A GENERALIZED UPPER. AND LOWER SOLUTIONS METHOD FOR NONLINEAR SECOND ORDER. ORDINARY DIFFEINTIAL EQUATIONS x

Similar documents
(0) < fl (27r), c (0) > c (27r), u = f(t, u), u(0) = u(27r), -u"= f(t, u), u(0) = u(27r), u (0) = u (27r).

DELAY INTEGRO DIFFERENTIAL EQUATIONS OF MIXED TYPE IN BANACH SPACES. Tadeusz Jankowski Technical University of Gdańsk, Poland

EXISTENCE AND APPROXIMATION OF SOLUTIONS OF SECOND ORDER NONLINEAR NEUMANN PROBLEMS

QUASILINEARIZATION FOR SOME NONLOCAL PROBLEMS YUNFENG YIN. Florida Institute of Technology

ON SECOND ORDER IMPULSIVE FUNCTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES

610 S.G. HRISTOVA AND D.D. BAINOV 2. Statement of the problem. Consider the initial value problem for impulsive systems of differential-difference equ

Upper and lower solutions method and a fractional differential equation boundary value problem.

PERIODIC PROBLEMS WITH φ-laplacian INVOLVING NON-ORDERED LOWER AND UPPER FUNCTIONS

Existence and Uniqueness Results for Nonlinear Implicit Fractional Differential Equations with Boundary Conditions

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR FOURTH-ORDER BOUNDARY-VALUE PROBLEMS IN BANACH SPACES

Properties of a New Fractional Derivative without Singular Kernel

Existence Theorem for First Order Ordinary Functional Differential Equations with Periodic Boundary Conditions

Existence Theorem for Abstract Measure. Differential Equations Involving. the Distributional Henstock-Kurzweil Integral

Fractional differential equations with integral boundary conditions

POSITIVE SOLUTIONS FOR NONLOCAL SEMIPOSITONE FIRST ORDER BOUNDARY VALUE PROBLEMS

THE ANALYSIS OF SOLUTION OF NONLINEAR SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS

Approximating solutions of nonlinear second order ordinary differential equations via Dhage iteration principle

CONTROLLABILITY OF NONLINEAR SYSTEMS WITH DELAYS IN BOTH STATE AND CONTROL VARIABLES

ON PERIODIC SOLUTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS WITH SINGULARITIES

Nonlinear Analysis 71 (2009) Contents lists available at ScienceDirect. Nonlinear Analysis. journal homepage:

Existence Of Solution For Third-Order m-point Boundary Value Problem

ON WEAK SOLUTION OF A HYPERBOLIC DIFFERENTIAL INCLUSION WITH NONMONOTONE DISCONTINUOUS NONLINEAR TERM

Identification of Parameters in Neutral Functional Differential Equations with State-Dependent Delays

P a g e 5 1 of R e p o r t P B 4 / 0 9

Existence Results for Multivalued Semilinear Functional Differential Equations

EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS TO HIGHER-ORDER NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL BOUNDARY CONDITIONS

Global Solutions for a Nonlinear Wave Equation with the p-laplacian Operator

arxiv: v1 [math.ca] 3 Nov 2015

Absolute value equations

Positive Solutions of a Third-Order Three-Point Boundary-Value Problem

Research Article A New Fractional Integral Inequality with Singularity and Its Application

NONTRIVIAL SOLUTIONS FOR SUPERQUADRATIC NONAUTONOMOUS PERIODIC SYSTEMS. Shouchuan Hu Nikolas S. Papageorgiou. 1. Introduction

EXISTENCE RESULTS FOR NONLINEAR FUNCTIONAL INTEGRAL EQUATIONS VIA NONLINEAR ALTERNATIVE OF LERAY-SCHAUDER TYPE

Singular boundary value problems

M.S.N. Murty* and G. Suresh Kumar**

THIRD ORDER NONOSCILLATION OF THE SOLUTIONS OF IMPULSIVE DIFFERENTIAL EQUATIONS OF

Nonlinear Control Systems

On graph differential equations and its associated matrix differential equations

Singularities and Laplacians in Boundary Value Problems for Nonlinear Ordinary Differential Equations

EXISTENCE OF POSITIVE SOLUTIONS OF A NONLINEAR SECOND-ORDER BOUNDARY-VALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS

PATA TYPE FIXED POINT THEOREMS OF MULTIVALUED OPERATORS IN ORDERED METRIC SPACES WITH APPLICATIONS TO HYPERBOLIC DIFFERENTIAL INCLUSIONS

T h e C S E T I P r o j e c t

Riemann integral and volume are generalized to unbounded functions and sets. is an admissible set, and its volume is a Riemann integral, 1l E,

Nontrivial Solutions for Boundary Value Problems of Nonlinear Differential Equation

On first order ordinary differential equations with non-negative right-hand sides

Calculus of Variations. Final Examination

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS 1. Yong Zhou. Abstract

Tomasz Człapiński. Communicated by Bolesław Kacewicz

EXISTENCE, UNIQUENESS AND QUENCHING OF THE SOLUTION FOR A NONLOCAL DEGENERATE SEMILINEAR PARABOLIC PROBLEM

The antipodal mapping theorem and difference equations in Banach spaces

Oscillation by Impulses for a Second-Order Delay Differential Equation

Singular Perturbation on a Subdomain*

arxiv: v1 [math.ca] 6 May 2016

A L A BA M A L A W R E V IE W

POSITIVE SOLUTIONS TO SINGULAR HIGHER ORDER BOUNDARY VALUE PROBLEMS ON PURELY DISCRETE TIME SCALES

Positive solutions of singular boundary. value problems for second order. impulsive differential equations

VARIABLE IMPULSIVE PERTURBATIONS

GENERALIZATION OF GRONWALL S INEQUALITY AND ITS APPLICATIONS IN FUNCTIONAL DIFFERENTIAL EQUATIONS

Existence of homoclinic solutions for Duffing type differential equation with deviating argument

MONOTONE POSITIVE SOLUTION OF NONLINEAR THIRD-ORDER TWO-POINT BOUNDARY VALUE PROBLEM

Interval values for strategic games in which players cooperate

Existence of at least two periodic solutions of the forced relativistic pendulum

UNCERTAINTY FUNCTIONAL DIFFERENTIAL EQUATIONS FOR FINANCE

Multiple positive solutions for a class of quasilinear elliptic boundary-value problems

Existence and uniqueness: Picard s theorem


Minimal periods of semilinear evolution equations with Lipschitz nonlinearity

ON WEAKLY NONLINEAR BACKWARD PARABOLIC PROBLEM

THE DUAL FORM OF THE APPROXIMATION PROPERTY FOR A BANACH SPACE AND A SUBSPACE. In memory of A. Pe lczyński

Initial value problems for singular and nonsmooth second order differential inclusions

ON THE REPRESENTATION THEOREM BY THE LAPLACE TRANSFORMATION OF VECTOR-VALUED FUNCTIONS. ISAO MlYADERA. (Received February 18, 1956)

AN EXTENSION OF A THEOREM OF NAGANO ON TRANSITIVE LIE ALGEBRAS

o K(s, t)f(t)(s tp) dt g(s), 0 < =< T, with given p > 0 and 0< a < 1. Particular attention is

by integration with respect to t and putting f u(x, z)dr=w(x, t),

Nonresonance for one-dimensional p-laplacian with regular restoring

Existence of solutions for first order ordinary. differential equations with nonlinear boundary. conditions

Fixed Point Theorems for Mapping Having The Mixed Monotone Property

EXISTENCE THEOREMS FOR FUNCTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES. 1. Introduction

SYMMETRY RESULTS FOR PERTURBED PROBLEMS AND RELATED QUESTIONS. Massimo Grosi Filomena Pacella S. L. Yadava. 1. Introduction


HYBRID DHAGE S FIXED POINT THEOREM FOR ABSTRACT MEASURE INTEGRO-DIFFERENTIAL EQUATIONS

SEMILINEAR ELLIPTIC EQUATIONS WITH DEPENDENCE ON THE GRADIENT

ON THE ASYMPTOTIC STABILITY IN TERMS OF TWO MEASURES FOR FUNCTIONAL DIFFERENTIAL EQUATIONS. G. Makay

NONLINEAR DIFFERENTIAL INEQUALITY. 1. Introduction. In this paper the following nonlinear differential inequality

The Existence of Maximal and Minimal Solution of Quadratic Integral Equation

On the fixed point theorem of Krasnoselskii and Sobolev

SHARP BOUNDARY TRACE INEQUALITIES. 1. Introduction

INITIAL AND BOUNDARY VALUE PROBLEMS FOR NONCONVEX VALUED MULTIVALUED FUNCTIONAL DIFFERENTIAL EQUATIONS

EXISTENCE THEOREM FOR A FRACTIONAL MULTI-POINT BOUNDARY VALUE PROBLEM

Solvability of Discrete Neumann Boundary Value Problems

Existence of Solutions for a Class of Third Order Quasilinear Ordinary Differential Equations with Nonlinear Boundary Value Problems

CONVERGENCE THEOREMS FOR STRICTLY ASYMPTOTICALLY PSEUDOCONTRACTIVE MAPPINGS IN HILBERT SPACES. Gurucharan Singh Saluja

Nonlinear elliptic systems with exponential nonlinearities

Labor and Capital Before the Law

On separated solutions of logistic population equation with harvesting

INFINITE TIME HORIZON OPTIMAL CONTROL OF THE SEMILINEAR HEAT EQUATION

Approximately dual frames in Hilbert spaces and applications to Gabor frames

A fixed point theorem for Meir-Keeler contractions in ordered metric spaces

Gaps between classes of matrix monotone functions

MORE ON SUMS OF HILBERT SPACE FRAMES

Transcription:

Applied Mathematics and Stochastic Analysis 5, Number 2, Summer 1992, 157-166 A GENERALIZED UPPER. AND LOWER SOLUTIONS METHOD FOR NONLINEAR SECOND ORDER. ORDINARY DIFFEINTIAL EQUATIONS x JUAN J. NIETO Departamento de A n6lisis Matem6tico Facultad de Maemticas Universidad de Santiago de Compostela SPAIN ALBERTO CABADA 2 Departamento de Matemtica Aplicada Facultad de Matemgticas Universidad de Santiago de Compostela SPAIN ABSTRACT The purpose of ths paper s to study a nonlinear boundary value problem of second order when the nonlinearity s a Carathodory function. It s shown that a generalzed upper and lower solutions method is vald, and the monotone teratve technique for finding the mnmal and maximal solutions s developed. Key words: Periodic boundary value problem, upper and lower solutions, monotone method. AMS (MOS) subject classification: 34B15. I. INTRODUCTION We shall, in this paper, develop the method of upper and lower solutions and the monotone iterative technique for second order boundary value problems of the form u"(t) = f(t, u(t)), t e = [o, Bu(O) = c o (P) Bu(r) = c where f is a Carathodory function, Bu(O)= aou(o)-bou (O), and Bu(Tr)= alu(tr 1Received: May, 1991. Revised: July, 1991. 2The authors were partially supported by DGICYT (project PS88-0054), and by Xunta de Galicia (project XUGA 20701A90), respectively. Printed in the U.S.A. (C) 1992 The Society of Applied Mathematics, Modeling and Simulation 157

158 JUAN J. NIETO and ALBERTO CABADA a o, a1>_0, bo, b >0. We first note that the classical arguments of [2] for f continuous are no longer valid since if u is a solution of (P), then u" needs not to be continuous but only u" (5 Ll(0, Tr). Here we extend classical and well-known results when f is continuous (see [2]) to the case when f is a Carathodory function. If we choose ao=a1=c0=cl=0, then the boundary u (0) = u (Tr) = 0. Thus, we have the Neumann boundary value problem conditions read," = f(t,,),, (o) =,, (-) = o. (N) We shall consider in Sections 2 and 3 this simpler boundary value problem so as to clearly bring out the ideas involved. On the other hand, there is no additional complication in studying (P) instead of (N). We list the corresponding results for (P) in Section 4. Finally, in Section 5 and following the ideas developed in previous sections, we present the method of upper and lower solutions for the boundary value problem (P) when a0, a 1 > 0 and b o, b >_ 0. In particular, we do so for the Dirichlet problem, = l(t,,),,(o) =,(-) = o. (D) 2. GENERALIZED UPPEIt AND LOWEI SOLUTIONS Let us assume that f:ixrr is a Carathodory function, that is, f(.,u) is measurable for every u (5 R and f(t, is continuous for a.e. t (5 I. Moreover, we suppose that for every/ > 0 there exists a function h- h R (5 L(I) with If(t,u) <_ h(t) for a.e. (5 I and every u --< R. Let E = {u (5 w2 l(i) u (0)= u (r)= 0} with the norm of w2 l(/)and F = LI(I) with the usual one. We shall denote by I[" I! E and I1" [I the norms in E and F, respectively. By a solution of (N) we mean a function u (5 E satisfying the equation for a.e. t (5 I. Now, suppose that a, fl (5 W2 1(I) are such that a(t) < fl(t), t (5 I. Then, relative to (N) we shall consider the following modified problem where,,"(t) = a(t,,,(t)) u(t) + p(t, (t)),,, (o) =,, () = o,

A Generalized Upper and Lower Sohaions Method 159 (t) fo< g(t, u) = f(t, p(t, u)) and p(t, u) = u for a(t) _< u < (t) (t) for u > (t). We note that g is a Carathodory function and that the Neumann problem (N) is equivalent to the integral equation with t (t) = (0)- [ (t- )y(,, ())d, 0 0 f(, ())d =0. (.4) We say that a (5 w2 l(i) is a lower solution for (N) if -a"(t) < f(t,c(t)) for a.e. t e I and c (0) > 0 > a (Tr). (2.6) Similarly, E W2 l(i) is an upper solution for (N)if (t) > f(t, (t)) for a.e. t I and (0) _< 0 _</ (Tr). (2.8) We are now in a position to prove the following result which shows that the method of upper and lower solutions is still valid when f is a Carathodory function. Theorem 2.1: Suppose that a, 1 e W2 1(I) are lower and upper solutions for (N), respectively, such that a(t) < fl(t) for every I. Then there exists at least one solution u of (N) such that a(t) < u(t) < (t) for every I. Proof: We first note that any solution u of (N) such that a _< u _</ is also a solution of (2.2). On the other hand, any solution u of (2.2) with c < u _</ is a solution of (N). We shall show that any solution u of (2.2) is such that a < u _< fl on I and that (2.2) has at least one solution. Now, let u be a solution of (2.2). We first show that c(t) _< u(t), for every t E I. If a(t) > u(t) for every t I, then -u"(t)=f(t,(t))-u(t)+(t) for a.e. t I. Thus we obtain the following contradiction

160 JUAN J. NIETO and ALBERTO CABADA 0 0 0 Thus, there exists t 1 E I with a(tt)_< u(tx). Now, suppose that there exists t E I such that a(t ) > u(t ). Set to = a- u and let t o E I, to(to) = maz{to(t): I). We first suppose that; t o (0, r) and t o < t (the case t o > t t is similar). Then o (to) = 0 and there exists t (to, t) with o(t2)=0 and o(t)>0 for every re[to, t2). On the other hand, we have that o"(t) >_ o(t)> 0 for a.e. t [to, t2). This implies that o is increasing on [to, t2) and, in consequence, o (t)>_ 0, t [to, t2) since o (to)= 0. Therefore, o is increasing on [to, t2) which is not possible. Now, if t o = 0, then (0)_< 0 and we get that 9 (0)= cd(0)>_ 0 and (0)= 0. As before, there exists t 2 > 0 such that (t2)= 0 and (t)> 0 for every t [0,t2) and is increasing on [0, t2) which contradicts that (t2) = 0. The case t o = 7r is analogous. This shows that c(t) < u(t) for every t q I and by the same reasoning we obtain that u(t) < (t) for every t I. We next prove that (2.2) has at least one solution. following Neumann boundary value problem For A E [0,1], consider the -,,"(t) +,,(t) = a[a(t, u(t)) + p(t, u(t))],,, (o) = = o. In order to apply the well-known theorem of Leray-Schauder, define the operators L: E--.F and N: F---.r by Lu = u" + u and Nu = g(., u(. )) + p(-, u(. )) respectively. Note that L is continuous, one-to-one, and onto. Thus, the Neumann problem (2.9) is equivalent to the abstract equations or Lu = ANu, [O, 1], ue u = $gnu, [O, 1], u F, (2.11) where H = i- L- : F--F and i:ef is the canonical injection. H is continuous and compact since w2 l(i) is compactly imbedded into LI(I). Let 7 = min{cr(t):t I} and di = maz{(t):t e I}. if u is a solution or (2.2), then lu(t) < R = maz{7,5} for every t e I. Taking into account this, condition (2.1), and that a(t) < p(t, u(t)) < 3(t) for every I, we have

A Generalized Upper and Lower Solutions Method 161 II ANu II II h I! +2 = C. In consequence, if u is a solution of (2.9) we have that!! u II E C. II H II, where C is a constant independent of X E [0, 1] and u E F. Thus, we have proved that all the solutions of (2.11) are bounded independent of A [0, 1] and we can conclude that (2.11) with A = 1, that is (2.2), is solvable. This concludes the proof of the theorem. 3. Tile MONOTONE METtlOD When f is a continuous function the following comparison result is fundamental in the development of the monotone iterative technique. Lemma.1: Let o C2(I) and o (O)>_ 0 >_ o (r). Suppose that there exists M > 0 with o"(t) > Mo(t) for a.e. t I. Then (t) < 0 for every t I. We now extend this result in order to cover the case when f is a Carathodory function. M(t) > 0 for a.e. t I such that o"(t) > M(t)o(t) for a.e. t I, then oo(t) <_ 0 for eyeful t I. Proof: If o(t) > 0 for every t E I, then o"(t) > 0 for a.e. t I. Thus, o is strictly increasing on I and o (0) < o (rr) which is a contradiction. Now, if there exists some t 6 I with o(t) > 0, then choose s 6 I such that o(s)= maz{o(t):t I}. If s E (0, r), then o (s) = 0 and there exists t 1 [0,s) (or t I (s,r] and the reasoning is analogous) with o(tl) = 0 and 9o(t)> 0 for every t6 (tl,s). However, o"(t)> 0 for a.e. t6 (tl,s) and o is increasing on (tl,s). Hence, o (t) < 0 for 6 (tl,s) and o is decreasing on (tl, s which is not possible. If s = 0 or s = r the argument is similar. This completes the proof. For M E F with M(t)> 0 for a.e. I and r/6 F we shall consider the following Neumann boundary value problem or equivalently u"(t) = f(t, (t))- M(t)[(t)-,(t)], u (0) = 0 = u () "(t) + (t)(t) = f(t, o(t))+ M(t)O(t), u (O) = 0 = u (). The operator L (defined in the proof of Theorem 2.1) is continuous, one-to-one and

162 JUAN J. NIETO and ALBERTO CABADA onto. Thus, by the open mapping theorem, its inverse L-1 is continuous. For cr (5 F, let L- lr = u be the unique solution of the linear problem u" + Mu = or, u (O) = 0 = u (Tr). If a, are lower and upper solutions for (N) respectively, let us introduce the following condition in order to develop the monotone method: There exists M ( F with M(t) >_ 0 for a.e. t ( I and we have that for a.e. t e I and for every u, f(t, u) f(t, v) >_ M(t)(u v) (3.3) v e R such that a(t) < u < v <_ For r/(5 F with c _< r/< fl, that is, r/( Is, fl] = {u ( F: a _< u _< fl for a.e. t e I}, let us define the (nonlinear) operator g [a, fl]z by gr/= L-tr where or(t)= f(t, rl(t))+ M(t)(t), t ( I. The operator K is monotone and its properties are summarized in the following result. I,emma 3.3: Assume that (3.3) holds. Then the operator K has the following properties. If a < rl <_ t3 on I, then c < Ko < t3 on I (3.4) and = u-. Proof: Let c < r/< on I. Thus, if <_ rll <_ 72 <- on I, then < Krl < Krl2 <_ t3 on I. for a.e. E I we have that We shall prove that u_<fl on I. Indeed, let o"(t) = u"(t) >_ f(t,(t))- M(t)(t) + M(t)u(t) + f(t, fl(t)) > M(t)[13(t)- r/(t)]- M(t)o(t) + M(t)u(t) = M(t)o(t). By Lemma 3.1 we can conclude that a(t) _< 0 for every ( I, that is, u < fl on I. The proof that c < u is similar. To show that validity of (3.5), let = Kr h -Kr/2. ( I and, in consequence, we obtain that Kr h _< Kr/2 on I. Thus, a"(t)> M(t)a(t) for a.e. Theorem $..l: Suppose that and fl are lower and upper solutions, respectively, of (N) such that < 13 on I and (3.3) holds. Then, there exists monotone sequences {an} and {/3n} with o = c, o =t3, a n < flm for every n, m N and tim a_ = r, ldrnt3n = p uniformly on I. Here, r and p are respectively the minimal and maximal solutions of (N) between and t3 in the sense that if u is a solution with a <_ u < fl on I, then r < u <_ p on I.

A Generalized Upper and Lower Solutions Method 163 Proof: Let a 0 = a and a n = Ka,_ l(n = 1, 2,...). We first prove that a 0 _< Indeed, let = ao-a1. Thus, "(t) > f(t,a(t))- M(t)al(t + f(t,a(t))+ M(t)a(t) = M(t)a(t) for a.e. E i. This implies that a_< 0 on I in view of Lemma 3.2. Taking into account property (3.5) we see that a 1 = Ka 0 < Ka x = a 2 and, by induction, that a n<a n+ for every nen. Similarly, defining o= and Dn =KDn-x we have that /n + 1 < /n, n N. Combining properties (3.4) and (3.5) we see that a < a n _< Dm -< fl for every n, m N. Therefore, the sequence {an} is uniformly bounded and increasing and it has a pointwise limit, say r(t), t I. We now prove that r is a solution of (N). Choose R > 0 such that lan(t) <_ R for every n NI, t E I. The sequence {a} is bounded in r since -a(t) = M(t)an(t + f(t, an_ l(t))+ M(t)a n l(t) and hence, II ; II < II M II II. II / II hr I! / Ii M I! II.- x II < 2 II M II " 2r / II ha I! = C. Here, C is a constant independent of n. On the other hand, a(t)= f a (s)ds, which implies that the sequence {a} is 0 bounded in L(I). Therefore, {an} is bounded in E. This together with the montonicity of {an} implies that {an} is uniformly convergent to r. and From (3.6) we obtain that..(t) = = f (,- s)[m(s)an(s f(s, an_ l(s))- M(s)an_ l(s)lds 0 f f f(s, an_l(8))ds - M(s)[an(s)-an_l(S)]ds. 0 0 Letting n---,oo and using the uniform convergence of {an} we see that r satisfies the integral equation (2.3) and (2.4), that is, r is a solution of (N).. Using the same integral representation for the solutions of (N) we get that {fin} converges uniformly to a solution p of (N) and it is obvious that a < r _< p < Finally, if u is a solution of (N) with a_< u <_ / on I, then a _< Ku = u <_ fl. By induction we get that a n <_ u <_ fin for every n Ni which implies that r < u _< p and concludes the proof of the theorem.

164 JUAN J. NIETO and ALBERTO CABADA 4. NONLINEAR SECOND ORDER BOUNDARY VALUE PROBLEMS A function v E W2 x(i) is said to be a lower solution of (P) if --v"(t) < f(t, v(t)) for a.e. i By(O) <_ co, By(r) <_ Cl, (4.2) and an upper solution of (P) if the reversed inequalities hold in (4.1) and (4.2). If we know the existence of upper and lower solutions for (P), then we can guarantee the existence of a solution for (P). Theorem 4.1: Assume that a and fl respectively, such that a(t) < 3(t) for every I. the problem (P) such that a(t) <_ u(t) <_ 13(t), t I. are lower and upper solutions of (P) Then there exists at least one solution u for In order to develop the monotone method, we need the following result which is analogous to Lemma 3.2. Lemma 4.2: Let W2 1(I) be such that Bo(O) < 0 and Bo(r) <_ O. Assume that there exists M L(I) such that M(t)> 0 for a.e. t I, and o"(t)> M(t)(t) for a.e. t i. Then o(t) < 0 for every t I. Proof: If (t) > 0 for every E I, then "(t) > 0 for a.e. t I and 9 is strictly increasing on I and (0) < (r). However, B(0) < 0 and B(a ) < 0 implies that (0) > 0 and (r)<_ 0 which is a contradiction. Now, reasoning as in the proof of Lemma 3.2 we see that there is no t q I with (t) > 0. This allows us to show the validity of the monotone iterative technique for the boundary value problem (P). Theorem 4.3: Let the assumptions of Theorem 4.1 hold. In addition, suppose that there exists M L(I) and M(t) > 0 for a.e. t I, such that for a.e. t I and every u, v R with a(t) <_ u < v < fl(t) we have f(t, u)- f(t, v) M(t)(u-- v). (4.3) Then there exist monotone sequences {Cn}r and {fln}tp uniformly on I. the minimal and maximal solutions respectively, of (P) between cr and 13. Proof: For a _< q _< fl, we solve the boundary value problem Here, r and p are

A Generalized Upper and Lower Solutions Method 165 u"(t) + M(t)u(t) = f(t, rl(t)) + M(t)y(t), Bu(O) = Co, which has a unique solution u = Kr/. Bu(r) = c x The operator K has the properties (3.4) and (3.5) and then one can generate the monotone iterates. 5. DIRICHLET PROBLEM We say that a E w2 l(i) is a lower solution of (D) if -c"(t)_< f(t,(t)) for a.e. t E I, c(0) _< 0, and (Tr) _< 0. Similarly, / is an upper solution if the reversed inequalities hold. Now, using the following result it is easy to show that the monotone method for the Dirichlet problem (D) is also valid. Lemma 5.1: Let w2 l(i) and suppose that there exists M LI(I), M(t) > 0 for a.e. t I, such that "(t) > M(t)(t) for a.e. t G I. If (0) < 0 and (r) < O, then (t) < 0 for every t I. PFERENCES [1] [2] [3] [41 A. Cabada and J.J. Nieto, "A generalization of the monotone iterative technique for nonlinear second order periodic boundary value problems", J. Math. Anal. AppL 151, (1990), pp. 181-189. G.S. Ladde, V. Lakshmikantham, and A.S. Vatsala, "Monotone Iterative Techniques for Nonlinear Differential Equations", Pitman Publishing Inc., Boston (1985). M.N. Nkashama, "A generalized upper and lower solutions method and multiplicity results for nonlinear first order ordinary differential equations", J. Math. Anal. Appl. 140, (1989), pp. 381-395. J.J. Nieto, "Nonlinear second order periodic boundary value problems", J. Math. Anal. Appl. la0, (1988), pp. 22-29. J.J. Nieto, "Nonlinear second order periodic boundary value Carathodory functions", Applicable Anal. 34, (1989), pp. 111-128. problems with

Advances in Operations Research Advances in Decision Sciences Applied Mathematics Algebra Probability and Statistics The Scientific World Journal International Differential Equations Submit your manuscripts at International Advances in Combinatorics Mathematical Physics Complex Analysis International Mathematics and Mathematical Sciences Mathematical Problems in Engineering Mathematics Discrete Mathematics Discrete Dynamics in Nature and Society Function Spaces Abstract and Applied Analysis International Stochastic Analysis Optimization