Modern Energy Functional for Nuclei and Nuclear Matter. By: Alberto Hinojosa, Texas A&M University REU Cyclotron 2008 Mentor: Dr.

Similar documents
Determining Modern Energy Functional for Nuclei And The Status of The Equation of State of Nuclear Matter. Shalom Shlomo Texas A&M University

5-1. We apply Newton s second law (specifically, Eq. 5-2). F = ma = ma sin 20.0 = 1.0 kg 2.00 m/s sin 20.0 = 0.684N. ( ) ( )

Outline. GW approximation. Electrons in solids. The Green Function. Total energy---well solved Single particle excitation---under developing

Field due to a collection of N discrete point charges: r is in the direction from

calculating electromagnetic

CHAPTER 10: LINEAR DISCRIMINATION

Name of the Student:

Solution in semi infinite diffusion couples (error function analysis)

CptS 570 Machine Learning School of EECS Washington State University. CptS Machine Learning 1

MCTDH Approach to Strong Field Dynamics

Lecture 5. Plane Wave Reflection and Transmission

s = rθ Chapter 10: Rotation 10.1: What is physics?

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law

I-POLYA PROCESS AND APPLICATIONS Leda D. Minkova

( ) () we define the interaction representation by the unitary transformation () = ()

Rotations.

ESS 265 Spring Quarter 2005 Kinetic Simulations

Simulation of Non-normal Autocorrelated Variables

University of California, Davis Date: June xx, PRELIMINARY EXAMINATION FOR THE Ph.D. DEGREE ANSWER KEY

Nanoparticles. Educts. Nucleus formation. Nucleus. Growth. Primary particle. Agglomeration Deagglomeration. Agglomerate

FI 3103 Quantum Physics

Online Supplement for Dynamic Multi-Technology. Production-Inventory Problem with Emissions Trading

Chapter 3: Vectors and Two-Dimensional Motion

( ) ( )) ' j, k. These restrictions in turn imply a corresponding set of sample moment conditions:

8. HAMILTONIAN MECHANICS

Handling Fuzzy Constraints in Flow Shop Problem

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

Course Outline. 1. MATLAB tutorial 2. Motion of systems that can be idealized as particles

ScienceDirect. Behavior of Integral Curves of the Quasilinear Second Order Differential Equations. Alma Omerspahic *

Chapter 6 Plane Motion of Rigid Bodies

Density Matrix Description of NMR BCMB/CHEM 8190

Lecture 5. Chapter 3. Electromagnetic Theory, Photons, and Light

N 1. Time points are determined by the

Backcalculation Analysis of Pavement-layer Moduli Using Pattern Search Algorithms

Let s treat the problem of the response of a system to an applied external force. Again,

Density Functional Theory I

Density Matrix Description of NMR BCMB/CHEM 8190

( ) ( ) Weibull Distribution: k ti. u u. Suppose t 1, t 2, t n are times to failure of a group of n mechanisms. The likelihood function is

1 Constant Real Rate C 1

SCIENCE CHINA Technological Sciences

Real-coded Quantum Evolutionary Algorithm for Global Numerical Optimization with Continuous Variables

Cubic Bezier Homotopy Function for Solving Exponential Equations

Muffin Tins, Green s Functions, and Nanoscale Transport [ ] Derek Stewart CNF Fall Workshop Cooking Lesson #1

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

Reflection and Refraction

Time-Dependent Density Functional Theory in Condensed Matter Physics

Suppose we have observed values t 1, t 2, t n of a random variable T.

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4

Mechanics Physics 151

J i-1 i. J i i+1. Numerical integration of the diffusion equation (I) Finite difference method. Spatial Discretization. Internal nodes.

Low-complexity Algorithms for MIMO Multiplexing Systems

Mechanics Physics 151

Nuclear and Particle Physics - Lecture 20 The shell model

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION

Physics 2A Chapter 11 - Universal Gravitation Fall 2017

Physics 201 Lecture 15

to Assess Climate Change Mitigation International Energy Workshop, Paris, June 2013

Lecture 2 M/G/1 queues. M/G/1-queue

L4:4. motion from the accelerometer. to recover the simple flutter. Later, we will work out how. readings L4:3

Variants of Pegasos. December 11, 2009

E For K > 0. s s s s Fall Physical Chemistry (II) by M. Lim. singlet. triplet

Motion of Wavepackets in Non-Hermitian. Quantum Mechanics

ajanuary't I11 F or,'.

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s

Physics Exam II Chapters 25-29

Numerical Study of Large-area Anti-Resonant Reflecting Optical Waveguide (ARROW) Vertical-Cavity Semiconductor Optical Amplifiers (VCSOAs)

NATIONAL UNIVERSITY OF SINGAPORE PC5202 ADVANCED STATISTICAL MECHANICS. (Semester II: AY ) Time Allowed: 2 Hours

(,,, ) (,,, ). In addition, there are three other consumers, -2, -1, and 0. Consumer -2 has the utility function

Born Oppenheimer Approximation and Beyond

2 shear strain / L for small angle

Motion in Two Dimensions

Existence and Uniqueness Results for Random Impulsive Integro-Differential Equation

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany

A multiple-relaxation-time lattice Boltzmann model for simulating. incompressible axisymmetric thermal flows in porous media

Graduate Macroeconomics 2 Problem set 5. - Solutions

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS

Complex atoms and the Periodic System of the elements

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

Linear Response Theory: The connection between QFT and experiments

Approximate Analytic Solution of (2+1) - Dimensional Zakharov-Kuznetsov(Zk) Equations Using Homotopy

The Unique Solution of Stochastic Differential Equations. Dietrich Ryter. Midartweg 3 CH-4500 Solothurn Switzerland

Dynamic Team Decision Theory. EECS 558 Project Shrutivandana Sharma and David Shuman December 10, 2005

8 Baire Category Theorem and Uniform Boundedness

Lab #0. Tutorial Exercises on Work and Fields

APPROXIMATIONS FOR AND CONVEXITY OF PROBABILISTICALLY CONSTRAINED PROBLEMS WITH RANDOM RIGHT-HAND SIDES

Scattering at an Interface: Oblique Incidence

Lecture 17: Kinetics of Phase Growth in a Two-component System:

Bethe-Salpeter Equation Green s Function and the Bethe-Salpeter Equation for Effective Interaction in the Ladder Approximation

Econ107 Applied Econometrics Topic 5: Specification: Choosing Independent Variables (Studenmund, Chapter 6)

The k-filtering Applied to Wave Electric and Magnetic Field Measurements from Cluster

Appendix H: Rarefaction and extrapolation of Hill numbers for incidence data

Integral Vector Operations and Related Theorems Applications in Mechanics and E&M

Chapter Lagrangian Interpolation

Support Vector Machines

Midterm Exam. Thursday, April hour, 15 minutes

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

Representing Knowledge. CS 188: Artificial Intelligence Fall Properties of BNs. Independence? Reachability (the Bayes Ball) Example

Slide 1. Quantum Mechanics: the Practice

GMM parameter estimation. Xiaoye Lu CMPS290c Final Project

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD

Transcription:

Moden Enegy Funconal fo Nucle and Nuclea Mae By: lbeo noosa Teas &M Unvesy REU Cycloon 008 Meno: D. Shalom Shlomo

Oulne. Inoducon.. The many-body poblem and he aee-fock mehod. 3. Skyme neacon. 4. aee-fock Equaon 5. Smulaed nnealng Mehod. 6. Daa. 7. Resuls and Dscusson.

Inoducon Impoan ask: Develop a moden Enegy Densy Funconal EDF wh enhanced pedcve powe fo popees of ae nucle. We sa fom EDF obaned fom Skyme N-N neacon. The effecve Skyme neacon has been used n mean-feld models fo seveal decades and many dffeen paameezaons of he neacon have been ealzed o epoduce nuclea masses ad and ohe daa of nucle. Snce moe epemenal daa has become avalable we ae able o f ou esuls o a boade collecon of nucle a and fa fom he sably lne.

The many-body poblem In ode o deemne he popees of a nucleus s necessay o solve he me-ndependen Schödnge equaon. Ψ n... E Ψ... The many-body amlonan s gven by h m Unfounaely s dffcul o oban a soluon o he many-body equaon. n n V

The aee-fock Mehod aee-fock F s a mehod fo obanng an appomae soluon o he many body poblem n Quanum Mechancs. I uses he mean feld appomaon whee each pacle neacs wh an aveage poenal poduced by s neacon wh all ohe pacles. Effecs due o coelaed moon of many nucleons ae no accouned fo by he F appomaon.

Slae deemnans In F he many-nucleon femon wave funcon Φ s appomaed by an ansymmec poduc of sngle pacle wave funcons. Ths wave funcon Φ can be wen as a Slae deemnan whch guaanees an ansymmec wave funcon of he nucleons sysem..........! M M M M Φ

The aee Fock Equaon The F equaon s deved usng Vaaonal Calculus by mnmzng he Enegy Funconal. Φ Φ oal E ˆ ˆ oal V m p V T. Coul NN V V V The oal amlonan of he nucleus s whee The oal enegy s ˆ dd V dd V d m E oal h Δ Φ Φ

Skyme neacon To model he nuclea foce V NN he Skyme effecve nucleonnucleon neacon s used.. 6 ] [ 0 3 3 0 0 NN k W k P k k P k k P P V s s s δ δ δ δ δ δ whee s he spn echange opeao and whee he gh and lef aows ndcae ha he momenum opeaos ac on he gh and on he lef especvely. P / k / k s s s W 0 ae he Skyme paamees whch need o be deemned.

The oal enegy s hen gven by ˆ Φ Φ Φ Φ d V V T E Coulomb oal whee he enegy densy funconal s m m n n p p Knec h h d d e ch ch ch Coulomb Skyme Coulomb Knec

nd he Skyme enegy densy funconal s Η Skyme 0 3 eff fn so sg

[ ] J J J ch. Now we apply he vaaon pncple o deve he aee-fock equaons. We mnmze Φ Φ oal E ˆ 0 δ ε δ δ δ ε δ δ d E d E

δ δ δ δ d J W U m E h whee δ δ δ δ [ ] " δ δ J

fe cayng ou he mnmzaon of enegy we oban he F equaons: 4 3 " R R W l l m d d U R m d d R l l R m ε h h h aee-fock Equaons whee and ae he effecve mass he poenal and he spn ob poenal. They ae gven n ems of he Skyme paamees and he nuclea denses. m U W

4 4 m m h h [ ] 3 8 3 8 6 4 4. 0 3 3 3 3 3 3 0 0 0 0 d e J J W U ch δ [ ] ] [ 8 8 0 J J W W Defnons

Fed daa - The bndng eneges fo 4 nucle angng fom nomal o he eoc poon o neuon ones: 6 O 4 O 34 S 40 Ca 48 Ca 48 N 56 N 68 N 78 N 88 S 90 Z 00 Sn 3 Sn and 08 Pb. - Chage ms ad fo 7 nucle: 6 O 40 Ca 48 Ca 56 N 88 S 90 Z 08 Pb. - The spn-ob splngs fo p poon and neuon obs fo 56 N εp / - εp 3/ neuon.88 MeV εp / - εp 3/.83 MeV poon. - Rms ad fo he valence neuon: n he d 5/ ob fo 7 O n d 3. 36 5 / fm n f 3. 99 fm 7 n he f 7/ ob fo 4 Ca / - The beahng mode enegy fo 4 nucle: 90 Z 7.8 MeV 6 Sn 5.9 MeV 44 Sm 5.5 MeV and 08 Pb 4.8 MeV. Noe: Bold face ndcaes daa aken n ou f fo he fs me.

SM Smulaed annealng mehod The SM s a mehod fo opmzaon poblems of lage scale n pacula whee a desed global eemum s hdden among many local eema. We use he SM o deemne he values of he Skyme paamees by seachng he global mnmum fo he ch-squae funcon χ N d Nd N p M ep M h N d s he numbe of epemenal daa pons. N p s he numbe of paamees o be fed. ep M h M and ae he epemenal and he coespondng heoecal values of he physcal quanes. s he adoped unceany.

Implemenng he SM o seach he global mnmum of funcon: χ. W. Defne 0 ae wen n ems of B / K nm nm... v B / K m / m E J L G 0 W nm nm s κ 0 χ old 3. Calculae fo a gven se of epemenal daa and he coespondng F esuls usng an nal guess Skyme paamees.. 4. Deemne a new se of Skyme paamees by he followng seps: Use a andom numbe o selec a componen v of veco Use anohe andom numbe η o ge a new value of v v v v dη Use hs modfed veco o geneae a new se of Skyme paamees. v

5. Go back o F and calculae χ new 6. The new se of Skyme paamees s acceped only f χ χ old new P χ ep > T 0 < β < β 7. Sang wh an nal value of T T we epea seps 4-6 fo a lage numbe of loops. 8. Reduce he paamee T as and epea seps - 7 T T k 9. Keep dong hs way unl hopefully eachng global mnmum of χ

Vaaon of he aveage value of χ he conol paamee T fo he KDE0 neacon fo he wo dffeen choces of he sang paamee. T as a funcon of he nvese of

Skyme Paamees Resuls Paamee 0 MeV fm 3 MeV fm 5 MeV fm 5 KDE0 F -56.5 40.63 430.94 6.67-398.38 7.3 KDEXFCORR -49.83 4.68 309.4 8.79-7.96 3.9 3 MeV fm 3 435.5 680.73 0465.4 33.9 0 0.7583 0.0655 0.474 0.00437 3-0.3087 0.065-0.0857 0.0046-0.9495 0.079-0.644 0.059.445 0.088 0.097 0.0006 W 0 MeV fm 5 8.96 3.33 0.676 0.063 98.90.7 0.4989 0.003

Nucle B ep ΔB B ep -B h KDE0 KDEX Bndng Eneges MeV 6 O -7.60 0.394 3.0 4 O -68.384-0.58 4.58 34 S -83.47-0.656.868 40 Ca 48 Ca 48 N -34.050-45.990-347.36 0.005 0.88 -.437 0.699.59 4.946 G. ud e al Nucl. Phys. 79 337 003 56 N -483.99.09.853 68 N -590.408 0.69.53 78 N -64.940-0.5.597 88 S -768.468 0.86.985 90 Z -783.89-0.7 0.93 00 Sn -84.800-3.664 0.80 3 Sn -0.850-0.4.75 08 Pb -636.430 0.945-5.584

Chage RMS Rad fm E. W. Oen n Tease onn eavy-ion Scence Vol 8 989. Nucle 6 O Epemen.73 KDE0.77 KDEX.73. D. Ves e al. Daa Nucl. Tables 36 495 987. 40 Ca 48 Ca 56 N 3.49 3.48 3.75 3.490 3.50 3.768 3.456 3.485 3.848 F. Le Blanc e al Phys. Rev. C 7 034305 005. 88 S 90 Z 4.9 4.58 4. 4.66 4.3 4.6 3 Sn 4.709 4.70 4.77 08 Pb 5.500 5.489 5.499

Obs Ep Poons KDE0-35.97 s / -50 ± -39.40 p 3/ -6.95-5.53 p / -34 ±6 -.93 -. d 5/ -4.49-3.787 s / -0.9-9.48-8.358 d 3/ -8.3-7.59-8.7067 f 7/ -.4 -.38 -.0307 Neuons KDEX s / -47.77-44.04 p 3/ -34.90-33.074 p / -30.78-9.958 d 5/ -.08 -.344 s / -8. -7.00-5.74 d 3/ -5.6-4.97-6.97 f 7/ -8.3-9.60-9.673 p 3/ -6. -4.98-4.3458 Sngle-pacle Eneges fo 40 Ca MeV

Conclusons We developed a new Skyme neacon. Uses coelaon-effec coeced daa. Bee epoduces 6 O and 08 Pb chage ms ad. Chage ms adus fo 6 O ncompable wh monopole eneges n ou model. Possble mpovemens: Moe wok on opmzaon. Dffeen ses of daa.

Wok done a: cknowledgmens

Wok suppoed by: Gan numbes: PY-035500 PY-4639-0000 Gan numbe: DOE-FG03-93ER40773