Christian J. Bordé. Bruxelles, mai 2018

Similar documents
Atom interferometry. Quantum metrology and fundamental constants. Laboratoire de physique des lasers, CNRS-Université Paris Nord

II Relationship of Classical Theory to Quantum Theory A Quantum mean occupation number

Absolute gravity measurements with a cold atom gravimeter

Reforming the international system of units: On our way to rede ne the base units solely from fundamental constants and beyond

On the proposed re definition of the SI

On the possible future revision of the SI

Sensitivity limits of atom interferometry gravity gradiometers and strainmeters. Fiodor Sorrentino INFN Genova

Fundamental Constants and Units

The Kilogram Redefined:

Gravimètre Quantique Absolu : une utilisation opérationnelle des atomes froids pour la mesure de gravité. Dr. Jean Lautier-Gaud Journée CNFGG

Shau-Yu Lan 藍劭宇. University of California, Berkeley Department of Physics

Construction of an absolute gravimeter using atom interferometry with cold 87. Rb atoms

1.4 The Compton Effect

4 Relativistic kinematics

The physics of cold atoms from fundamental problems to time measurement and quantum technologies. Michèle Leduc

The Nobel Prize in Physics 2012

Lecture 2:Matter. Wave Interferometry

Does an atom interferometer test the gravitational redshift at the Compton frequency?

Chapter 1. From Classical to Quantum Mechanics

SYRTE - IACI. AtoM Interferometry dual Gravi- GradiOmeter AMIGGO. from capability demonstrations in laboratory to space missions

High-Resolution. Transmission. Electron Microscopy

- HH Photons. Compton effect. Hsiu-Hau Lin (May 8, 2014)

The SI in 2019: Traceability Questions for SIM A Presentation to Encourage Discussion and Understanding Alan Steele SIM General Assembly Montevideo,

HOLGER MÜLLER BIOGRAPHY. Research Area(s): Atomic, Molecular and Optical Physics ASSOCIATE PROFESSOR. Office: 301C LeConte

STSF2223 Quantum Mechanics I

Cold atom gyroscope with 1 nrad.s -1 rotation stability

Quantum optics of many-body systems

Atomic Quantum Sensors and Fundamental Tests

Progress on Atom Interferometer (AI) in BUAA

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

The General Conference on Weights and Measures (CGPM), at its 24th meeting,

Nuclear Physics. (PHY-231) Dr C. M. Cormack. Nuclear Physics This Lecture

Les Puces à Atomes. Jakob Reichel. Laboratoire Kastler Brossel de l E.N.S., Paris

Which of the following can be used to calculate the resistive force acting on the brick? D (Total for Question = 1 mark)

Kilogram: new definition, selected mises-en-pratique and direct link with SMD activities

by M.W. Evans, British Civil List (

Physics 1C Lecture 28C. "For those who are not shocked when they first come across quantum theory cannot possibly have understood it.

MODERN PHYSICS Frank J. Blatt Professor of Physics, University of Vermont

Introduction. Classical vs Modern Physics. Classical Physics: High speeds Small (or very large) distances

College Physics 10th edition

arxiv:physics/ v3 [physics.gen-ph] 2 Jan 2006

First direct determination of the Boltzmann constant by an optical method

Le système SI et son évolution; le rôle de la seconde dans le future SI Terry Quinn

FIRST PUBLIC EXAMINATION SUBJECT 3: PHYSICAL CHEMISTRY

General Physics (PHY 2140)

QUANTUM- CLASSICAL ANALOGIES

Travaux en gravimétrie au SYRTE

Atom Quantum Sensors on ground and in space

Chapter 1. Basic Concepts. 1.1 Trajectories

QUANTUM PHYSICS. Limitation: This law holds well only for the short wavelength and not for the longer wavelength. Raleigh Jean s Law:

Bloch oscillations of ultracold-atoms and Determination of the fine structure constant

Ingvar Lindgren Symposium: New Trends in Atomic Physics II 2 3 June 2006 The Quantum SI: A possible new International System of Units

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Dr. Jean Lautier-Gaud October, 14 th 2016

Chapter 39. Particles Behaving as Waves

Rb, which had been compressed to a density of 1013

Increasing atomic clock precision with and without entanglement


Atom Interferometry I. F. Pereira Dos Santos

1.2.3 Atomic constants

Quantum interferometric visibility as a witness of general relativistic proper time. M. Zych, F. Costa, I. Pikovski, Č. Brukner

Neutron interferometry. Hofer Joachim

Chapter 4: The Wave Nature of Matter

The sensitivity of atom interferometers to gravitational waves

Exact phase shifts for atom interferometry

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

UNIVERSITY OF SOUTHAMPTON

Optical Lattice Clock with Neutral Mercury

Dynamics of star clusters containing stellar mass black holes: 1. Introduction to Gravitational Waves

INTRODUCTION À LA PHYSIQUE MÉSOSCOPIQUE: ÉLECTRONS ET PHOTONS INTRODUCTION TO MESOSCOPIC PHYSICS: ELECTRONS AND PHOTONS

Stress Energy Quantum Tensor : Linear Approximation of the Einstein s Equations and Equivalence with the Klein-Gordon s equation

PHYSICS 359E: EXPERIMENT 2.2 THE MOSSBAUER EFFECT: RESONANT ABSORPTION OF (-RAYS

Lorentz Transformations and Special Relativity

Chapter 37 Early Quantum Theory and Models of the Atom

Chapter 10: Wave Properties of Particles

Does an atom interferometer test the gravitational redshift at the Compton frequency?

FRAME S : u = u 0 + FRAME S. 0 : u 0 = u À

An Overview of Advanced LIGO Interferometry

Experimental AMO eets meets M odel Model Building: Part I (Precision Atom Interferometry)

Preliminary Examination - Day 1 Thursday, August 10, 2017

arxiv: v1 [physics.atom-ph] 26 Feb 2014

EE485 Introduction to Photonics

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008

Part IV. Fundamentals of Laser Spectroscopy

General classifications:

Hybrid Atom-Optical Interferometry for Gravitational Wave Detection and Geophysics

General Physics (PHY 2140) Lecture 14

V 11: Electron Diffraction

Chapter 13. Phys 322 Lecture 34. Modern optics

2013 CAP Prize Examination

State of the art cold atom gyroscope without dead times

Knowledge of basic math concepts is expected (conversions, units, trigonometry, vectors, etc.)

1) Introduction 2) Photo electric effect 3) Dual nature of matter 4) Bohr s atom model 5) LASERS

THEORETICAL PROBLEM 2 DOPPLER LASER COOLING AND OPTICAL MOLASSES

Molecular spectroscopy

Fundamental Constants

SPECIAL RELATIVITY. Chapter 28

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level

1. Consider the biconvex thick lens shown in the figure below, made from transparent material with index n and thickness L.

Chapter V: Interactions of neutrons with matter

Transcription:

A consistent Fondations unified théoriques framework for de the la new métrologie International et du système System d unités of Units de (SI): base: de la géométrie Matter-wave et des optics nombres Christian J. Bordé Bruxelles, mai 018

Base units of the SI (Système International) m cd kg K s mol A

Emergence of quantum metrology: numbers and geometry All base quantities of metrology, length, time, mass, electrical quantities, temperature are ultimately measured by optical or matterwave interferometers: - Optical interferometry - Atom interferometry - Optical clocks - Josephson effect - Watt balance - Doppler broadening thermometry - Aharonov Bohm and Aharonov Casher phases - Sagnac effect - Gravitational red shift... Future fundamental metrology will thus deal essentially with phase measurements i.e. invariant numbers. All measured quantities enter these phases through geometrical properties of a 5D space-time which combines 4D space-time and the internal space of objects.

Relativity Gravitation Atomic Physics m at, c, G R Electrodynamics e, 0 Quantum Mechanics Action: Thermodynamics Statistical Physics Entropy: k B 5D-Optics, k, c, m, e B at

5D-Optics, k, c, m, e B at G Gm e m e 1.75 10 c mp 45 e e 1 4 0 c qp 137 t m c Natural units of Planck 1 kb c,, lp ctp, mp, qp 0c T m c G P 4 P P P

Ἀγεωμέτρητος μηδείς εἰσίτω ds g dx dx, 0,1,, 3 Pythagore (Πυθαγόρας) Que nul n'entre ici s'il n'est géomètre! L'École d'athènes de Raphaël, 1509. g metric tensor

Flat Minkovski space-time (no gravito-inertial field): g g 00 ii 1, 1 c dt dx c d t coordinate time, proper time For light: c dt dx

VIRGO (Cascina) GRAVITATIONAL WAVE DETECTION

ENERGY E(p) 4 E( p) m c p c Mass E mc 1905 MOMENTUM p

ˆ p E c p p p mc ( /,,,, ) x y z ˆ 0,1,,3,4 E ˆ p pˆ 0 mc p

x ˆ ( ct, x, y, z, c ) dx ˆ dx ˆ t c dt dx ds 0 s c ds c dt dx 0 x

Quantum mechanical phase factor exp i S exp i mc de Broglie- Compton frequency 0 mc h

E(p) b a Recoil energy h / m c m b c m a c h / p //

Atom Bordé-Ramsey interferometers Laser beams b beam a

Atom Bordé-Ramsey interferometers Laser beams b beam Action T a

Atom Bordé-Ramsey interferometers Laser beams b beam a

Determination of h/m at by Bordé-Ramsey atom interferometry T h m at Atomic recoil: Hall and Bordé, Chu, Biraben

Rydberg constant R mc e h

Bridging the gap to the 4 K R J K macroscopic h world C M K h c 1 4 f 1 f ( v T / c)

Mc A h N 8 M /( a³) Si N Si m c h Escher 1935

Volume measurement by optical interferometry Different types of interferometers (a) Flat etalon Flat etalon Sphere NMI-A (c) Flat etalon Flat etalon Sphere IMGC (b) Flat etalon Sphere Flat etalon NMIJ (d) Fizeau lenses Sphere Fizeau lenses PTB NMIJ PTB

Principle of lattice spacing measurement by x-ray interferometer incident x-ray splitter mirror analyzer transmission diffraction x silicon single-crystal displacement

Les effets quantiques de la métrologie électrique Effet Josephson Prix Nobel 1973 f Effet Hall quantique Prix Nobel 1985 V nk 1 J f n h e f 15000 R H R i K 1 i h e 10000 i= courant 0 f 1 tension R xy (W) 10000 5000 Rxy i=4 i=3 Rxx 8000 6000 4000 000 R XX (W) 4 10-9 0 0 4 6 8 10 B(T) 0

Generalization in the presence of interactions ˆ xˆ ( ct, x, y, z, c ) G ˆ ˆ 4 g G A G 4 A G 44 1 + A A e / mc rapport gyromagnétique 5D action Sˆ G dxˆ dxˆ ˆ ˆ ˆ ˆ

The 5D action gathers all phenomena and constants of interest for a fully relativistic quantum metrology in an invariant phase through Planck's constant and this includes the dephasing arising from gravito-inertial fields (e.g. the Sagnac effect or the effect of gravitational waves) as well as those of electromagnetic origin (such as the Aharonov-Bohm or the Aharonov-Casher effect).

40 4 44 mc 4i pˆ ˆ4 ˆ i G c p d x mc f dt f dt * * 00 dt m m G 0 ˆ0 ˆ dt p dx Horloge+décalages Doppler relativiste et gravitationnel Gravimètre+Doppler Ondes gravitationnelles Aharonov-Bohm vectoriel Aharonov-Bohm Nouvelle contribution Aharonov-Bohm scalaire ˆ i0 i ij p j i4 pˆ ˆ ˆ 4 G c p i d x ki f dt f dt * * 00 dt m m G où la masse relativiste s écrit: Origine physique des déphasages 00 ij ˆˆ 1/ Sagnac * m m G uˆ f u ˆ uˆ= pˆ/ p i j i i 4 f ij ˆˆ G ij ˆˆ iˆ 0 0ˆj G G G 00 ˆ ˆ ˆ ˆ ˆ

Watt balance: principle A) Static mode B) Dynamical mode

En hommage à Alain PICARD BIPM WATT BALANCE Mechanical Power= Electrical Power

En hommage à Alain PICARD BIPM WATT BALANCE Mechanical Power= Electrical Power M gv K IU M c K h gvt c nn f e J

Atomic Gravimeter S pace c oordinat e z v 0 ' z 1 v 1 z 0 v 0 T Time coordinate t arm II z 1 ' v 1 ' arm I T' z ' v ' z v 7 k 1 M kgt kt gt v0 T z0

Cold Atom Gravimeter CAG Observatoire de Paris 34 LNE-SYRTE

ABSOLUTE QUANTUM GRAVIMETER World s first commercial sensor utilizing laser-cooled atoms Sensitivity: 50.10-8 m.s - / t Stability < 1.10-8 m.s - Continuous absolute measurements over months Production line of AQGs running at Muquans

Planck vs Boltzmann Action S Entropy S Quantum Quantum k Time t Temperature Liouville - Von Neumann equation: B 1/T i t H, p Bloch equation: H k B 1T

LASER SOURCE Amplifier Resonator Measurement of Boltzmann constant k B by absorption spectroscopy, 1/ Internal degrees of freedom Absorption cell v p Mv External motion Detector transmitted intensity D u c k T B mc Doppler width derivative spectrum SPECTRUM Frequency

Action mass m Entropy k B mc / h / mc clock phase recoil shift k B T / mc Doppler width proper time temperature T h / kbt Planck' s law for the black body radiation Thermal Decoherence

Conclusions Action and entropy are the two cornerstones of the future SI. They should be explicitly introduced in its formulation. The definitions for time and mass units are coupled. A natural theoretical framework for the redefinition of the SI is completely provided by the connection between 5D geometry, metric tensor and metrology, that we have outlined. This perspective incorporates naturally all relevant fundamental constants in a logical scheme.