BERNSTEIN-TYPE OPERATORS ON TETRAHEDRONS

Similar documents
A New Type of q-szász-mirakjan Operators

SZEGO S THEOREM STARTING FROM JENSEN S THEOREM

Binomial transform of products

AN EFFICIENT ESTIMATION METHOD FOR THE PARETO DISTRIBUTION

Lebesgue Constant Minimizing Bivariate Barycentric Rational Interpolation

Characterizations Of (p, α)-convex Sequences

BETWEEN QUASICONVEX AND CONVEX SET-VALUED MAPPINGS. 1. Introduction. Throughout the paper we denote by X a linear space and by Y a topological linear

A Bernstein-Stancu type operator which preserves e 2

Automated Proofs for Some Stirling Number Identities

ITERATIONS AND FIXED POINTS FOR THE BERNSTEIN MAX-PRODUCT OPERATOR

Integrals of Functions of Several Variables

Refinements of Jensen s Inequality for Convex Functions on the Co-Ordinates in a Rectangle from the Plane

Available online at J. Math. Comput. Sci. 4 (2014), No. 3, ISSN:

AVERAGE MARKS SCALING

ON BLEIMANN, BUTZER AND HAHN TYPE GENERALIZATION OF BALÁZS OPERATORS

distinct distinct n k n k n! n n k k n 1 if k n, identical identical p j (k) p 0 if k > n n (k)

Bertrand s postulate Chapter 2

Generalized Fixed Point Theorem. in Three Metric Spaces

A new sequence convergent to Euler Mascheroni constant

1.2 AXIOMATIC APPROACH TO PROBABILITY AND PROPERTIES OF PROBABILITY MEASURE 1.2 AXIOMATIC APPROACH TO PROBABILITY AND

A GENERALIZED BERNSTEIN APPROXIMATION THEOREM

On Some Properties of Tensor Product of Operators

Miskolc Mathematical Notes HU e-issn Uniform approximation by means of some piecewise linear functions. Zoltán Finta

On a class of convergent sequences defined by integrals 1

Some results on the Apostol-Bernoulli and Apostol-Euler polynomials

THE GREATEST ORDER OF THE DIVISOR FUNCTION WITH INCREASING DIMENSION

Lecture 10: Bounded Linear Operators and Orthogonality in Hilbert Spaces

x !1! + 1!2!

THE REPRESENTATION OF THE REMAINDER IN CLASSICAL BERNSTEIN APPROXIMATION FORMULA

ECE 901 Lecture 4: Estimation of Lipschitz smooth functions

Local Approximation Properties for certain King type Operators

ON ABSOLUTE MATRIX SUMMABILITY FACTORS OF INFINITE SERIES. 1. Introduction

BIRKHOFF ERGODIC THEOREM

The Hypergeometric Coupon Collection Problem and its Dual

A multivariate rational interpolation with no poles in R m

Direct Estimates for Lupaş-Durrmeyer Operators

Several properties of new ellipsoids

Equivalence Between An Approximate Version Of Brouwer s Fixed Point Theorem And Sperner s Lemma: A Constructive Analysis

#A18 INTEGERS 11 (2011) THE (EXPONENTIAL) BIPARTITIONAL POLYNOMIALS AND POLYNOMIAL SEQUENCES OF TRINOMIAL TYPE: PART I

q-fibonacci polynomials and q-catalan numbers Johann Cigler [ ] (4) I don t know who has observed this well-known fact for the first time.

The Differential Transform Method for Solving Volterra s Population Model

Some families of generating functions for the multiple orthogonal polynomials associated with modified Bessel K-functions

A Study on the Rate of Convergence of Chlodovsky-Durrmeyer Operator and Their Bézier Variant

TRIGONOMETRIC POLYNOMIALS WITH MANY REAL ZEROS AND A LITTLEWOOD-TYPE PROBLEM. Peter Borwein and Tamás Erdélyi. 1. Introduction

arxiv: v1 [math.nt] 26 Feb 2014

ON WEIGHTED ESTIMATES FOR STEIN S MAXIMAL FUNCTION. Hendra Gunawan

SPECTRUM OF THE DIRECT SUM OF OPERATORS

BINOMIAL COEFFICIENT HARMONIC SUM IDENTITIES ASSOCIATED TO SUPERCONGRUENCES

DISTANCE BETWEEN UNCERTAIN RANDOM VARIABLES

Bernoulli Polynomials Talks given at LSBU, October and November 2015 Tony Forbes

A PROBABILITY PROBLEM

Riemann Hypothesis Proof

JORGE LUIS AROCHA AND BERNARDO LLANO. Average atchig polyoial Cosider a siple graph G =(V E): Let M E a atchig of the graph G: If M is a atchig, the a

International Journal of Multidisciplinary Research and Modern Education (IJMRME) ISSN (Online): (

Common Fixed Points for Multifunctions Satisfying a Polynomial Inequality

OFF-DIAGONAL MULTILINEAR INTERPOLATION BETWEEN ADJOINT OPERATORS

APPROXIMATION BY BERNSTEIN-CHLODOWSKY POLYNOMIALS

A note on the p-adic gamma function and q-changhee polynomials

ADVANCED PROBLEMS AND SOLUTIONS

Chapter 2. Asymptotic Notation

19.1 The dictionary problem

Acoustic Field inside a Rigid Cylinder with a Point Source

Lecture 19. Curve fitting I. 1 Introduction. 2 Fitting a constant to measured data

SOME FINITE SIMPLE GROUPS OF LIE TYPE C n ( q) ARE UNIQUELY DETERMINED BY THEIR ELEMENT ORDERS AND THEIR ORDER

The log-behavior of n p(n) and n p(n)/n

A NEW CLASS OF 2-STEP RATIONAL MULTISTEP METHODS

Some remarks on the paper Some elementary inequalities of G. Bennett

APPLIED MULTIVARIATE ANALYSIS

On the Fibonacci-like Sequences of Higher Order

arxiv: v1 [cs.ds] 23 Nov 2012

ECE Spring Prof. David R. Jackson ECE Dept. Notes 20

International Journal of Mathematical Archive-4(9), 2013, 1-5 Available online through ISSN

Supplementary Material for Fast Stochastic AUC Maximization with O(1/n)-Convergence Rate

Orthogonal Functions

q-durrmeyer operators based on Pólya distribution

Ma 530 Introduction to Power Series

A constructive analysis of convex-valued demand correspondence for weakly uniformly rotund and monotonic preference

A collocation method for singular integral equations with cosecant kernel via Semi-trigonometric interpolation

Approximation theorems for localized szász Mirakjan operators

Int. Journal of Math. Analysis, Vol. 6, 2012, no. 31, S. Panayappan

Math 4707 Spring 2018 (Darij Grinberg): midterm 2 page 1. Math 4707 Spring 2018 (Darij Grinberg): midterm 2 with solutions [preliminary version]

Numerical integration of analytic functions

Computers and Mathematics with Applications. Axisymmetric Stokes equations in polygonal domains: Regularity and finite element approximations

Generalization of Samuelson s inequality and location of eigenvalues

NEW FAST CONVERGENT SEQUENCES OF EULER-MASCHERONI TYPE

On Bivariate Haar Functions and Interpolation Polynomial

ALMOST CONVERGENCE AND SOME MATRIX TRANSFORMATIONS

Ma/CS 6a Class 22: Power Series

REVIEW OF CALCULUS Herman J. Bierens Pennsylvania State University (January 28, 2004) x 2., or x 1. x j. ' ' n i'1 x i well.,y 2

Chimica Inorganica 3

Domination Number of Square of Cartesian Products of Cycles

A remark on p-summing norms of operators

ON SINGULAR INTEGRAL OPERATORS

Double Derangement Permutations

IT is well known that Brouwer s fixed point theorem can

Constructive Polynomial Approximation on the Sphere

Numerical Conformal Mapping via a Fredholm Integral Equation using Fourier Method ABSTRACT INTRODUCTION

arxiv: v3 [math.nt] 24 Dec 2017

PRIMARY DECOMPOSITION, ASSOCIATED PRIME IDEALS AND GABRIEL TOPOLOGY

ON THE EXTENDED AND ALLAN SPECTRA AND TOPOLOGICAL RADII. Hugo Arizmendi-Peimbert, Angel Carrillo-Hoyo, and Jairo Roa-Fajardo

Transcription:

STUDIA UNIV. BABEŞ BOLYAI MATHEMATICA Volue LIV Nuber 4 Deceber 2009 BERNSTEIN-TYPE OPERATORS ON TETRAHEDRONS PETRU BLAGA TEODORA CĂTINAŞ AND GHEORGHE COMAN Abstract. The ai of the paper is to costruct Berstei-type operators o tetrahedro with all straight edges ad o tetrahedro with three curved edges defied by soe give fuctios. We study the iterpolatio properties the approxiatio accuracy degree of exactess precisio set ad the reaider of the correspodig approxiatio forulas. The accuracy is also illustrated by uerical exaples.. Itroductio I soe previous papers were costructed ad applied soe iterpolatio operators o triagle with oe curved edge respectively o tetrahedro with straight edges [ 6 7 8 9 2] as well as Berstei-type operators o triagle with all straight edges respectively o triagle with oe curved edge [4 5]. There were studied the iterpolatio properties ad the accuracy of these operators respectively the reaiders of the correspodig approxiatio forulas. The order of a approxiatio operator P is give by the degree of exactess dexp ad by the precisio set presp. Reid that dex P = r if Pf = f for all f Pr ad there exists g Pr+ such that Pg g where Pr deotes the space of polyoials i variables of global degree at ost r. The precisio set of a approxiatio operator is the set of all ooials for which the approxiatio is exact [2]. Received by the editors: 0.09.2009. 2000 Matheatics Subject Classificatio. 4A354A364A80. Key words ad phrases. Berstei operator product operator Boolea su operator approxiatio accuracy tetrahedro. 3

00z PETRU BLAGA TEODORA CĂTINAŞ AND GHEORGHE COMAN The goal of this paper is to study Berstei-type operators o tetrahedros with straight edges respectively with three curved edges give by fuctios. 2. Berstei-type operators o tetrahedros with straight edges By affie ivariace it is sufficiet to cosider oly the stadard tetrahedro T h with vertices V 0 = 0 0 0 V = h 0 0 V 2 = 0 h 0 ad V 3 = 0 0 h with three edges τ τ 2 τ 3 alog the coordiate axes ad with the edges Γ Γ 2 Γ 3 opposite to the vertex V 0. Also oe deotes by σ 02 σ 03 σ 023 ad σ 23 the tetrahedro faces fro the plaes V 0 V V 2 V 0 V V 3 V 0 V 2 V 3 ad V V 2 V 3 respectively see the left side of Figure. V 3 V 3 τ 3 σ 023 h z0z T 0h zz Γ 2 Γ 3 σ 03 x0h x 0yh y τ V 0 τ 2 T 3 V 0 T 2 σ 02 V V 2 2 V Γ V h yy0 xh x0 x00 0y0 Figure. Tetrahedro with straight edges Let Π i i = 2 3 be the parallel plaes to the tetrahedro faces that itersect the tetrahedro edges i three poits ad T i i = 2 3 be the triagles i which the plaes Π i i = 2 3 itersect the tetrahedro faces respectively see the right side of Figure. 2.. Uivariate operators. O each triagle oe defies two Berstei-type operators. Reark. We shall study i detail oly the Berstei-type operators o the triagle T. For the triagles T 2 ad T 3 there are obtaied aalogous results. 4

BERNSTEIN-TYPE OPERATORS ON TETRAHEDRONS Let us cosider the triagle T see Figure 2. 0h zz xh x zz 0yz h y zyz 00z x0z h z0z Figure 2. Triagle T ad For the uifor partitios x = { i h y z } y z i = 0 { y = x j h x z } z j = 0 of the itervals [0 y z h y z y z] [x 0 zx h x z z] respectively oe cosiders the Berstei-type operators B xy ad B yx defied by with ad with B xy Fx y z = p i x y z = B yx Fx y z = p i x y zf i h y z y z i x h y z i i x h y z q j x y zf x j h x z z j=0 5

PETRU BLAGA TEODORA CĂTINAŞ AND GHEORGHE COMAN q j x y z = j y h x z where F is a real-valued fuctio defied o T h. Theore 2.. If F : T h R the: i B xy F = F o σ 023 σ 23 B yx F = F o σ 03 σ 23 ; j j y h x z ii dexb xy = dex Byx = ; iii presb xy = { x i y j z k i = 0 ; j k N } presb yx = { x i y j z k } j = 0 ; i k N ; [ iv B xy e 2jk x y z = x 2 xh x y z ] + y j z k [ B yx e i2k x y z = y 2 + Proof. The relatios y h x y z for i = 0 p i 0 y z = 0 for i > 0; for i = p i h y z y z = 0 for i < ; ] x i z k i j k N. respectively iply that 6 for j = 0 q j x 0 z = 0 for j > 0; for j = q j x h x z z = 0 for j < ; B xy F0 y z = F 0 y z B xy Fh y z y z = F h y z y z 2

BERNSTEIN-TYPE OPERATORS ON TETRAHEDRONS ad B yx Fx 0 y = F x 0 z B yx Fx h x z z = F x h x z z i.e. the iterpolatio properties i. Regardig the approxiatio accuracy we have B xy e 000 x y z= B xy e 00 x y z= p i x y z = i i x x i h y z i h y z h y z i i x x =x =x i h y z h y z i i B xy e x x h y z 200 x y z= i 2 i h y z h y z 2 h y z i i x x = + xh y z i h y z h y z i=2 = x2 + xh y z =x 2 + xh x y z B xy e ijk x y z=y j z k B xy e i00 x y z i = 0 2 j k N respectively B yx e 000 x y z = q j x y z = j=0 B yx e 00x y z = y B yx e i2kx y z = y 2 + y h x y z B yx e ijk x y z = x i z k B yx e 0j0 x y z j = 0 2 i k N 2 that are proved i the sae way which iply ii-iv. Let F = B xy F + R xy F be the approxiatio forula geerated by the operator B xy. 7

PETRU BLAGA TEODORA CĂTINAŞ AND GHEORGHE COMAN Theore 2.2. If F y z C [0 h y z] the R xy Fx y z + h 2δ ω F y z;δ y + z h where ω F y z;δ is the odulus of cotiuity of the fuctio F with regard to the variable x. Moreover if δ = / the R xy Fx y z + h ω F y z; 2. 3 Proof. We have R xy Fx y z p i x y z F x y z F i h y z z y Sice we have [ + δ [ + δ p i x y z δ x ih y z ω + F y z;δ p i x y z x i h y z 2 /2 ] ω F y z;δ xh x y z ] ω F y z;δ. [ ] ax xh x y z h2 z [0 h] 4 T 4 R xy Fx y z respectively for δ = / R xy Fx y z + h 2 We also have R yx Fx y z Theore 2.3. If F y z C 2 [0 h] the + h 2δ ω F y z; δ ω F y z; + h ω F x z; 2.. 5 8 R xy x y z Fx y z = xh F 200 ξ y z 2

BERNSTEIN-TYPE OPERATORS ON TETRAHEDRONS for 0 ξ h y z; y z [0 h] ad where R xy Fx y z h 2 8 M 200F 6 M ijk F = ax T h F ijk x y z. Proof. Sice dex B xy = by Peao s kerel theore follows that R xy where the kerel h y z Fx y z = K 200 x y z; sf 200 s y zds K 200 x y z; s = x s + 0 p i x y z i h y z s + does ot chage the sig K 200 x y z; s 0 s [0 h y z]. By ea value theore oe obtais R xy Fx y z = F 200 ξ y z h y z 0 K 200 x y z; sds = xh x y z F 200 ξ y z 0 ξ h y z. 2 Now the iequality of 4 iplies 6. Reark 2. O the sae way it is proved the evaluatios of the reaider i the forula F = B yx F + Ryx F i.e. for F x z C [0 h x z] R yx Fx y z + h 2 ω F x z; 7 respectively for F x z C 2 [0 h] o T h. R yx Fx y z h2 8 M 020F 8 9

PETRU BLAGA TEODORA CĂTINAŞ AND GHEORGHE COMAN 2.2. Product operators. Let P = B xy B yx ad Q = B yx B xy be the products of the operators B xy respectively We have P F x y z = Q F x y z = ad Byx. j=0 j=0 p i x y zq j i h y z y z F i h y z j ih z + iy p i x j h x z F i jh z + jx z q j x y z Theore 2.4. If F is a real-valued fuctio defied o T h the ad o τ 3 σ 23. Proof. Takig ito accout ad 2 oe obtais P F 0 0 z = F 0 0 z z j h x z z. P F = F 9 Q F = F 0 P F h y z y z = F h y z y z respectively Q F 0 0 z = F 0 0 z Q F h y z y z = F h y z y z for all y z [0 h]. For the approxiatio error of the operators P ad Q we have the followig theore. 0

BERNSTEIN-TYPE OPERATORS ON TETRAHEDRONS Theore 2.5. If F z C [0 h] [0 h] the F P F x y z + hω F z; ad o T h. F Q F x y z + hω F z; 2 Proof. We have F P F x y z [ p i x y zq j i h y z δ y z j=0 x ih y z + p i x y zq j i h y z δ y z j=0 ih z + iy y j + p i x y zq j i h y z ] y z ω F z;δ δ 2 j=0 xh x y z + y h x y z + ω F z;δ δ 2. δ 2 As δ xh x y z y h x y z h y z2 4 h x z2 4 o o [0 h y z] [0 h x z] oe obtais F PF x y z h y z δ 2 + h x z δ 2 2 + ω F z;δ δ 2 h 2 + h δ 2 2 + ω F z;δ δ 2. δ Now for δ = / ad δ 2 = / oe obtais. The iequality 2 is proved i the sae way.

PETRU BLAGA TEODORA CĂTINAŞ AND GHEORGHE COMAN 2.3. Boolea su operators. Let ad S := B xy B yx = B xy + B yx B xy B yx 3 T := B yx be the Boolea sus of the operators B xy ad B yx. B xy = B yx + B xy B yx B xy 4 Theore 2.6. If F is a real-valued fuctio defied o T h the S F = F ad T F = F o σ 03 σ 023 σ 23. Proof. We have: B xy F 0 y z = F 0 y z P F 0 y z = B yx F0 y z which iply that S F = F o σ 023 ; B yx Fx 0 z = F x 0 z P F x 0 z = B xy Fx 0 z which iply that S F = F o σ 03; ad B xy F = F Byx F = F P F = F o σ 23 which iply that S F = F o σ 23. Aalogously it is proved that T F = F o σ 03 σ 023 σ 23. Theore 2.7. If F C T h the F S F x y z + h 2 o T h. 2 + + h ω F x z; 2 ω F y z; + + + hω F z;

BERNSTEIN-TYPE OPERATORS ON TETRAHEDRONS Proof. Fro the idetity oe obtais F S F = F Bxy F + F Byx F F P F F S F x y z R xy Fx y z + R yx Fx y z + F P F x y z ad fro 3 5 the proof follows. Reark 3. The sae iequality is obtaied for the error F T F x y z usig istead of the iequality 2. 3. Berstei-type operators o tetrahedros with three curved edges Oe cosiders also the stadard tetrahedro T h with vertices V 0 = 0 0 0 V = h 0 0 V 2 = 0 h 0 ad V 3 = 0 0 h with three straight edges τ τ 2 τ 3 alog the coordiate axes ad with three curved edges γ γ 2 γ 3 opposite to the vertex V 0 defied respectively by the oe-to-oe fuctios f i ad g i where g i is the iverse of the fuctio f i i = 2 3. Also oe deotes by s 02 s 03 s 023 ad the tetrahedro faces fro the plaes V 0 V V 2 V 0 V V 3 V 0 V 2 V 3 ad V V 2 V 3 respectively by s 23 the curved faced opposite to the vertex V 0 see the left side of Figure 3 ad by t i i = 2 3 the triagles with oe curved edge i which the plaes Π i i = 2 3 itersect the faces of the tetrahedro T h respectively see left side of Figure 3. Next oe cosiders the particular case whe the face s 23 is o the sphere x 2 + y 2 + z 2 = h 2 i.e. f i u = h 2 u 2 ad g i v = h 2 v 2 i = 2 3 see right side of Figure 3 3.. Uivariate operators. Oe each triagle t i i = 2 3 oe defies two Berstei-type operators. We discuss here oly o the triagle t Figure 4. We have B xy Fx y z = h2 y p i x y zf i 2 z 2 y z 3

PETRU BLAGA TEODORA CĂTINAŞ AND GHEORGHE COMAN V 3 V 3 00z τ 3 h 2 z 2 /2 0z t 0h 2 z 2 /2 z γ 2 s 03 s 023 γ 3 x0h 2 x 2 /2 0yh 2 y 2 /2 τ V 0 τ 2 t 3 V 0 t 2 s 02 V V 2 2 V V x00 0y0 γ xh 2 x 2 /2 0 h 2 y 2 /2 y0 Figure 3. Tetrahedro with three curved edges 0h 2 z 2 /2 z xh 2 x 2 z 2 /2 z 0yz h 2 y 2 z 2 /2 yz 00z x0z h 2 z 2 /2 0z Figure 4. Triagle t ad with B yx Fx y z = p i x y z = i j=0 h2 x q j x y zf x j 2 z 2 z i x h2 y 2 z 2 x h2 y 2 z 2 i 4

BERNSTEIN-TYPE OPERATORS ON TETRAHEDRONS respectively q j x y z = j j y h2 x 2 z 2 where F is a real-valued fuctio defied o T h. theores: x h2 x 2 z 2 j Followig the way used i the Sectio 2 oe ca prove the correspodig Theore 3.. If F : T h R the: i B xy F = F o s 023 s 23 B yx F = F o s 03 s 23 ; ii dexb xy = dex B yx = ; iii presb xy = { x i y j z k i = 0 ; j k N } presb yx = { x i y j z k } j = 0 ; i k N ; [x 2 + x h 2 y 2 z 2 x ] iv B xy e 2jkx y z = x i z k [y 2 + y h 2 x 2 z 2 y ] Let B yx e i2k x y z = F = B xy F + Rxy F be the approxiatio forula geerated by the operator B xy Theore 3.2. If F y z C [0 ] h 2 y 2 z 2 the respectively. x i z k i j k N. R xy Fx y z + h 2δ ω F y z;δ y + z h R xy Fx y z + h ω F y z;. 2 Theore 3.3. If F y z C 2 [0 h] the R xy x h2 y 2 z 2 x Fx y z = F 200 ξ y z 2 for 0 ξ h 2 y 2 z 2 y z [0 h] ad R xy Fx y z h 2 8 M 200F. 5

PETRU BLAGA TEODORA CĂTINAŞ AND GHEORGHE COMAN Reark 4. Aalogous results take place for the reaider i the approxiatio forula F = B yx F + Ryx F. 3.2. Product operators. Let P = B xy B yx ad Q = B yx B xy be the products of the operators B xy P Fx y z = respectively Q Fx y z = ad Byx i.e. h2 y p i x y zq j i 2 z 2 y z h2 y F i 2 z 2 2 i j 2 h 2 z 2 + i 2 y 2 j=0 h2 x p i x j 2 z 2 z q j x y z 2 j F i 2 h 2 z 2 + j 2 x 2 h2 x j 2 z 2 j=0 Theore 3.4. If F : T h R the z z. P F = F ad Q F = F o τ 3 s 23. Theore 3.5. If F z C [0 h] [0 h] the F P Fx y z + hω F z; ad F Q Fx y z + hω F z;. 3.3. Boolea su operators. If S = B xy B yx ad T = B yx B xy are the Boolea sus of the operators B xy Theore 3.6. If F : T h R the ad Byx the we have: 6 S F = F ad T F = F o s 03 s 023 s 23.

BERNSTEIN-TYPE OPERATORS ON TETRAHEDRONS Theore 3.7. If F C T h the F S Fx y z + h 2 ω F y z; + + h ω F x z; 2 + + h ω F z; ad a siilar iequality holds for the error F T F. Refereces [] Barhill R. E. Bledig fuctio iterpolatio: a survey ad soe ew results Nuerische Methode der Approxiatiostheorie Bad 3 L. Collatz et al. eds. ISNM Vol.30 Birkhäuser Verlag Basel 976 pp. 43-89. [2] Barhill R.E. Gregory J.A. Polyoial iterpolatio to boudary data o triagles Math. Cop. 29 975 pp. 726-735. [3] Berardi C. Optial fiite-eleet iterpolatio o curved doais SIAM J. Nuer. Aalysis 26989 o.5 pp. 22-240. [4] Blaga P. Coa Gh. Berstei-type operators o triagle Rev. Aal. Nuér. Théor. Approx. 38 2009 o. pp. 9-2. [5] Blaga P. Cătiaş T. Coa Gh. Berstei-type operators o triagle with oe curved side to appear. [6] Coa Gh. Cătiaş T. Iterpolatio operators o triagle with oe curved side to appear. [7] Coa Gh. Cătiaş T. Iterpolatio operators o tetrahedro with three curved sides to appear. [8] Dautray R. Lios J.-L. Aalyse athéatique et calcul uérique pour les scieces et les techiques Vol. 6: Métodes itégrales et uériques Ch. XII pp. 798-834 Masso Paris 988. [9] Gregory J. A. A bledig fuctio iterpolat for triagles Multivariate Approxiatio D.C. Hadscob Acadeic Press Lodo-New York 978 pp. 279-287. [0] Marshall J. A. Mitchell A. R. A exact boudary techique for iproved accuracy i the fiite eleet ethod J. Ist. Math. Appl. 2 973 pp. 355-362. [] Mitchell A.R. McLeod R. Curved eleets i the fiite eleet ethod Coferece o Nuer. Sol. Diff. Eq. Lecture Notes i Math. 363 Spriger Verlag Berli 974 pp. 89-04. 7

PETRU BLAGA TEODORA CĂTINAŞ AND GHEORGHE COMAN [2] Nielso G. Miiu or iterpolatio i triagles SIAM J. Nuer. Aal. 7980 pp. 44-62. [3] Zláal M. Curved eleets i the fiite eleet ethod SIAM J. Nuer. Aal. 0973 pp. 229-240. Babeş-Bolyai Uiversity Faculty of Matheatics ad Coputer Sciece Departet of Applied Matheatics Cluj-Napoca Roaia E-ail address: blaga@ath.ubbcluj.ro Babeş-Bolyai Uiversity Faculty of Matheatics ad Coputer Sciece Departet of Applied Matheatics Cluj-Napoca Roaia E-ail address: tcatias@ath.ubbcluj.ro Babeş-Bolyai Uiversity Faculty of Matheatics ad Coputer Sciece Departet of Applied Matheatics Cluj-Napoca Roaia E-ail address: ghcoa@ath.ubbcluj.ro 8