Communication Technologies

Similar documents
Lecture 2: Discrete-Time Signals & Systems. Reza Mohammadkhani, Digital Signal Processing, 2015 University of Kurdistan eng.uok.ac.

Linear-Phase FIR Transfer Functions. Functions. Functions. Functions. Functions. Functions. Let

SER/BER in a Fading Channel

Types of Transfer Functions. Types of Transfer Functions. Types of Transfer Functions. Ideal Filters. Ideal Filters

Radar Signal Demixing via Convex Optimization

Problem Set #2 Due: Friday April 20, 2018 at 5 PM.

THE IMPACT OF A PRIORI INFORMATION ON THE MAP EQUALIZER PERFORMANCE WITH M-PSK MODULATION

10. The Discrete-Time Fourier Transform (DTFT)

Types of Transfer Functions. Types of Transfer Functions. Ideal Filters. Ideal Filters. Ideal Filters

Outline. Why speech processing? Speech signal processing. Advanced Multimedia Signal Processing #5:Speech Signal Processing 2 -Processing-

EEO 401 Digital Signal Processing Prof. Mark Fowler

Carrier frequency estimation. ELEC-E5410 Signal processing for communications

Numbering Systems Basic Building Blocks Scaling and Round-off Noise. Number Representation. Floating vs. Fixed point. DSP Design.

Data Assimilation 1. Alan O Neill National Centre for Earth Observation UK

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

ECE Department Univ. of Maryland, College Park

Slide 1. Slide 2. Slide 3 DIGITAL SIGNAL PROCESSING CLASSIFICATION OF SIGNALS

Bifurcation Theory. , a stationary point, depends on the value of α. At certain values

EE140 Introduction to Communication Systems Lecture 2

ECE 650 1/8. Homework Set 4 - Solutions

Self-Adjointness and Its Relationship to Quantum Mechanics. Ronald I. Frank 2016

Finite element discretization of Laplace and Poisson equations

Frequency Correction

Elements of Statistical Thermodynamics

Gaussian and Flat Rayleigh Fading Channel Influences on PAPR Distribution in MIMO-OFDM Systems

AS 5850 Finite Element Analysis

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

5.80 Small-Molecule Spectroscopy and Dynamics

That is, we start with a general matrix: And end with a simpler matrix:

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS

The Matrix Exponential

The Matrix Exponential

The Transfer Function. The Transfer Function. The Transfer Function. The Transfer Function. The Transfer Function. The Transfer Function

Computing and Communications -- Network Coding

1 Isoparametric Concept

2F1120 Spektrala transformer för Media Solutions to Steiglitz, Chapter 1

6. The Interaction of Light and Matter

Unquantized and Uncoded Channel State Information Feedback on Wireless Channels

ECE 344 Microwave Fundamentals

Calculus II (MAC )

Appendix. Kalman Filter

Chapter 6. The Discrete Fourier Transform and The Fast Fourier Transform

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

ECE602 Exam 1 April 5, You must show ALL of your work for full credit.

Volterra Kernel Estimation for Nonlinear Communication Channels Using Deterministic Sequences

ANALYSIS IN THE FREQUENCY DOMAIN

Homotopy perturbation technique

cycle that does not cross any edges (including its own), then it has at least

Cyclic Water-Filling for Additive Wide-Sense Cyclostationary Gaussian Noise Channel

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Propositional Logic. Combinatorial Problem Solving (CPS) Albert Oliveras Enric Rodríguez-Carbonell. May 17, 2018

SCALING OF SYNCHROTRON RADIATION WITH MULTIPOLE ORDER. J. C. Sprott

Higher order derivatives

[ ] [ ] DFT: Discrete Fourier Transform ( ) ( ) ( ) ( ) Congruence (Integer modulo m) N-point signal

Chapter 6 Folding. Folding

Prod.C [A] t. rate = = =

Robust surface-consistent residual statics and phase correction part 2

Recursive Estimation of Dynamic Time-Varying Demand Models

Image Filtering: Noise Removal, Sharpening, Deblurring. Yao Wang Polytechnic University, Brooklyn, NY11201

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

Decision Feedback Equalizer Based Multiuser Detection in DS-CDMA Systems

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory

2. Background Material

perm4 A cnt 0 for for if A i 1 A i cnt cnt 1 cnt i j. j k. k l. i k. j l. i l

5 Transform Analysis of LTI Systems

Principles of active remote sensing: Lidars. 1. Optical interactions of relevance to lasers. Lecture 22

MA 262, Spring 2018, Final exam Version 01 (Green)

2. Finite Impulse Response Filters (FIR)

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

Uplink channel estimation for multi-user OFDM-based systems

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

Linear Non-Gaussian Structural Equation Models

Bit-Loading Algorithms for OFDM with Adaptive Cyclic Prefix Length in PLC Channels

EEO 401 Digital Signal Processing Prof. Mark Fowler

TOPOLOGY DESIGN OF STRUCTURE LOADED BY EARTHQUAKE. Vienna University of Technology

Engineering 323 Beautiful HW #13 Page 1 of 6 Brown Problem 5-12

Radiation Physics Laboratory - Complementary Exercise Set MeBiom 2016/2017

Random Access Techniques: ALOHA (cont.)

DSP-First, 2/e. LECTURE # CH2-3 Complex Exponentials & Complex Numbers TLH MODIFIED. Aug , JH McClellan & RW Schafer

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

EECE 301 Signals & Systems Prof. Mark Fowler

SCHUR S THEOREM REU SUMMER 2005

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 7, Theoretical Analysis of BER Performance of Optical ZCZ-CDMA System

A Zero-IF digitized Despreading Scheme Without PN Code Synchronization Recovery

Atomic and Laser Spectroscopy

Math 34A. Final Review

Discrete-Time Signal Processing

CPSC 665 : An Algorithmist s Toolkit Lecture 4 : 21 Jan Linear Programming

Pipe flow friction, small vs. big pipes

MAE4700/5700 Finite Element Analysis for Mechanical and Aerospace Design

Mathematics. Complex Number rectangular form. Quadratic equation. Quadratic equation. Complex number Functions: sinusoids. Differentiation Integration

STABILITY ANALYSIS OF FUZZY CONTROLLERS USING THE MODIFIED POPOV CRITERION

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

Basic Polyhedral theory

MATH 319, WEEK 15: The Fundamental Matrix, Non-Homogeneous Systems of Differential Equations

Economics 201b Spring 2010 Solutions to Problem Set 3 John Zhu

Outline. Image processing includes. Edge detection. Advanced Multimedia Signal Processing #8:Image Processing 2 processing

A Low-Cost and High Performance Solution to Frequency Estimation for GSM/EDGE

2/12/2013. Overview. 12-Power Transmission Text: Conservation of Complex Power. Introduction. Power Transmission-Short Line

Transcription:

Communication Tchnologis. Principls of Digital Transmission. Structur of Data Transmission.2 Spctrum of a Data Signal 2. Digital Modulation 2. Linar Modulation Mthods 2.2 Nonlinar Modulations (CPM-Signals) 2.3 Spctral Charactristics 3. Rcivr Structurs 3. Cohrnt Dmodulation 3.2 MSK-Dmodulator 3.3 Carrir Rcovry 3.4 Noncohrnt Dmodulation 4. AWGN Transmission 4. Matchd Filtr (Whit Nois) 4.2 S/N MF in Basband for Ral and Complx Data 4.3 Bit Error Probability 4.4 Optimal Rcivr (MAP/ML) 5. Linar Equalization 5. Multipath Channl / Frquncy Slctiv Channl 5.2 T-Equalizr: LS/MMSE-Solution 5.3 T/2-Equalizr: LS-Solution 5.4 Dcision-Fdback Equalizr

Why do w nd to qualiz? Frquncy-Slctiv Channls mobil scattrr transmittr mobil rcivr fixd scattrr Multipath radio channls causd.g. from rflctions from objcts v 2

Multipath Channls (Frquncy-Slctiv Channls) Tim domain n h( t) xp( j ) ( t ) (unlimitd channl bandwidth) Dlayd vrsions of transmittd signal at rcivr intrsymbol intrfrnc (ISI) ow much ISI is a function of th signal duration T (or signal bandwidth /T) and th maximum dlay max of channl: If T >> max ) ngligibl ISI Frquncy domain n ( j) xp( j )xp( j ) channl varis ovr frquncy frquncy-slctiv channl If signal bandwidth B << cohrnc bandwidth (¼ / max ) ) ngligibl ISI 3

Linar Equalization Digital transmission systm (symbol rat /T) Channl n(t) T k w g Tx (t) h c (t) g Rx (t) Equalizr Downsampling w Impuls rspons of ntir channl : h t g t h t g t Sampld impuls rspons: hkt / w Tx c Rx hk / w for k w othrwis w: Ovrsampling factor finit lngth impuls rspons no ISI! Our task is to dsign an qualizr (k) such that a Nyquist-impuls (no ISI at tim instancs it) rsults at its output aftr down-sampling 4

n+l y( k) h( k) x( k) h( ) x( k ) n Convolutional Matrix causal input x( k) [ x(), x(),, x( L )] y() h() x() y() h() x() h() x() Full quation systm y(2) h(2) x() h() x() h() x(2) y( n) h( n) x() h( n ) x() h() x( n) y( n ) h( n) x() h() x( n ) T Toplitz structur Equation systm in matrix notation with convolutional matrix L h() y() h() h() y() h(2) h() h() y(2) x() h(2) h() x() h() x(2) hn ( ) hn ( ) xl ( ) hn ( ) h( n) y( L n) : causality : finit impuls rspons 5

6 Equalization: Dfinitions Vctor algbra i : Elmnt of vctor,, n n n m n m mn m m m m M m n m n mn m m m m M n n T,, n n T : Transpos of vctor : rmitian of vctor Matrix M M : rmitian of matrix M * i: Conjugat lmnt of vctor * * * * n n

Communication Tchnologis. Principls of Digital Transmission. Structur of Data Transmission.2 Spctrum of a Data Signal 2. Digital Modulation 2. Linar Modulation Mthods 2.2 Nonlinar Modulations (CPM-Signals) 2.3 Spctral Charactristics 3. Rcivr Structurs 3. Cohrnt Dmodulation 3.2 MSK-Dmodulator 3.3 Carrir Rcovry 3.4 Noncohrnt Dmodulation 4. AWGN Transmission 4. Matchd Filtr (Whit Nois) 4.2 S/N MF in Basband for Ral and Complx Data 4.3 Bit Error Probability 4.4 Optimal Rcivr (MAP/ML) 5. Linar Equalization 5. Multipath Channl / Frquncy Slctiv Channl 5.2 T-Equalizr: LS/MMSE-Solution 5.3 T/2-Equalizr: LS-Solution 5.4 Dcision-Fdback Equalizr 7

Linar Equalization: Conditions Zro forcing solution: i! h k k i i,,,,,,,, k i w st Nyquist condition N B n w w Numbr of sampls aftr downsampling N B conditions for calculating n qualizr cofficints: N B n w w n qualizr ordr: n w w w n! 8

Linar Equalization: T-Equalizr w = : No xact solution (with n < ) for mting st Nyquist Critrion possibl Last Squars approximation: Introduc a rsidual (rror i) and minimiz its nrgy Vctor algbra: n +l - = i + i h i h h i h2 h h i h3 h2 h h i 2 h3 h2 h h i 3 h3 h2 h i 4 h3 h 2 i h 3 i n with 2 3 4 5 6 7 i ; h h it it i 9

Linar Equalization: T-Equalizr LS solution: minimiz th nrgy of th rror i (rsidual): min i i i Δi Δi Δi Normal quations: LS i ) Last squars (LS) solution for qualizr cofficint vctor : LS i if ( ) - xists Enrgy of rsidual (rror vctor) for LS: Δi Δi i LS min (= iff - xists, i 2 of columns spac of )

Linar Equalization: T-Equalizr Problms with LS T-qualization: LS qualizr is adaptd to channl only, not on nois n LS qualizr amplifis nois ) high nois amplification, if qualizr cofficints ar larg (if zros of channls ar clos to unit circl) LS qualization assums prfct knowldg of channl ) channl stimation is rquird

Moor-Pnros-Psudoinvrs min Ax b 2 Th solution of th gnral problm x x A b A + is th (nxm)-psudo invrs of th (mxn) matrix A. is givn by For an ovrdtrmind systm, A + givs us th shortst vctor x. It is givn as follows dpnding on its rank: A A A A A A A A AA m n, rank m m n, rank n m n, rank A n A A - 2

Moor-Pnros-Psudoinvrs (cont.) Singular valu dcomposition of A: A UΣV Psudo-invrs in trms of SVD: A VΣ U V is unitary (mxm)-matrix of Eign vctors of A A U is unitary (nxn)-matrix of Eign vctors of AA / for Σ with for m 3

Linar Equalization: T-Equalizr MMSE (Minimum Man Squar Error) - solution which considrs nois Equalizr input at tim sampl i: xi hid i ni Minimizing th powr of (qualizr output original data): qualizr cofficint vctor: 2 ˆ FMMSE =E d i d i i min rror: i n qualizr input vctor: x() i xi xi n di : Data ni : Nois qualizr output: ˆ d i x() i 4

ACF-matrix: Linar Equalization: T-Equalizr E xx * * * rxx rxx rxx n r r r n! xx xx xx R xx rxx n r CCF-vctor of data and qualizr input: In vctor notation: r xx * * du to r E x i x i E x i x i r xx ( ) * xd E xd i i rmitian Toplitz matrix F MMSE R r r 2 xx xd xd d min 5

Linar Equalization: T-Equalizr MMSE - solution for qualizr cofficint vctor : R r MMSE xx xd rror nrgy: 2 Error nrgy includs channl and nois (both in x) ) MMSE balancs nois and ISI to minimiz rror nrgy R xx and r xd ndd for calculation of R xx : stimatd from rcivd data min r F MMSE d xd MMSE r xd : contains original data trainings squnc (pilots) ncssary no nois, zro man uncorrlatd data and prfct knowldg of : LS solution = MMSE-solution 6

Linar Equalization: Exampls (w = ) E s /N =5dB Last Squars (ZF) powr of ISI nois rror,98,4487,4585 MMSE powr of ISI nois rror,73,78,5 7

Communication Tchnologis. Principls of Digital Transmission. Structur of Data Transmission.2 Spctrum of a Data Signal 2. Digital Modulation 2. Linar Modulation Mthods 2.2 Nonlinar Modulations (CPM-Signals) 2.3 Spctral Charactristics 3. Rcivr Structurs 3. Cohrnt Dmodulation 3.2 MSK-Dmodulator 3.3 Carrir Rcovry 3.4 Noncohrnt Dmodulation 4. AWGN Transmission 4. Matchd Filtr (Whit Nois) 4.2 S/N MF in Basband for Ral and Complx Data 4.3 Bit Error Probability 4.4 Optimal Rcivr (MAP/ML) 5. Linar Equalization 5. Multipath Channl / Frquncy Slctiv Channl 5.2 T-Equalizr: LS/MMSE-Solution 5.3 T/2-Equalizr: LS-Solution 5.4 Dcision-Fdback Equalizr 8

Linar Equalization: T/2-Equalizr (w = 2) T zro forcing: h( kt / 2) h, h/2, h, h3/2,, h l2 /2 2,,, n 2 n 2 +l 2 2 = i h h/ 2 h h h/ 2 h h3/ 2 h h/ 2 h h2 h3/ 2 h h/ 2 h h5/ 2 h2 h3/ 2 h h/ 2 2 h3 h5/ 2 h2 h3/ 2 h 3 h3 h5/ 2 h2 h 3/ 2 4 h3 h5/ 2 h 2 h3 h5/ 2 h 3 n 2 + T st Nyquist cond. considrs symbol rat /T, not (w/t) Arbitrary valus of no intrst 9

Linar Equalization: T/2-Equalizr w = 2: For th spcific choic of th lngth of th qualizr n w can lav out vry 2nd row and obtain a quadratic matrix 2 : 2 2 n 2 + 2 2 = i 2 h/ 2 h h h h h 3/ 2 / 2 h5 / 2 h2 h3/ 2 h h/ 2 2 h3 h5 / 2 h2 h3/ 2 3 h3 h 5 / 2 4 n 2 + zro forcing solution (xact) for qualizr cofficint vctor i 2 2 2 : non-singular T/2-qualizr: no ISI at qualizr output (prfct qualization) Rmmbr: LS/ZF T-qualizr minimal in LS sns rmaining ISI at output 2

Linar Equalization: T/2-Equalizr Drawback: Equalizr cofficints may bcom vry larg high nois amplification Solution: W allow for largr qualizr ordr than ncssary ( n2 n2) and prform a LS-approach with an additional minimization of th cofficint nrgy 22 2 = i + i with 2 2 cost function : FLS i i 2 2 min 2 2 2 2 I i n n Not: W solv an undrtrmind quation systm by LS with rgularization trm Rgularization trm: 22 Zro forcing solution (last squars) for qualizr cofficint vctor 2 : 2

Linar Equalization: Exampls (w = 2) h norm. channl impuls rspons z-plan of th channl no ISI larg nois amplification h 2 (k) 2 (k)* 2 (k).4.2 5 kt/2 xact solution (n=9), 2 2 = 28. 2 5 k 5 h 2 (k)* 2 (k) Im{z}.5 - - R{z} ZF, last squars, n=6, 2 2 = 2.3 2 k ISI small nois amplification many mor cofficints 22

Signal Spac for QPSK (no nois) w=, MMSE.5.5 Im{y(i)} Im{y(i)} w=, Zro Forcing -.5 - -.5 - - R{y(i)} w=2, xact.5.5 Im{y(i)} Im{y(i)} -.5 - - R{y(i)} w=2, with SC - -.5.5 R{y(i)} -.5 - - -.5.5 R{y(i)} 23

Signal Spac for QPSK (ES/N=5 db) w=, MMSE.5.5.5 Im{y(i)} Im{y(i)} w=, Zro Forcing.5 -.5 - -.5 - - R{y(i)} w=2, xact -.5.5.5.5.5 Im{y(i)} Im{y(i)} -.5 -.5 - -.5 - R{y(i)} w=2, with SC - R{y(i)} -.5 - - R{y(i)} -.5 24

S/ISI in db Influnc of Sampling Tim Offst Not that sampling is applid aftr th usd rciv filtr, but bfor qualization G( j2 f ) cos-roll-off 45 T-Equalizr T/2-Equalizr Sampling: it+ r= (roll-off) w / 2T aliasing /T f 4 35 G( j2 f ) 3 25 w 2 / 2T /T 2/T f 2..2.3.4.5.6.7.8.9 /T T-Equalizr: dos not mt sampling thorm vry snsitiv to sampling offst T/2-Equalizr: mts sampling thorm vry robust to sampling offst 25

Influnc on whit nois Assum: root-cosin matchd filtring and n(t) zro man whit nois T-Equalizr: Aliasing nois is still whit aftr matchd filtr (qualizr input) T/2-Equalizr: no aliasing nois is colord aftr matchd filtr (qualizr input) 26

T-Equalizr Summary of Linar Equalizrs T/2-Equalizr Last Squars Solution LS i Last Squars Solution (Zro Forcing) i 2 2 MMSE Solution R r MMSE XX XD 2 N MMSE I i (for uncorrlatd data and whit nois) LS Solution (n largr than ncssary and minimal cofficint nrgy) 2 2 2 2 I i 27

Communication Tchnologis. Principls of Digital Transmission. Structur of Data Transmission.2 Spctrum of a Data Signal 2. Digital Modulation 2. Linar Modulation Mthods 2.2 Nonlinar Modulations (CPM-Signals) 2.3 Spctral Charactristics 3. Rcivr Structurs 3. Cohrnt Dmodulation 3.2 MSK-Dmodulator 3.3 Carrir Rcovry 3.4 Noncohrnt Dmodulation 4. AWGN Transmission 4. Matchd Filtr (Whit Nois) 4.2 S/N MF in Basband for Ral and Complx Data 4.3 Bit Error Probability 4.4 Optimal Rcivr (MAP/ML) 5. Linar Equalization 5. Multipath Channl / Frquncy Slctiv Channl 5.2 T-Equalizr: LS/MMSE-Solution 5.3 T/2-Equalizr: LS-Solution 5.4 Dcision-Fdback Equalizr 28

Nonlinar Equalization: Dcision Fdback Rcivd signal, sampld with symbol rat /T: x i h d( i ) n( i) h d( i) h d( i ) n( i) d: Data h ; : Impuls rspons of channl and filtr (g TX, g RX ) symbol of intrst, i.. i = Ida: At sampling instant it w alrady hav dcidd symbols If w assum prfct prcding dcisions,! subtract prcding dcisions from data d(i) and tak channl h v into account signal aftr subtraction: h h x i h d( i ) d( i) n( i) Symbol d(i) + (amplifid) nois AWGN (no ISI) 29

Dcidd symbol Nonlinar Equalization: Dcision Fdback ˆ d( i) Q x i b d( i ) ; b h ˆ h h dcision oprator prviously dcidd data 3

Nonlinar Equalization: Dcision Fdback xi () yi () FIR pr-qualizr,,, n Without pr-qualizr: n b y i x i b dˆ i d i q h T /h + - yq () i dcision b b 2 b nb z z z dcision: dˆ i d ˆ( i i ) n b : # of fdback cofficints (mmory of fdback structur) 3

Problm: Nonlinar Equalization: Dcision Fdback Error propagation du to dcision rrors. If first impuls h of channl is small ) high amplification of nois (high SNR loss) )high probability of dcision rror )First impuls h should b larg (not that hr: i =) Solution for any i : FIR pr-qualizr () kills sampls of h(k) from to tim (i -)T Subsquntly, DF qualizr (b) kills sampls from (i +)T to nd Exampls of dsign approachs: sparatly ( : ZF or MMSE, b : MMSE) or jointly (, b : MMSE) Joint dsign for and b basd on MMSE-critria,,, n T T b b, b2,, b nb 2 yq i d i i x d b d i i E E min 2 b, y () q i 32

Nonlinar Equalization: Dcision Fdback T * d d( i i ),, d( i i n b ) rxd E xd i i R x d xd E 2 MMSE-solution for uncorrlatd data, r MMSE R xx 2 xdr xd rxd d R bmmse R 2 xd MMSE d dd : d 33

h(i)*(i) h(i)*(i) h(i) DF-Equalization 4 crucial zros n b = 4 aftr prqualizr 34

DF-Equalization : ZF or MMSE, b : ZF (sparat dsign) b(k) quals xactly th last 4 sampls of h(k) * (k) b(k) quals xactly th last 4 sampls of h(k) * (k) 35