ECE Spring Prof. David R. Jackson ECE Dept. Notes 25

Similar documents
ECE Spring Prof. David R. Jackson ECE Dept. Notes 41

ECE Spring Prof. David R. Jackson ECE Dept. Notes 26

ECE 107: Electromagnetism

Solutions to Problem Set 6

Advanced Circuits Topics - Part 1 by Dr. Colton (Fall 2017)

The Spectral Domain Method in Electromagnetics. David R. Jackson University of Houston

Note: Please use the actual date you accessed this material in your citation.

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)( ) 8/25/2010

Lecture 10: Euler s Equations for Multivariable

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 3

Interconnect Modeling

From Biot-Savart Law to Divergence of B (1)

ECE Spring Prof. David R. Jackson ECE Dept. Notes 24

ECE Spring Prof. David R. Jackson ECE Dept. Notes 16

One-sided finite-difference approximations suitable for use with Richardson extrapolation

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

), it produces a response (output function g (x)

ECE Spring Prof. David R. Jackson ECE Dept. Notes 32

ECE Spring Prof. David R. Jackson ECE Dept. Notes 33

Waveguides and resonant cavities

ECE Spring Prof. David R. Jackson ECE Dept. Notes 10

Mathematical Preparations

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations

CHAPTER II THEORETICAL BACKGROUND

ECE Spring Prof. David R. Jackson ECE Dept.

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations

Implementation of the Matrix Method

Implementation of the Matrix Method

PHYS 705: Classical Mechanics. Calculus of Variations II

9 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2

For all questions, answer choice E) NOTA" means none of the above answers is correct.

( ) + + REFLECTION FROM A METALLIC SURFACE

1 Convex Optimization

Bernoulli Numbers and Polynomials

Coupling Element and Coupled circuits. Coupled inductor Ideal transformer Controlled sources

Electrochemistry Thermodynamics

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions

MAGNETISM MAGNETIC DIPOLES

Monte Carlo Integration Technique for Method of Moments Solution of EFIE in Scattering Problems

LAGRANGIAN MECHANICS

Section 8.3 Polar Form of Complex Numbers

1 Matrix representations of canonical matrices

Designing Information Devices and Systems II Spring 2018 J. Roychowdhury and M. Maharbiz Discussion 3A

Frequency dependence of the permittivity

Lecture 12: Discrete Laplacian

Lecture Note 3. Eshelby s Inclusion II

Introduction to Antennas & Arrays

Phys102 General Physics II

9. Complex Numbers. 1. Numbers revisited. 2. Imaginary number i: General form of complex numbers. 3. Manipulation of complex numbers

Implementation of the Matrix Method

Inductance Calculation for Conductors of Arbitrary Shape

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

Digital Signal Processing

Lecture #4 Capacitors and Inductors Energy Stored in C and L Equivalent Circuits Thevenin Norton

A how to guide to second quantization method.

Lecture 10 Support Vector Machines II

The Fourier Transform

Boundaries, Near-field Optics

Affine and Riemannian Connections

The Feynman path integral

5.04, Principles of Inorganic Chemistry II MIT Department of Chemistry Lecture 32: Vibrational Spectroscopy and the IR

Implicit Integration Henyey Method

B. H. Jung Department of Information and Communication Engineering Hoseo University Asan, Chungnam , Korea

I. INTRODUCTION. There are two other circuit elements that we will use and are special cases of the above elements. They are:

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results.

Physics 4B. Question and 3 tie (clockwise), then 2 and 5 tie (zero), then 4 and 6 tie (counterclockwise) B i. ( T / s) = 1.74 V.

Chapter Eight. Review and Summary. Two methods in solid mechanics ---- vectorial methods and energy methods or variational methods

Physics 4B. A positive value is obtained, so the current is counterclockwise around the circuit.

Section 3.6 Complex Zeros

Electricity and Magnetism - Physics 121 Lecture 10 - Sources of Magnetic Fields (Currents) Y&F Chapter 28, Sec. 1-7

Physics 1202: Lecture 11 Today s Agenda

CIVL 8/7117 Chapter 10 - Isoparametric Formulation 42/56

ˆ (0.10 m) E ( N m /C ) 36 ˆj ( j C m)

Physics 443, Solutions to PS 7

Problem 1: To prove that under the assumptions at hand, the group velocity of an EM wave is less than c, I am going to show that

+ v i F02E2P2 I. Solution (a.) The small-signal transfer function of the stages can be written as, V out (s) V in (s) = g m1 /g m3.

II. PASSIVE FILTERS. H(j ω) Pass. Stop

ECE Spring Prof. David R. Jackson ECE Dept. Notes 7

PHYS 705: Classical Mechanics. Canonical Transformation II

B and H sensors for 3-D magnetic property testing

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD

8.022 (E&M) Lecture 4

Waveguides and resonant cavities

Appendix for Causal Interaction in Factorial Experiments: Application to Conjoint Analysis

ECE Spring Prof. David R. Jackson ECE Dept. Notes 5

16 Reflection and transmission, TE mode

Analytical Gradient Evaluation of Cost Functions in. General Field Solvers: A Novel Approach for. Optimization of Microwave Structures

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential

PHY2049 Exam 2 solutions Fall 2016 Solution:

Lecture Notes 7: The Unruh Effect

Integrals and Invariants of

Notes 24 Image Theory

Primer on High-Order Moment Estimators

5 The Laplace Equation in a convex polygon

Amplification and Relaxation of Electron Spin Polarization in Semiconductor Devices

Tensor Analysis. For orthogonal curvilinear coordinates, ˆ ˆ (98) Expanding the derivative, we have, ˆ. h q. . h q h q

EEE 241: Linear Systems

Fundamental loop-current method using virtual voltage sources technique for special cases

Differentiating Gaussian Processes

Transcription:

ECE 6345 Sprng 2015 Prof. Davd R. Jackson ECE Dept. Notes 25 1

Overvew In ths set of notes we use the spectral-doman method to fnd the nput mpedance of a rectangular patch antenna. Ths method uses the eact spectral-doman Green s functon, so all radaton physcs, ncludng surface-wave ectaton, s automatcally ncluded (no need for an effectve permttvty). It does not account for the probe nductance (the way t s formulated here), so the CAD formula for probe nductance s added on at the end. D. M. Pozar, Input mpedance and mutual couplng of rectangular mcrostrp antennas, IEEE Trans. Antennas and Propagaton, vol. 30, pp. 1291-1196, Nov. 1982. 2

Spectral Doman Method z h J z J s (, y ) 0 0 L ε r I0 = 1[ A] The probe s vewed as an mpressed current. Set = 0 E ( y) S, S s the patch surface [ ] [ ] J + E J = 0 E (, y) S s z Ths s the Electrc Feld Integral Equaton (EFIE) 3

Spectral Doman Method (cont.) Let J ( y, ) = AB( y, ) B s π, = cos L ( y) The EFIE s then AE B E J [ ] + = 0 z Pck a testng functon T(,y): S [ ] { } z T (, y) A E B + E J ds = 0 [ ] A T (, y) E B ds + T (, y) E J z ds = 0 S S 4

Spectral Doman Method (cont.) Galerkn s Method: T,y B,y (The testng functon s the same as the bass functon.) Hence [ ] A B(, y) E B ds + B, y E J z ds = 0 S S The soluton for the unknown ampltude coeffcent A s then A B(, y) E J z ds S = = B(, y) E[ B] ds S J B z, B, B = [ ] J z, B E J z B, y ds S B, B E B B (, y) ds S 5

Spectral Doman Method (cont.) The nput mpedance s calculated as: n = 2P I 0 0 n 2 2 1 = E 2 zj I 2 = V V E J dv z z P n = comple power comng from mpressed probe current (n the presence of the patch). * z dv V = volume of probe current (The probe current s real and equal to 1.0 [A].) The total feld comes from the patch and the probe: E = E J + E J [ ] z z z z s 6

Spectral Doman Method (cont.) Hence = J E J dv J E J dv [ ] n z z z z z s V V Defne: J E J dv = J, J probe z z z z z V Then we have or [ ] J E J dv = n probe z z s V [ ], n = probe A Jz Ez B dv = probe A B Jz V 7

Spectral Doman Method (cont.) = A B, J n probe z where A = J B z, B, B We have from recprocty that J, B = B, J z z Note: z s easer to calculate than z. so that n = + probe B B, J z, B 2 8

Spectral Doman Method (cont.) Defne: B, B B, J z z Note: The mnus sgn s added to agree wth typcal MoM conventon. Note: The subscrpt notaton on j follows the usual MoM conventon. We then have: n probe 2 z 9

Spectral Doman Method (cont.) Note: The probe mpedance may be appromately calculated by usng a CAD formula: probe jx p X ηµ h 1 ln γ ln π ln µε = p 0 r λ0 a / λ r r 0 γ 0.57722 ( Euler's constant) Ths result comes from a probe nsde of an nfnte parallel-plate wavegude. Nlote: Calculatng probe eactly from the spectral-doman method can be done, but ths would be a lot of work, and the mprovement would be small. 10

Spectral Doman Method (cont.) The net goal s to calculate the reactons and z n closed form. For the patch-patch reacton we have: [ ] = B, B = E B B ds S From prevous SDI theory, we have E = G B so 1 jk ( + ky y ) E B = G B e dk dk [ ] ( 2π ) 2 y Hence, ntegratng over the patch surface, we have 1 = G ( k, k ) B ( k, k ) B ( k, k ) dk dk ( 2π ) + 2 y y y y 11

Spectral Doman Method (cont.) Snce the Fourer transform of the bass functon (cosne functon) s an even functon of k and k y, we can wrte: 1 = G k k B k k dk dk ( 2π ) (, ) 2 (, ) 2 y y y or 1 = G k k B k k dk dk (, ) 2 (, ) 2 y y y π 0 0 Note: z = z = 0 n the spectral-doman Green s functon here. 12

Spectral Doman Method (cont.) Convertng to polar coordnates, we have π /2 1 = G k φ B k φ k dk dφ 2, (, ) 2 t t t t π 0 C Im k t LR C h R β 0 k k 1 0 Re k t Note: The path must etend to nfnty. 13

Spectral Doman Method (cont.) From prevous calculatons, we have: G k k 1 1 φ D D 2 2,,0 cos φ + sn y TE ( z ) D ( k ) = Y jy cot k h t 0 1 1 D ( k ) = Y jy cot k h TE TE TE t 0 1 z1 L cos k π W 2 B ( k, ky) = LW snc k y 2 2 2 2 π L k 2 2 14

Spectral Doman Method (cont.) For the patch-probe reacton we have 0 [ ](,, ) = E B y z J dv z z z V = h z [ ](,, ) E B y z dz 0 0 Note: z s the voltage drop at the feed locaton due to the current B. E = G J z z s so 1 jk ( 0+ ky y 0) E y z = G z B e dk dk (,, ) ( 2π ) + + z 0 0 2 z y 15

Spectral Doman Method (cont.) To calculate G ~ z use: E z H H = jωε1 y 1 y so that 1 E = jk H + jk H z y y jωε1 We need the transforms of the transverse magnetc feld components. 16

Spectral Doman Method (cont.) Usng spectral-doman theory, we have cosφ ( snφ) cosφ I ( snφ) ( ) cosφ ( )( snφ) ( snφ) cosφ ( cosφ)( snφ) H = H + H u v TE = I + = I J + I J TE sv su = I J + I J TE s s TE = I J snφcosφ+ I J cosφsnφ s s ˆ t y = ˆ t y ˆ s V z u E k,k,z I z v H k,k,z I z u J k,k s y = ˆ t y = ˆ t y = ˆ s TE V z v E k,k,z TE I z u H k,k,z I z v J k,k TE s y k y ( k, ky) y ˆv kt k t û φ k φ 17

Spectral Doman Method (cont.) We also have V z uˆ E t k,k y,z H y = H usnφ+ H vcosφ I z = vˆ H t k,k y,z TE = I snφ + I cosφ Is z uˆ J s k,ky TE = I ( J sv ) snφ + I ( J su ) cosφ TE V z = vˆ E t k,k y,z TE = I ( J s ( snφ) ) snφ+ I ( J s cosφ) cosφ TE I z = uˆ H t k,k y,z TE 2 2 = I sn φ I J s cos φ TE Is z = vˆ J s k,ky k y ( k, ky) y ˆv kt k t û φ k φ 18

Spectral Doman Method (cont.) Recall: 1 E = jk H + jk H z y y jωε1 k k y We then have TE 2 I J s sn φ jkh y + jk yh = jktcosφ 2 I J s cos φ TE I J s snφcosφ + jkt snφ + I J Note: s snφcosφ = kt cosφ = k snφ t ( 2 2 ) = jk I J cosφ cos φ + sn φ = t s jk J cosφ I t s 19

Spectral Doman Method (cont.) Hence we have 1 E = jk J I ( cosφ ) z t s jωε1 Usng E = G J z z s we then dentfy that k G z z I z ωε t = cosφ 1 20

Spectral Doman Method (cont.) From TL theory, we have the property that I ( z) = I ( h)cos k ( z+ h) z1 (The short crcut at z = -h causes the current to have a zero dervatve there.) Hence k G z = cos I ( h)cos k ( z+ h) t φ 1 z z ωε1 21

Spectral Doman Method (cont.) For the feld due to the patch bass functon, we then have 1 jk ( 0+ kyy0) E y z = E z e dk dk (,, ) ( 2π ) ( 2π ) z 0 0 2 z y = 1 2 + + + + jk ( 0+ kyy0) G z B e dk dk z y + + 1 k t jk ( 0+ kyy0) = cos φ 2 ( I ( h) ) cos k 1( z + h) B e dk dk ( 2π ) ωε 1 z y z Recall that 0 (,, ) E y z dz = h z 0 0 0 h Note that h cos k ( z + h) dz = cos k z dz = hsnc k h z1 z1 z1 0 z = z+ h 22

Spectral Doman Method (cont.) Hence we have 1 kt jk ( 0+ kyy0) = I h B h k h e dk dk ( 2π ) + + ( ) cosφ snc( 1 ) z 2 z y ωε 1 where cosφ = k k t 23

Spectral Doman Method (cont.) The ntegrand s an even functon of k y and an odd functon of k (due to the cosne term). Hence we use the followng combnatons to reduce the ntegraton to one over the frst quadrant: Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4 jk jky 0 ( y 0) + jk jky 0 ( y 0) + jk ( 0) + jky ( y 0) jk ( 0) + jky ( y 0) e e e e e e + e e jky ( y 0) + jky ( y 0) = 2 jsn k e 2 jsn k e 0 0 jky ( y 0) + jky ( y 0) = 2 jsn ( k0) e + e = 2 jsn ( k 0) 2cos( ky y 0) = 4 jsn k cos ky ( 0) ( y 0) The result s then π /2 j h z =+ 2 ki t hb kh z π ωε 1 0 0 { cosφ snc( 1 ) } sn ( 0) cos( 0) k ky kdkdφ y t t 24

Spectral Doman Method (cont.) The fnal result s then: π /2 j h z = 2 kt I h B kz h π ωε1 0 C Im k t { 2 cosφ snc } 1 sn cos k k y dk dφ 0 y 0 t LR C h R β 0 k k 1 0 Re k t Note: The path must etend to nfnty. 25

Spectral Doman Method (cont.) Note on materal loss: The spectral-doman method already accounts for radaton nto space and nto surface waves, and accounts for delectrc loss by usng an comple permttvty. In order to account for conductor loss, we can use 1 1 1 tanδ eff = = + Qloss Qd Qc ( 1 j tan ) ε = ε δ eff r r eff where Qd = tanδ Q η ( kh) = µ 0 0 c r ave 2 Rs It s also possble to account for conductor loss by usng a mpedance boundary condton on the patch, but usng an effectve loss tangent s a smpler approach (no need to modfy the code smply ncrease the loss tangent to account for conductor loss). 26

Spectral Doman Method (cont.) We now calculate the needed current functon I ( h) 0 + V (0) z 1[ A] I ( h) 1 z = h V (0) = (1) 0 1 z1 1 D n 1 = Y jy cot k h = 27

Spectral Doman Method (cont.) so I (0 ) V (0) I (0 ) = n = j tan k h n + V (0) 1 z1 n 1 I (0 ) j tan k h D 1 = 1 z1 z From last slde: (0) 1 D V = 28

Spectral Doman Method (cont.) Also, I ( z) = I ( h)cos k z+ h h z < 0 z1 so I (0 ) = I ( h)cos k h z1 And therefore Hence I ( h) = I (0 )sec k h z1 1 = j1 tan k z1h kz1h D 1 sec 1 1 I ( h) = sec kz1h Y0 jy1 cot ( kz1h) j1 tan ( kz1h) 29

Results D. M. Pozar, Input mpedance and mutual couplng of rectangular mcrostrp antennas, IEEE Trans. Antennas Propagat., vol. AP-30. pp. 1191-1196, Nov. 1982. [6] E. H. Newman and P. Tulyathan, Analyss of mcrostrp antennas usng moment methods, IEEE Trans. Antennas Propagat., vol. AP-29. pp. 47-53, Jan. 1981. 30

Note: Usng two bass functons s mportant for crcular polarzaton or for dual-polarzed patches. Two Bass Functons W S J sy (, ) = (, ) + (, ) J y AB y AB y s y y y L J s (, y ) 0 0 EFIE: [ ] E : AE B + AE y B y + E J z = 0 on S [ ] Ey : AE y B + AE y y B y + E y J z = 0 on S 31

Two Bass Functons (cont.) Galerkn testng: S E B ds = 0 S E B ds y y = 0 A B, B + A B, B = J, B y y z A B, B + A B, B = J, B y y y y z y Defne: B, B j j B, J z z 32

Two Bass Functons (cont.) A + A = y y z A + A = y y yy yz y = y (recprocty) By symmetry, y = = y 0 Ths follows snce y = B, By = By ye, y B y, ds S and y [ ](, ) = Odd B( y, ) = Even ( y) E B y y y (from symmetry) 33

Two Bass Functons (cont.) Hence, the two testng equatons reduce to: A = z A = y yy yz The soluton s: Usng recprocty: A A y = = z yz yy A A y = = z zy yy 34

Two Bass Functons (cont.) As before, = [ ] ( J J ) J E J dv n probe z z s V = J, J n probe s z = A B, J A B, J probe z y y z = A + A probe z y zy s s Hence, usng the prevous results for A and A y, we have n 2 z = probe 2 zy yy 35

Two Bass Functons (cont.) From our dervaton: π /2 1 = G k φ B k φ k dk dφ 2, (, ) 2 t t t t π 0 C G = + k k 2 2 1 k y 2 t Dm kt De kt Smlarly, π /2 1 2 yy =, 2 yy t y t, t t π 0 C 2 2 1 k y k Gyy = + 2 kt Dm( kt) De( kt) G k φ B k φ k dk dφ 36

Two Bass Functons (cont.) From our dervaton: π /2 j h z = 2 kt I h B kz h π ωε 1 0 C { 2 cosφ snc } 1 sn ( 0) cos( 0) k k y dk dφ y t Smlarly, π /2 j h zy = 2 kt I h By kz h π ωε 1 0 C { 2 snφ snc } 1 sn ( 0) cos( 0) k y k dk dφ y t 37

Two Bass Functons (cont.) The transforms of the bass functons are: L cos k π W 2 B ( k, ky) = LW snc k y 2 2 2 2 π L k 2 2 W cos k y π L 2 B y( k, k y) = WL snc k 2 2 2 2 π W k y 2 2 38