudary coditios []: d u u 1, 1 (14a) 1 cos1 1 cos1 u (), u(1) (14b) si1 si1 1 cos1 whose eact solutio is, u ( cos si 1. si1 Applyig the formula derived i Case-3,equatio (8), the approimate solutios, give i Table 3, are obtaied o usig 5, 7, 8 ad 1 Legedre polyomials with the remarable accuracy early the order of 1-11, 1-13, 1-13 ad 1-17. O the other had, Ramada et al. [6] has foud early the accuracy of order 1-6 ad 1-6, ad 1-8 o usig quadratic ad cubic polyomial splies, ad opolyomial splie respectively with h=1/18 where h= (b-a)/n, a ad b are the edpoits of the domai ad N is umber of subdivisio of itervals [a,b]. Table 3: Eact, approimate solutios ad absolute differeces for the eample 3..1..3.4.5.6.7.8.9 1...1..3.4.5.6.7.8.9 1. Eact.49543494.886179.1167799138.133814.139493973.133814.1167799138.886179.49543494.49543494.886179.1167799138.133814.139493973.133814.1167799138.886179.49543494 Approimate Error Approimate Error 5 Legedre Polyomials 7 Legedre Polyomials E+ E+.49543485 8.17796184E-1.49543494 5.355438315E-13.886178 8.666188637E-11.886179 7.75594E-13.116779915 1.6315E-9.1167799138 6.15563156E-13.1338139 9.318336143E-11.133814.8516953E-13.13949396 1.875478E-9.139493973 8.79468353E-13.1338139 9.318585944E-11.133814.849387397E-13.116779915 1.6363E-9.1167799138 6.1554978E-13.886178 8.66616393E-11.886179 7.7578458E-13.49543485 8.1779639E-1.49543494 5.35599537E-13 E+ E+ 8 Legedre Polyomials 1 Legedre Polyomials E+ E+.49543494 5.355438315E-13.49543494.7755575616E-16.886179 7.75594E-13.886179 8.36676847E-17.1167799138 6.15563156E-13.1167799138 8.36676847E-17.133814.8516953E-13.133814 3.33669739E-16.139493973 8.79468353E-13.139493973 3.33669739E-16.133814.849387397E-13.133814 8.36676847E-17.1167799138 6.1554978E-13.1167799138 8.36676847E-17.886179 7.7578458E-13.886179 9.7144514655E-17.49543494 5.35599537E-13.49543494.7616865E-16 E+ E+ Eample4. We cosider the Cauchy (mied) boudary value problem [4]: d u 3( u 5), (15a) with mied boudary coditios u( ) 15 ( Dirichlet ), u() ( Neuma ) (15b) DOI: 1.979/578-1164111 www.iosrjourals.org 7 Page

Numerical Solutios of Secod Order Boudary Value Problems by Galeri Residual Method 3 3 whose eact solutio is 3 15e 15e u( 5 15e 4 3 4 3 1 e 1 e Usig the formula illustrated i Case-4(ii), equatio (1), ad usig differet umber of Legedre polyomials, the approimate solutios are show i Table 4. It is observe that the accuracy is foud early the order 1-5, 1-7, 1-9 ad 1-14 o usig 8, 1, 1, ad 15 Legedre polyomials respectively...1..3.4.5.6.7.8.9 1. 1.1 1. 1.3 1.4 1.5 1.6 1.7 1.8 1.9...1..3.4.5.6.7.8.9 1. 1.1 1. 1.3 1.4 1.5 1.6 1.7 1.8 1.9. Table 4: Eact, approimate solutios ad absolute differeces for the eample 4 Eact 15 13.16336974 113.48966188 99.476616749 87.73857984 77.81696793 69.5184571131 6.5588894853 56.7898771 51.8531763663 47.785557499 44.41973948 41.6861584 39.3858779 37.43314135 35.937939611 34.7717744 33.896958431 33.91385436 3.935176661 3.817618933 15 13.16336974 113.48966188 99.476616749 87.73857984 77.81696793 69.5184571131 6.5588894853 56.7898771 51.8531763663 47.785557499 44.41973948 41.6861584 39.3858779 37.43314135 35.937939611 34.7717744 33.896958431 33.91385436 3.935176661 3.817618933 Approimate Error Approimate Error 8 Legedre polyomials 1 Legedre polyomials 15 E+ 15 E+ 13.1633618 8.696447341E-7 13.16336777 1.9518458316E-7 113.48976 4.34837473E-5 113.48966138 6.43931914E-8 99.47666784 9.948884751E-6 99.47661765 3.168141E-7 87.738954397 3.834133197E-5 87.738571 1.3751766E-7 77.8169675873 4.6983981E-5 77.8169467.5634861E-7 69.518473563 1.34319447E-5 69.5184568118 3.1347187E-7 6.558858719 3.7634169E-5 6.558889497 7.375135169E-9 56.78857188 5.15834511E-5 56.7898584 3.68739988E-7 51.8531411416 3.54774393E-5 51.853176651.83738168E-7 47.785638 4.63188611E-6 47.78555739.5985485763E-8 44.43845 4.6971448E-5 44.4197899 3.4945977E-7 41.699861 4.8377843E-5 41.686131.7169391E-7 39.388573.1979341483E-5 39.38581183 4.33964737E-8 37.439943677 1.97357657E-5 37.43314444 3.88499159E-7 35.937491681 4.479368E-5 35.93794167.589165E-7 34.77776491 3.91356948E-5 34.7717595 1.45178784E-7 33.896971439 1.3 98146E-5 33.8969579798.6333536E-7 33.9143933 3.766648488E-5 33.913855119 7.94863698E-8 3.9351748738 1.7874451E-6 3.93517683 1.615848744E-7 3.817618948 E+ 3.817618933 E+ 1 Legedre polyomials 15 Legedre polyomials 15 E+ 15 E+ 13.163369713 1.16551967E-9 13.16336974.8417943E-14 113.489661894 1.161311473E-9 113.48966188 1.41854715E-14 99.47661675.83575618E-1 99.476616749.5579538487E-13 87.73857969 1.5666395E-9 87.73857984.763959E-13 77.8169679.999481116E-1 77.81696793 5.6843418861E-14 69.5184571146 1.49358953E-9 69.5184571131 3.41651316E-13 6.558889486 9.158893759E-1 6.5588894853 1.41854715E-14 56.7898761 1.389911154E-9 56.7898771 3.63767954E-13 51.8531763648 1.5884341E-9 51.8531763663.8417943E-14 47.7855575 1.6197618E-1 47.785557499 3.69486E-13 44.41973964 1.55445913E-9 44.41973948 7.15473576E-14 41.68615833 8.478669774E-1 41.6861584.9135166E-13 39.3858769 1.8894331E-9 39.3858779 8.5651891E-14 37.4331411 1.343536683E-9 37.43314135.9847949E-13 35.937939616 4.41367574E-1 35.937939611 8.5651891E-14 34.77177418 1.367615E-9 34.7717744 1.847411113E-13 33.89695848 3.78645381E-1 33.896958431 3.69486E-13 33.913854316 9.9556984878E-1 33.91385436 4.63564146E-14 3.93517666 1.1658416E-9 3.935176661 1.65814136E-13 3.817618933 E+ 3.817618933 E+ We ow also apply the procedure described i sectio 3, formulatio of secod order liear BVP, to fid the umerical solutios of oe oliear secod order boudary value problem. Eample5. We cosider a oliear BVP with Dirichlet boudary coditios [16] d u 1 du 1 4 u, 8 4 1 3 (16a) 43 u ( 1) 17 ad u ( 3) 3 (16b) 16 The eact solutio of the problem is give by u( DOI: 1.979/578-1164111 www.iosrjourals.org 8 Page

Numerical Solutios of Secod Order Boudary Value Problems by Galeri Residual Method To implemet the Legedre polyomials, first we covert the BVP (16) to a equivalet BVP o the iterval [,1] by replacig by 1 such that d u 1 du u 16 ( 1) 3, 1 (17a) 4 43 u ( ) 17 ad u ( 1) (17b) 3 Suppose that the approimate solutio of the boudary value problem (17) applyig the Legedre polyomials is give by u ~ ( ( ai (, 1 (18) i1 8 Where ( 17 is specified by the dirichlet boudary coditios at ad 1ad 3 p i ( ) p i (1) for each i 1,,,. The weighted residual equatios of (17a) correspodig to the approimatio solutio (18), give by 1 d u~ 1 ~ ~ du 3 u 16 ( 1) p (, 1,,, (19) 4 Eploitig itegratio by parts with mior simplificatios, we have 1 dp i dp 1 dp i d dp j p 1 p a j p ai i 1 4 4 j 1 1 3 d dp 1 d 16 1 p p, 1,,, () 4 The above equatio () is equivalet to the matri form ( D C) A G (1a) where the elemets of the matri A, C, D ad G are, c d ad g respectively, give by a i i,, i, 1 dp dp 1 dp d d i i i, p p (1b) 4 1 1 dp j ci, a j p (1c) 4 j1 1 3 d dp 1 d g 16 1 p p, 1,,, (1d) 4 The iitial values of these coefficiets ai are obtaied by applyig the Galeri method to the BVP eglectig the oliear term i (17a). Therefore, to fid the iitial coefficiets, we will solve the system DA G (a) where the elemets of the matrices are give by dp dp d i i, (b) g 1 1 3 d dp 16 1 p, 1,,, Oce the iitial values of the parameters ai are obtaied from equatio (a), they are substituted ito equatio (1a) to obtai ew estimates for the values of a i. This iteratio process cotiues util the coverged values of the uows are obtaied. Puttig the fial values of coefficiets ito equatio (18), we obtai a (c) DOI: 1.979/578-1164111 www.iosrjourals.org 9 Page

Numerical Solutios of Secod Order Boudary Value Problems by Galeri Residual Method approimate solutio of the BVP (17), ad if we replace by 1 i this solutio we will get the approimate solutio of the give BVP (16). Usig first 1 ad 15 Legedre polyomials with 1 iteratios, the absolute differeces betwee eact ad the approimate solutios are give i Table 5. It is observed that the accuracy is foud of the order early 1-6 ad 1-9 o usig 1 ad 15 Legedre polyomials respectively. Table 5: Eact, approimate solutios ad absolute differeces of eample 5 usig 1 iteratios Eact Approimate Error Approimate Error 1 Legedre polyomials 15 Legedre polyomials 1. 1.1 1. 1.3 1.4 1.5 1.6 1.7 1.8 1.9..1..3.4.5.6.7.8.9 3. 17. 15.7554545455 14.7733333333 13.99769377 13.388571486 1.9166666667 1.56 1.31764759 1.188888889 1.3156316 1. 1.947619 1.117777 1.46517391 1.466666667 1.65 1.9138461538 13.1595959 13.554857143 13.97413793 14.3333333333 17. 15.755451378 14.773335446 13.9976948749 13.3885686469 1.9166634176 1.56194 1.317686614 1.1889419 1.3149961 11.999996473 1.947659 1.11734365 1.46545358 1.466656697 1.649996719 1.913845447 13.159879 13.55486145 13.9739744 14.3333333333.E+ 3.167443E-6.11697E-6.5676E-6.781699E-6 3.495E-6 1.9388E-6 3.955476E-6 1.51994E-6.674E-6 3.59663E-6 3.53174E-7 3.163751E-6.796678E-6 9.9699E-7 3.8754E-6 7.6834E-7.776953E-6 5.6E-7.14884E-6.E- 17. 15.7554545479 14.773333331 13.99769379 13.388571435 1.9166666616 1.5599999987 1.31764719 1.188888877 1.315661 1.1 1.947634 1.11777 1.46517349 1.466666696 1.651 1.9138461496 13.1595974 13.55485715 13.97413784 14.3333333333.E+.436138E-9 3.1844E-9.1668E-1 3.96814E-9 5.87697E-9 1.7796E-9 5.53868E-9 1.141489E-9 5.513813E-9 1.181718E-9 4.36418E-9.555799E-9 4.477E-9.9534E-9.19884E-9 4.348E-9 1.45538E-9 8.96475E-1 9.849E-1.E- V. Coclusios I this paper, the formulatio of oe dimesioal liear ad oliear secod order boudary value problems have bee discussed i details by the Galeri weighted residual method applyig Legedre polyomials as the basis fuctios i the approimatio. The proposed method is applied to solve some umerical eamples both liear ad oliear. The computed results are compared with the eact solutios ad we have foud a good agreemet with the eact solutio. All the mathematical formulatios ad umerical computatios have bee doe by MATLAB-1 code. Refereces [1]. M. I. Bhatti ad P. Brace, Solutios of Differetial Equatios i a Berstei Polyomial Basis, Joural of Computatioal ad Applied Mathematics, Vol. 5, No.1, 7, pp.7-8. doi:1.116/j.cam.6.5.. []. M. A. Ramada, I. F. Lashie ad W. K. Zahra, Polyomial ad Nopolyomial Splie Approaches to the Numerical Solutio of Secod Order Boudary Value Problem, Applied Mathematics ad Computatio, Vol.184, No., 7, pp.476-484.doi:1.116/j.amc.6.6.53. [3]. R. A. Usmai ad M. Saai, A Coectio betwee Quatric Splie ad Numerov Solutio of a Boudary value Problem, Iteratioal Joural of Computer Mathematics, Vol. 6, No. 3, 1989, pp. 63-73. doi:1.18/716898837. [4]. Arshad Kha, Parametric Cubic Splie Solutio of Two Poit Boudary Value Problems, Applied Mathematics ad Computatio, Vol. 154, No. 1, 4, pp.175-18. doi:1.116/s9-33(3)71-x. [5]. E. A. Al-Said, Cubic Splie Method for Solvig Two Poit Boudary Value Problems, Korea Joural of Computatioal ad Applied Mathematics, Vol. 5, 1998, pp. 759-77. [6]. E. A. Al-Said, Quadratic Splie Solutio of Two Poit Boudary Value Problems, Joural of Natural Geometry, Vol. 1, 1997, pp.15-134. [7]. D. J. Fyfe, The Use of Cubic splies i the Solutio of Two Poit Boudary Value Problems, The Computer Joural, Vol. 1, No., 1969, pp. 188-19. doi:1.193/comjl/1..188 [8]. A.K. Khalifa ad J. C. Eilbec, Collocatio with Quadratic ad Cubic Splies, The IMA Joural of Numerical Aalysis, Vol., No. 1, 198, pp. 111-11. doi:1.193/imaum/.1.111 [9]. G. Mulleheim, Solvig Two-Poit Boudary Value Problems with Splie Fuctios, The IMA Joural of Numerical Aalysis, Vol. 1, No. 4, 199, pp. 53-518. doi:1.193/imaum/1.4.53 [1]. J. Reiehof, Differetiatio ad Itegratio Usig Berstei s Polyomials, Iteratioal Joural for Numerical Methods i Egieerig, Vol. 11, No. 1, 1977, pp. 167-163. doi:1.1/me.161111 [11]. E. Kreyszig, Berstei Polyomials ad Numerical Itegratio, Iteratioal Joural for Numerical Methods i Egieerig, Vol. 14, No., 1979, pp. 9-95.doi:1.1/me.161413 [1]. R. A. Usmai, Bouds for the Solutio of a Secod Order Differetial Equatio with Mied Boudary Coditios, Joural of Egieerig Mathematics, Vol. 9, No. 1975, pp. 159-164. doi:1.17/bf1535397 [13]. B. Bialeci, Sic-Collocatio methods for Two Poit Boudary Value Problems, The IMA Joural of Numerical Aalysis, Vol. 11, No. 3, 1991, pp. 357-375, doi:1.193/imaum/11.3.357 DOI: 1.979/578-1164111 www.iosrjourals.org 1 Page

Numerical Solutios of Secod Order Boudary Value Problems by Galeri Residual Method [14]. N. Sara, S. D. Sharma ad T. N. Trivedi, Special Fuctios, Seveth Editio, Pragati Praasha,. [15]. P. E. Lewis ad J. P. Ward, The Fiite elemet Method, Priciples ad Applicatios, Addiso-Wesley, Bosto, 1991. [16]. R. L. Burde ad J. D. Faires, Numerical Aalysis, Boos/Cole Publishig Co. Pacific Grove, 199. [17]. M. K. Jai, Numerical Solutio of Differetial Equatios, d Editio, New Age Iteratioal, New Delhi,. [18]. J. Stephe Chapma, MATLAB Programmig for Egieers, Third Editio, Thomso Learig, 4. [19]. C. Steve Chapra, Applied Numerical Methods with MATLAB for Egieers ad Scietists, Secod Editio, Tata McGraw-Hill, 7. DOI: 1.979/578-1164111 www.iosrjourals.org 11 Page