NONLINEAR CONTINUUM FORMULATIONS CONTENTS

Similar documents
The Finite Element Method

Finite Element Method in Geotechnical Engineering

Mechanics PhD Preliminary Spring 2017

HIGHER-ORDER THEORIES

HIGHER-ORDER THEORIES

KINEMATICS OF CONTINUA

Fundamentals of Linear Elasticity

4 NON-LINEAR ANALYSIS

ABHELSINKI UNIVERSITY OF TECHNOLOGY

Mechanics of materials Lecture 4 Strain and deformation

3D Elasticity Theory

BAR ELEMENT WITH VARIATION OF CROSS-SECTION FOR GEOMETRIC NON-LINEAR ANALYSIS

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1

1 Nonlinear deformation

Mechanics of Earthquakes and Faulting

Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic Stress-Strain Relationship

FINAL EXAMINATION. (CE130-2 Mechanics of Materials)

PEAT SEISMOLOGY Lecture 2: Continuum mechanics

Nonlinear Theory of Elasticity. Dr.-Ing. Martin Ruess

Nonlinear bending analysis of laminated composite stiffened plates

CH.3. COMPATIBILITY EQUATIONS. Multimedia Course on Continuum Mechanics

2 Introduction to mechanics

Stress, Strain, Mohr s Circle

Linearized theory of elasticity

Engineering Sciences 241 Advanced Elasticity, Spring Distributed Thursday 8 February.

Basic Equations of Elasticity

A short review of continuum mechanics

CIVL4332 L1 Introduction to Finite Element Method

Lecture 8. Stress Strain in Multi-dimension

Chapter 3 Stress, Strain, Virtual Power and Conservation Principles

Variational principles in mechanics

GEOMETRIC NONLINEAR ANALYSIS

MEC-E8001 FINITE ELEMENT ANALYSIS

Generic Strategies to Implement Material Grading in Finite Element Methods for Isotropic and Anisotropic Materials

Introduction to Seismology Spring 2008

MECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso

By drawing Mohr s circle, the stress transformation in 2-D can be done graphically. + σ x σ y. cos 2θ + τ xy sin 2θ, (1) sin 2θ + τ xy cos 2θ.

Measurement of deformation. Measurement of elastic force. Constitutive law. Finite element method

Continuum mechanics V. Constitutive equations. 1. Constitutive equation: definition and basic axioms

Constitutive Relations

Consider an elastic spring as shown in the Fig.2.4. When the spring is slowly

BACKGROUNDS. Two Models of Deformable Body. Distinct Element Method (DEM)

Lecture M1 Slender (one dimensional) Structures Reading: Crandall, Dahl and Lardner 3.1, 7.2

A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS

4.3 Momentum Balance Principles

Constitutive Relations

12. Stresses and Strains

CH.2. DEFORMATION AND STRAIN. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

Aircraft Structures Kirchhoff-Love Plates

FVM for Fluid-Structure Interaction with Large Structural Displacements

PREDICTION OF BUCKLING AND POSTBUCKLING BEHAVIOUR OF COMPOSITE SHIP PANELS

CONSERVATION OF MASS AND BALANCE OF LINEAR MOMENTUM

Applications of Eigenvalues & Eigenvectors

LEAST-SQUARES FINITE ELEMENT MODELS

Other state variables include the temperature, θ, and the entropy, S, which are defined below.

CVEN 7511 Computational Mechanics of Solids and Structures

Chapter 5 Structural Elements: The truss & beam elements

Continuum Mechanics and the Finite Element Method

MECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso

Large Thermal Deflections of a Simple Supported Beam with Temperature-Dependent Physical Properties

Mechanical Properties of Materials

Macroscopic theory Rock as 'elastic continuum'

3. The linear 3-D elasticity mathematical model

Constitutive Equations

Lecture 3: The Concept of Stress, Generalized Stresses and Equilibrium

M E 320 Professor John M. Cimbala Lecture 10

Stability Analysis of Laminated Composite Thin-Walled Beam Structures

UNCONVENTIONAL FINITE ELEMENT MODELS FOR NONLINEAR ANALYSIS OF BEAMS AND PLATES

Getting started: CFD notation

Geometry-dependent MITC method for a 2-node iso-beam element

Analytical Mechanics: Elastic Deformation

Lecture 7: The Beam Element Equations.

AA242B: MECHANICAL VIBRATIONS

Continuum Mechanics. Continuum Mechanics and Constitutive Equations

A FINITE ELEMENT MODEL FOR THE ANALYSIS OF DELAMINATIONS IN FRP SHELLS

CONSTITUTIVE RELATIONS FOR LINEAR ELASTIC SOLIDS

PLAXIS. Scientific Manual

COMPARISON OF PLATE MODELS FOR ANALYSIS OF LAMINATED COMPOSITES

Accepted Manuscript. R.C. Batra, J. Xiao S (12) Reference: COST Composite Structures. To appear in:

CIVL 7/8117 Chapter 4 - Development of Beam Equations - Part 2 1/34. Chapter 4b Development of Beam Equations. Learning Objectives

Chapter 9: Differential Analysis

NDT&E Methods: UT. VJ Technologies CAVITY INSPECTION. Nondestructive Testing & Evaluation TPU Lecture Course 2015/16.

(2) 2. (3) 2 Using equation (3), the material time derivative of the Green-Lagrange strain tensor can be obtained as: 1 = + + +

The Generalized Interpolation Material Point Method

Mathematical Background

The Finite Element Method II

Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, Politecnico di Milano, February 17, 2017, Lesson 5

7. Hierarchical modeling examples

Chapter 9: Differential Analysis of Fluid Flow

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

FREE VIBRATION OF AXIALLY LOADED FUNCTIONALLY GRADED SANDWICH BEAMS USING REFINED SHEAR DEFORMATION THEORY

Analysis of thin plate structures using the absolute nodal coordinate formulation

Continuum mechanism: Stress and strain

Biomechanics. Soft Tissue Biomechanics

Dynamics of Ice Sheets and Glaciers

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems. Prof. Dr. Eleni Chatzi Lecture ST1-19 November, 2015

Symmetric Bending of Beams

Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis

Chapter 6 2D Elements Plate Elements

External Work. When a force F undergoes a displacement dx in the same direction i as the force, the work done is

Transcription:

NONLINEAR CONTINUUM FORMULATIONS CONTENTS Introduction to nonlinear continuum mechanics Descriptions of motion Measures of stresses and strains Updated and Total Lagrangian formulations Continuum shell element Post-buckling of composite panels

DESCRIPTIONS OF MOTION t = t > X 3 x 3 X x X Reference configuration Material description x Current configuration x ( X, t), ( X,) X f= f( X, t) Spatial description X X( x, t) f= f( x, t) JN Reddy Continuum Shell Element

MATERIAL TIME DERIVATIVE Material description d d f [ f( X, t)] = [ f ( X, t)] = = X fixed dt dt t Spatial description d dx j [ f( x, t)] = [ f( x, t)] + [ f( x, t)] dt t dt x = [ f( x, t)] + v [ f( x, t)] j t x = [ f( x,)] t + v f( x,) t t j j JN Reddy Continuum Shell Element 3

LAGRANGIAN DESCRIPTION OF MOTION Incremental descriptions of deformed configurations Total Lagrangian description Updated Lagrangian description JN Reddy Continuum Shell Element 4

Kinematics of Deformation x3, X3 Reference configuration X= ( X,) Deformed configuration Particle X, occupying position x at time t : x = ( X, t ) Deformed configuration x, X Particle X, occupying position x at time t x : = ( X, t ) x, X JN Reddy Continuum Elements 5

Kinematics of Deformation (continued) x3 X 3 (time t = ) ( X) T dx,, dx = F dx dx = F dx F dx XQ XP Q dx P x Q u P x P uq x X (time t) _ Q dx _ P x X u x X dxdx-dxdx= dxedx - T EF F I T E= u u u u E ij u u j u u X X X X i m m j i i j T E Green strain tensor JN Reddy Continuum Elements 6

Definitions MEASURES OF STRAIN u= x x or u i = x i x i u= x x or u i = x i x i u= u u or u i = u i u i E ij = ( u i E ij = Green Incremental Strain Tensor ε ij d x i d x j =( ds) ( ds) = ( E ij E ij ) d x i d x j ( e ij + η ij )d x i d x j + u j x j + u k ) u k x i x i x j ( u i + u j x j + u k ) u k x i x i x j e ij = ( ui x j + u j + u k u k x i x i + x j Linear Green Incremental Strain Tensor e ij = ( ui x j + u k ) u k x i x j η ij = u k u k x i x j Nonlinear Incremental Strain Tensor Infinitesmal Green-Lagrange Incremental Strain Tensor JN Reddy u ) j x i Continuum Elements 7

Point forces Distributed force F F f STRESS VECTOR F Plane 3 F 4 Plane Continuous rigid support Roller support F f F f a nˆ t (nˆ ) nˆ Plane Stress vector t ( nˆ ) f lim a a ( nˆ ) ( nˆ ) t t JN Reddy Continuum Formulations 8

CAUCHY STRESS TENSOR x 3 x A tn ˆ B nˆ s t eˆ x 3 ê 3 s t ê ê tn ˆ eˆ nˆ s x t x x t 3 x 3 t x 3 xz 3 zx t σ nˆ or t n ; t eˆ, σ t eˆ eˆ eˆ ( nˆ ) ( nˆ ) i ij j i ji j j j ij i j x 33 zz xx eˆ 3 t 3 s 3 3 zy 3 yz yy yx xy

FIRST AND SECOND PIOLA-KIRCHHOFF STRESS TENSORS df TdAPNˆ dapda df tda nˆ da da Nˆ ( X) nˆ df PdAda da da danˆ da, danˆ da Reference configuration Current configuration JN Reddy d J d a F A df df d SdA F f F P A S A d d d d F PS, SJ F σf T P First Piola-Kirchhoff stress tensor S Second Piola-Kirchhoff stress tensor Continuum Formulations

CONSERVATION PRICIPLES Conservation of Mass rdv = r dv rjdv = r dv ò ò ò ò o r = rj Conservation of Linear Momentum d r vdv = r fdv + tda ò ò ò dt dv dt T r = s +r f Continuum Formulations

Stress Measures (continued) Cauchy Stress Tensor Configuration in which it occurs σ ij = σ ij, σ ij = σ ij Configuration in which it is measured First Piola-Kirchhoff Stress Tensor t= σ ˆn, T= P ˆn d f= td A= T d A ( σ ˆn)d A= ( P ˆn)d A

Stress Measures (continued) Second Piola-Kirchhoff Stress Tensor ( ˆn S)d A=d f d f= J d f J = ( x x F, ) x J= det x S = F ( P) S J F s F T F ( x) x, Deformation gradient tensor ( x) X 3

DESCRIPTION OF MOTION C C x 3 x 3 x 3 Q C d s P u u Q d s P u Q d s P x x x x x x Motion: x= x(x,x,x 3,t) Notation: coordinates ofa point: x, x, x volum es: V, V, V areas: A, A, A density: ρ, ρ, totaldisplacem ents ofa point: u, ρ u 4

Various Strain Components Displacements: u= x x or u i = x i x i u= x x or u i = x i x i u= u u or u i = u i u i Green-Lagrange Strain Tensor ( ds) =d x d x= d x i d x j i ( ds) =d x d x= d x i d x i ( ds) =d x d x= d x i d x i E ij d x i d x j =( ds) ( ds) E ij d x i d x j =( ds) ( ds) d x i = x i x j d x j, d x i = x i x j d x j JN Reddy Continuum Formulations 5

Strain Measures (continued) Green-Lagrange Strain Tensor E ij = E ij = ( u i + u j x j + u k ) u k x i x i x j ( u i + u j x j + u k ) u k x i x i x j Green-Lagrange Incremental Strain Tensor Linear Green-Lagrange Incremental Strain Tensor e ij = ε ij d x i d x j =( ds) ( ds) ( ui x j + = ( E ij E ij ) d x i d x j ( e ij + η ij )d x i d x j u j x i + u k x i u k x j + u k ) u k x i x j JN Reddy Continuum Formulations 6

Nonlinear Green-Lagrange Incremental StrainTensor η ij = u k x i u k x j Infinitesimal Green-Lagrange Incremental Strain Tensor e ij = ( ui x j + u ) j x i Updated Green-Lagrange Strain (increment) Tensor ( ε ij )d x i d x j = ( ds ) ( ds ) ) x k η ij = x i δ ij x j = ( ui + u j x j + u ) k u k x i x i x j ε ij = ( x k Strain Measures (continued) e ij + η ij e ij = ( uk u k x i x j ( ui + x j ) u ) j x i 7

CONSERVATION OF MASS AND CONSTITUTIVE RELATIONS Conservation of Mass ρ= ρ J, ρ= ρ J Constitutive Relations S ij = C ijk l ε kl, S ij = C ijk l ε kl C ijk l = ρ ρ x i x p x j x q x k x r x l x s C pqrs C ijk l = ρ ρ x i x ρ x j x q x k x r x l x s C pqrs JN Reddy Continuum Formulations 8

Virtual Work Statements General Virtual Work Statement (in configuration to be determined) δw σ:δ( e) d V δ R= V = σ ij δ( e ij )d V δ R= V δ R= f δu d V+ t δu d S V S = f i δu i d V+ t i δu i d S V Infinitesimal Green-Lagrange incremental strain tensor components e S u u i ij xj j x i Continuum Shell Element 9

JN Reddy Virtual Work Statement for the Total Lagrangian Formulation Write various integrals over configuration as equivalent integrals over the reference configuration σ ij δ( e ij )d V= V S ij δ( E ij )d V V f i δu i d V= V f i δu i d V V t i δu i d S= S t i δu i d S S S ij δ( E ij )d V δ( R)= V δ( R)= f i δu i d V+ t i δu i d S V V S S ij δ( E ij )d V δ( R)= Continuum Formulations

Total Lagrangian Formulation. Virtual Work Statement: E ij = δ( R)= V f i δu i d V+. Incremental Decompositions: e ij = ( u i x j + u j x i + u k S ij = S t i δu i d S S ij = S ij + S ij S ij = C ijkl E kl, S ij = C ijkl ε kl ( ) ( ui x j + E ij = E ij + ε ij, ε ij = e ij + η ij E ij = V ) u k x i, x j, u j + u k x i x i u k S ij δ( E ij )d V δ( R)= u k x i u k x j + x j ( u i + u j x j + u k u k x i x i x j ( ) ( ) ( ) x i J x m ), η ij = ) σ mn ( x j x n ) u k x i u k x j

Total Lagrangian Formulation (continued) 3. Virtual Work Statement with Incremental Decompositions: d( Eij ) d( Eij ) d( eij ) d( eij ), d( eij ) d( eij ) d( hij ) S ij δ( ε ij )d V+ S ij δ( η ij )d V V V =δ( R) S ij δ( e ij )d V V 4. Linearized Virtual Work Statement with Incremental Decompositions: S ij = C ijk l ε kl C ijk l e kl, δ( ε ij ) δ( e ij ) C ijkl e kl δ( e ij )d V+ V S ij δ( η ij )d V V =δ( R) S ij δ( e ij )d V V

x =x, x =y, u = u, u = v, u = ū, u = v FINITE ELEMENT MODEL OF THE TOTAL LAGRANGIAN FORMULATION C ijkl e kl δ( e ij )d V= V e ij = ( ui + x j e xx { e} = e yy e xy = ū v ū + v V u j x i + u k x i + u {δ e} T [ C]{ e} d V u k x j + ū + v u k ) u k x i x j u ū + v v u ū + v v v + ū u + v v Total Lagrangian Element 3

FINITE ELEMENT MODEL (continued) = ū v ū + v + u ū + v u ū + v v u ū + v v v + ū u + v v [ D] { ū v } u u u + u [ ] D u v v v + v { ū v } e xx { e} = e yy = ([D]+[D u ]){ū} e xy Total Lagrangian Element 4

FINITE ELEMENT MODEL (continued) V [D ]= [ D ]= {δ e} = {δ e} T [ C]{ e} d V V V = {δū} T ([D]+ [D u ]) T [ C]([D]+ [D u ]){ū} d V V, [D u ]=, δ e xx δ e yy δ e xy [ C]= u u u + u v C C C C C 66 =([D]+ [D u ]){δū} v v + v Total Lagrangian Element 5

V = V = = FINITE ELEMENT MODEL (continued) S ij δ( η ij )d V= {δ η} T { S} d V [ V ( δū ū S xx + δ v ( δū + ū S xy + δ v T V V δū δū δ v δ v V {δ η} T { S} d V ) v + S yy ( δū v + ū δū + v S xx S xy S xy S yy S xx S xy S xy S yy η ij = ū + δ v )] δ v d V ū ū v v ) v d V {δū} T [ D] T [ S][ D]{ū} d V (9.6.) u k x i u k x j Total Lagrangian Element 6

FINITE ELEMENT MODEL (continued) [ S]= {u} = {ū} = [Ψ]= S xx S xy S xy S yy S xx S xy S xy S yy { u v} = { n j= u } jψ j (x) n j= v jψ j (x) { n j= ūjψ } j (x) n j= v jψ j (x) =[Ψ]{ } { } ū = =[Ψ]{ } v [ ] ψ ψ ψ n ψ ψ ψ n { } T ={u,v,u,v,,u n,v n } { } T = {ū, v,ū, v,,ū n, v n } Total Lagrangian Element 7

FINITE ELEMENT MODEL (continued) V V {δ e} T [ C]{ e} d V = {δū} T ([D]+ [D u ]) T [ C]([D]+ [D u ]){ū} d V V = {δ } T {([D]+ [D u ])[Ψ]} T [ C]([D]+ [D u ])[Ψ]{ }d V V = {δ } T [B L ] T [ C][B L ]{ }d V (9.6.5) V {δ η} T { S} d V = {δū} T [ D ] T [ S][ D ]{ū} d V V = {δ } T [B NL ] T [ S][B NL]{ }d V V Total Lagrangian Element 8

FINITE ELEMENT MODEL (continued) δ( R)= = = δ( R)= = V V V V V S ij δ( e ij )d V {δ e} T { S} d V {δ } T [B L ] T { S} d V f i δu i d V+ t i δu i d S S {δ } T [Ψ] T { f} d V+ {δ } T [Ψ] T { t} d ( S Total Lagrangian Element 9

FINITE ELEMENT MODEL (continued) [K L ]= [K NL ]= { F}= { f} = [D ]= V V V { f x f y ([K L ]+ [K NL ]){ }= { F} { F} [B L ] T [ C][B L ]d V, { F}= [B L ] T { S} d V V [B NL ] T [ S][B NL ]d V [Ψ] T { f} d V+ [Ψ] T { t} d S }, { t} =, [D u ]= S { t x t y } u u u + u v v v + v Total Lagrangian Element 3

FINITE ELEMENT MODEL (continued) [ D ]= [ S]=, [ C]= S xx S xy S xy S yy S xx S xy S xy S yy C C C C C 66, { S}= S xx S yy S xy [B L ]= [B L ]+ [B u L ]+ [B v L ] [B L ]= ψ ψ ψ ψ ψ ψ ψ n ψ ψ ψ n ψ n ψ n Total Lagrangian Element 3

FINITE ELEMENT MODEL (continued) [B u L ]= [B v L ]= [B NL ]= u u ψ u ψ u ψ n u ψ u ψ u ψ n ψ + u ψ u ψ + u ψ u ψ n + u ψ n v v v ψ (9.6.7b) ψ v ψ v ψ n ψ v ψ v ψ n + v ψ v ψ + v ψ v ψ n + v ψ ψ ψ ψ ψ ψ ψ n ψ n ψ ψ ψ n ψ n (9.6.7c) (9.6.8) ψ n Total Lagrangian Element 3

FINITE ELEMENT MODEL (continued) [ ]{ } [K L ]+ [K N ] [K L ] {ū} [K L ] [K L ]+ [K N ] { v} { ( K ij L =h e C + u ) ( ) ψ i ψ j u Ω + ψ i ψ j C e ( + C + u ) ( u ψi ψ j + ψ ) i ψ j [( + C 66 + u ) ψi + u ] ψ i [( + u ) ψj + u ]} ψ j dx dy { ( K ij L =h e C + u ) ( v ψ i ψ j Ω + C + v ) u ψ i ψ j e [( + C + u )( + v ) ψi ψ j + u ] v ψ i ψ j [( + C 66 + u ) ψi + u ] ψ i [( + v ) ψj + v ]} ψ j dx dy = K ji L 33 = { } { F } { F } { F } { F }

FINITE ELEMENT MODEL (continued) K L ij K N ij =h e =h e Ω e Ω e { ( ) v ψ i C + C ( + v + C 66 [( + v [( + v ) ψj + v [ ψ i ψ j S xx + S xy + S yy ψ i ψ j Fi =h e f x ψ i dx dy + h e Ω e Fi =h e f y ψ i dx dy + h e Ω e {( Fi =h e + u ) ψi Ω e + [( + u ( ψ j + C + v ) ( v ψi ψ j + ψ i ) ψi + v ] ψ i ]} ψ j dx dy ( ψi ψ j ] dx dy = K N ij Γ e Γ e t x ψ i ds t y ψ i ds S xx + u ) ψi + u ψ i + ψ i ψ i ] S yy S xy } dx dy ) ψ i ) ψ j ) ψ j ψ j (9.6.3a) 34

6. NUMERICAL RESULTS Transverse deflection versus load (cantilever beam under uniformly distributed load).. Without iteration q Load, q 8. 4. O With iteration a = in. b = in. h = in. E = ksi. =. q =.5 b h v y a x, u... 4. 6. 8. Transverse deflection, v Total Lagrangian Element 35

NUMERICAL RESULTS Load, q 6 8 4 Normal stresses vs. load for a cantilever beam under uniform load (updated). Cauchy stress Cauch stress (five Q8 elements) a = in. b = in. h = in. E = ksi. =. q =.5 Second Piola-Kirchhoff stress (five Q8 elements) (updated Lagrangian formulation) 4 8 6 4 Axial stress, sigma-xx (Sxx) 36

SHELL FINITE ELEMENTS Degenerate Continuum Shell Elements It is obtained by a degeneration process from the 3D continuum equations. Less expensive than the solid element but more expensive than the shell-theory element. Also exhibit locking problems. Shell Theory Elements Based on a curvilinear description of the continuum using an specific shell theory. Analytical integration of energy terms over the thickness. Also exhibit locking problems. Continuum Shell Element 37

CONTINUUM SHELL ELEMENTS The degenerate continuum shell element approach was first developed by Ahmad et al. from a threedimensional solid element by a process which the 3D elasticity equations are expressed in terms of midsurface nodal variables. It uses displacements and rotational DOFs. Continuum Shell Element 38

CONTINUUM SHELL ELEMENTS Assumptions are:. Fibers remain straight. The stress normal to the midsurface vanishes (the plane stress condition) Discretization of the reference surface by using Cartesian coordinates where n k k Xi k(, ) ( Xi ) TOP ( Xi ) k BOTTOM (, ): k (,, ): Lagrangian interpolation functions Natural coordinates Continuum Shell Element 39

CONTINUUM SHELL ELEMENTS n k k xi ψk(, ) ( xi ) TOP ( xi ) k BOTTOM Discretization of the final configuration of the reference surface Equivalent to the discretization of the displacement of the reference surface as u u h n k k i k (, ) i k e3i k Continuum Shell Element 4

Continuum Shell Element (continued) Virtual Work Statement for the Dynamic Case ρ t+ t ü i δ( t+ t u i ) dv + C ijrs l rs δ( l ij ) dv V V + t S ij δ( η ij ) dv = t+ t R t S ij δ( l ij ) dv V Finite Element Model x i = n k= ψ k x k i, t x i = t u i = n k= n k= ψ k t u k i, u i = V ψ k t x k i, t+ t x i = n k= n k= ψ k u k i i=,,3 ψ k t+ t k k, t [M ] t+ t { l }+ ( t [K L ]+ t [K NL ]){ l }= t+ t {R} t {F} Continuum Shell Element 4

Numerical Examples Continuum Shell Element 4

Numerical Examples Continuum Shell Element 43

Numerical Examples 44

Numerical Examples Continuum Shell Element 45

POSTBUCKLING AND FAILURE ANALYSIS Nonlinear FE analysis Comparison with experimental results of Starnes and Rouse Progressive failure analysis a = 5.8 cm ( in.), b = 7.8 cm (7 in.), h k =.4 mm (.55 in.) 4-ply laminate: [45/-45/ /45/- 45/ /45/-45//9] s E = 3 Gpa (9, ksi), E = 3 Gpa (,89 ksi), u constant w w x u w w x u x P b w a y G = 6.4 Gpa (93 ksi), ν =.38 (graphite-epoxy) Continuum Shell Element46

Experimental Setup and Failure Region (Starnes & Rouse, NASA Langley) (a) Typical panel with test fixture (b) A transverse shear failure mode Continuum Shell Element 47

POST-BUCKLING OF A COMPOSITE PANEL UNDER IN-PLANE LOADING Finite Element Models Mesh has six elements per buckling mode half wave in each direction 7. in Elements used: () Four-node C -based flat shell element (STAGS) () Nine-node continuum shell element (Chao & Reddy) (3) For-node and nine-node ANS shell elements (Park & Stanley). in All meshes have 7 elements (9 nodes for the meshes with four-node elements and 35 nodes for meshes with nine-node elements). Continuum Shell Element48

Comparison of the Experimental (Moire) and Analytical Out-of-Plane Deflection Patterns Experimental Theoretical (FEM) Continuum Shell Element49

Comparison of the Experimental and Analytical Solutions for End Shortening Continuum Shell Element 5

Postbuckling of a Composite Panel.5..5..5 Analysis Test.5....5..5..5 3. 3.5 4. End shortening, u /u cr.5..5 Analysis Test...5..5..5 Maximum deflection, w /h Continuum Shell Element 5

Postbuckling of a Composite Panel (Stress Distributions) P/P cr =. (MPa) Axial Stress, σ xx (ksi) - - -3-4 -5-6 P/P cr =.5 P/P cr =. P a a y - - -3-4 -7-8 x...4.6.8. y/b b -5 Continuum Shell Element 5

Postbuckling of a Composite Panel (Stress Distributions) Shear Stress, σ zx (ksi).. -. -. -3. -4. -5. -6. -7. -8. -9. from constitutive relations from equilibrium relations P/P cr =. P/P cr =.5 P/P cr =....4.6.8. y/b (MPa) - - -3-4 -5-6 Continuum Shell Element 53

Summary Introduction to nonlinear continuum mechanics Descriptions of motion Measures of stresses and strains Updated and Total Lagrangian formulations Continuum shell element Post-buckling of composite panels Continuum Shell Element 54