( V ametavariable) P P true. even in E)

Similar documents
Assignments for Math 220, Formal Methods. J. Stanley Warford

Basic Propositional Logic. Inductive Theory of the Natural Numbers. Conjunction. Equivalence. Negation and Inequivalence. Implication.

Discrete Mathematics and Logic II. Predicate Calculus

THEOREMS FROM GRIES AND SCHNEIDER S LADM

COMP 182 Algorithmic Thinking. Proofs. Luay Nakhleh Computer Science Rice University

Equational Logic: Part 2. Roland Backhouse March 6, 2001

A Programmer s Introduction to Predicate Logic. Technical Report UMCIS

Foundations of Mathematics MATH 220 FALL 2017 Lecture Notes

Packet #2: Set Theory & Predicate Calculus. Applied Discrete Mathematics

n Empty Set:, or { }, subset of all sets n Cardinality: V = {a, e, i, o, u}, so V = 5 n Subset: A B, all elements in A are in B

Intro to Logic and Proofs

Part I: Propositional Calculus

Conjunction: p q is true if both p, q are true, and false if at least one of p, q is false. The truth table for conjunction is as follows.

Readings: Conjecture. Theorem. Rosen Section 1.5

Packet #1: Logic & Proofs. Applied Discrete Mathematics

Chapter 1 Elementary Logic

2. The Logic of Compound Statements Summary. Aaron Tan August 2017

CSC Discrete Math I, Spring Propositional Logic

3. The Logic of Quantified Statements Summary. Aaron Tan August 2017

CSCE 222 Discrete Structures for Computing. Review for Exam 1. Dr. Hyunyoung Lee !!!

Logic and Proof. Aiichiro Nakano

Outline. Formale Methoden der Informatik First-Order Logic for Forgetters. Why PL1? Why PL1? Cont d. Motivation

Review 1. Andreas Klappenecker

Chapter 1 : The language of mathematics.

Tools for reasoning: Logic. Ch. 1: Introduction to Propositional Logic Truth values, truth tables Boolean logic: Implications:

What is the decimal (base 10) representation of the binary number ? Show your work and place your final answer in the box.

Logic, Sets, and Proofs

Notation for Logical Operators:

Today. Proof using contrapositive. Compound Propositions. Manipulating Propositions. Tautology

Discrete Mathematics Review

1 The Foundation: Logic and Proofs

It rains now. (true) The followings are not propositions.

in the Third Printing of A Logical Approach to Discrete Math David Gries and Fred B. Schneider

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc (MATHEMATICS) I Semester Core Course. FOUNDATIONS OF MATHEMATICS (MODULE I & ii) QUESTION BANK

CSE 20 DISCRETE MATH WINTER

CSE 20 DISCRETE MATH SPRING

LECTURE NOTES DISCRETE MATHEMATICS. Eusebius Doedel

Sample Problems for all sections of CMSC250, Midterm 1 Fall 2014

Review CHAPTER. 2.1 Definitions in Chapter Sample Exam Questions. 2.1 Set; Element; Member; Universal Set Partition. 2.

Logic. Definition [1] A logic is a formal language that comes with rules for deducing the truth of one proposition from the truth of another.

Logic and Proofs. (A brief summary)

Equivalence of Propositions

Lecture Notes 1 Basic Concepts of Mathematics MATH 352

Disjunction/Conjunction Normal Form

DISCRETE MATH: FINAL REVIEW

Basic properties of the Integers

Section 1.1 Propositions

Logic Overview, I. and T T T T F F F T F F F F

Mat 243 Exam 1 Review

Propositional Logic Language

Exercises 1 - Solutions

1 The Foundation: Logic and Proofs

The Inclusion Exclusion Principle and Its More General Version

Logic and Proofs. (A brief summary)

1. (B) The union of sets A and B is the set whose elements belong to at least one of A

Normal Forms Note: all ppts about normal forms are skipped.

Discrete Mathematics & Mathematical Reasoning Predicates, Quantifiers and Proof Techniques

Logic Part II: Intuitionistic Logic and Natural Deduction

Propositional Logics and their Algebraic Equivalents

Lecture Notes on DISCRETE MATHEMATICS. Eusebius Doedel

Intelligent Agents. First Order Logic. Ute Schmid. Cognitive Systems, Applied Computer Science, Bamberg University. last change: 19.

software design & management Gachon University Chulyun Kim

Handout on Logic, Axiomatic Methods, and Proofs MATH Spring David C. Royster UNC Charlotte

3.1 Universal quantification and implication again. Claim 1: If an employee is male, then he makes less than 55,000.

Sets, Logic, Relations, and Functions

Propositional Logic, Predicates, and Equivalence

n logical not (negation) n logical or (disjunction) n logical and (conjunction) n logical exclusive or n logical implication (conditional)

Overview. I Review of natural deduction. I Soundness and completeness. I Semantics of propositional formulas. I Soundness proof. I Completeness proof.

Discrete Mathematics. (c) Marcin Sydow. Sets. Set operations. Sets. Set identities Number sets. Pair. Power Set. Venn diagrams

PREDICATE LOGIC. Schaum's outline chapter 4 Rosen chapter 1. September 11, ioc.pdf

With Question/Answer Animations. Chapter 2

MAT 243 Test 1 SOLUTIONS, FORM A

Contents Propositional Logic: Proofs from Axioms and Inference Rules

A. Propositional Logic

Version January Please send comments and corrections to

CS1021. Why logic? Logic about inference or argument. Start from assumptions or axioms. Make deductions according to rules of reasoning.

Proofs. Chapter 2 P P Q Q

Language of Propositional Logic

02 Propositional Logic

Chapter 3: Propositional Calculus: Deductive Systems. September 19, 2008

cse 311: foundations of computing Fall 2015 Lecture 6: Predicate Logic, Logical Inference

Unit I LOGIC AND PROOFS. B. Thilaka Applied Mathematics

LECTURE NOTES DISCRETE MATHEMATICS. Eusebius Doedel

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics. Introductory Notes in Discrete Mathematics Solution Guide

The Process of Mathematical Proof

Proofs. Joe Patten August 10, 2018

Informal Statement Calculus

Learning Goals of CS245 Logic and Computation

Chapter 4, Logic using Propositional Calculus Handout

Automata Theory and Formal Grammars: Lecture 1

CISC-102 Fall 2018 Week 11

Proof Techniques (Review of Math 271)

MATH 1090 Problem Set #3 Solutions March York University

Tutorial on Axiomatic Set Theory. Javier R. Movellan

Logic via Algebra. Sam Chong Tay. A Senior Exercise in Mathematics Kenyon College November 29, 2012

First order Logic ( Predicate Logic) and Methods of Proof

Propositional and Predicate Logic - V

Propositional Logic. Spring Propositional Logic Spring / 32

Compound Propositions

CISC-102 Winter 2016 Lecture 17

Transcription:

Propositional Calculus E Inference rules (3.1) Leibniz: (3.2) Transitivity: (3.3) Equanimity: P = Q E[V := P ]=E[V := Q] P = Q Q = R P = R P P Q Q ( V ametavariable) Derived inference rules (3.11) Redundant true : (3.91) Modus ponens: (4.8) Monotonicity: P P P true P P ) Q Q P Q E[V := P ] ) E[V := Q] true P (for parity of V even in E) (4.9) Antimonotonicity: P ) Q E[V := P ] ( E[V := Q] (for parity of V odd in E) Equivalence and true (3.5) Axiom, Associativity of : ((P Q) R) (P (Q R)) (3.6) Axiom, Symmetry of : P Q Q P (3.7) Axiom, Identity of : true Q Q (3.8) Reexivity of : P P (3.9) true (3.12) Metatheorem: Any two theorems are equivalent. Negation, inequivalence, and false (3.15) Axiom, Denition of false : false :true (3.17) Axiom, Distributivity of : over : :(P Q) :P Q (3.14) Axiom, Denition of 6 : (P 6 Q) :(P Q) (3.18) :P Q P :Q (3.19) Double negation: ::P P (3.16) Negation of false : :false true (3.20) (P 6 Q) :P Q (3.13) :P P false (3.21) Symmetry of 6 : (P 6 Q) (Q 6 P ) (3.22) Associativity of 6 : ((P 6 Q) 6 R) (P 6 (Q 6 R)) (3.23) Mutual associativity: ((P 6 Q) R) (P 6 (Q R))

(3.24) Mutual interchangeability: P 6 Q R P Q 6 R Disjunction (3.29) Axiom, Symmetry of _ : P _ Q Q _ P (3.30) Axiom, Associativity of _ : (P _ Q) _ R P _ (Q _ R) (3.31) Axiom, Idempotency of _ : P _ P P (3.32) Axiom, Distributivity of _ over : P _ (Q R) P _ Q P _ R (3.33) Axiom, Excluded Middle: P _:P true (3.34) Zero of _ : P _ true true (3.35) Identity of _ : P _ false P (3.36) Distributivity of _ over _ : P _ (Q _ R) (P _ Q) _ (P _ R) (3.37) P _ Q P _:Q P Conjunction (3.40) Axiom Golden rule : P ^ Q P Q P _ Q (3.41) Symmetry of ^ : P ^ Q Q ^ P (3.42) Associativity of ^ : (P ^ Q) ^ R P ^ (Q ^ R) (3.43) Idempotency of ^ : P ^ P P (3.44) Identity of ^ : P ^ true P (3.45) Zero of ^ : P ^ false false (3.46) Distributivity of ^ over ^ : P ^ (Q ^ R) (P ^ Q) ^ (P ^ R) (3.47) Contradiction: P ^:P false (3.48) Absorption: (a) P ^ (P _ Q) P (b) P _ (P ^ Q) P (3.49) Absorption: (a) P ^ (:P _ Q) P ^ Q (b) P _ (:P ^ Q) P _ Q (3.50) Distributivity of _ over ^ : P _ (Q ^ R) (P _ Q) ^ (P _ R) (3.51) Distributivity of ^ over _ : P ^ (Q _ R) (P ^ Q) _ (P ^ R) (3.52) De Morgan: (a) :(P ^ Q) :P _:Q (3.53) P ^ Q P ^:Q :P (b) :(P _ Q) :P ^:Q (3.54) P ^ (Q R) P ^ Q P ^ R P (3.55) P ^ (Q P ) P ^ Q (3.56) Replacement: (P Q) ^ (R P ) (P Q) ^ (R Q) (3.57) Denition of : P Q (P ^ Q) _ (:P ^:Q) (3.58) Exclusive or: P 6 Q (:P ^ Q) _ (P ^:Q)

(3.62) (P ^Q) ^ R P Q R P _Q Q_R R_P P _Q_R Implication (3.65) Axiom, Implication: P ) Q P _ Q Q (3.64) Axiom, Consequence: P ( Q Q ) P (3.66) Implication: P ) Q P ^ Q P (3.63) Implication: P ) Q :P _ Q (3.67) Contrapositive: P ) Q :Q ):P (3.68) P ) (Q R) P ^ Q P ^ R (3.69) Distributivity of ) (a) over : P ) (Q R) P ) Q P ) R (b) over _ : P ) Q _ R (P ) Q) _ (P ) R) (c) over ^ : P ) (Q ^ R) (P ) Q) ^ (P ) R) (d) over ) : P ) (Q ) R) (P ) Q) ) (P ) R) (3.70) Shunting: P ^ Q ) R P ) (Q ) R) (3.71) P ) (Q ) P ) (3.72) P ^ (P ) Q) P ^ Q (3.73) P ^ (Q ) P ) P (3.74) P _ (P ) Q) true (3.75) P _ (Q ) P ) Q ) P (3.76) P _ Q ) P ^ Q P Q (3.77) Reexivity of ) : P ) P true (3.78) Right zero of ) : P ) true true (3.79) Left identity of ) : true ) P P (3.80) P ) false :P (3.81) false ) P true (3.82) Weakening/strengthening: (a) P ) P _ Q (3.83) Modus ponens: P ^ (P ) Q) ) Q (b) P ^ Q ) P (3.84) (P ) R) ^ (Q ) R) (P _ Q ) R) (3.85) (P ) R) ^ (:P ) R) R (c) P ^ Q ) P _ Q (d) P _ (Q ^ R) ) P _ Q (e) P ^ Q ) P ^ (Q _ R) (3.86) Mutual implication: (P ) Q) ^ (Q ) P ) (P Q) (3.87) Antisymmetry: (P ) Q) ^ (Q ) P ) ) (P Q) (3.88) Transitivity of : (P Q) ^ (Q R) ) (P R) (3.89) Transitivity: (a) (P ) Q) ^ (Q ) R) ) (P ) R)

(b) (P Q) ^ (Q ) R) ) (P ) R) (c) (P ) Q) ^ (Q R) ) (P ) R) (??) Metatheorem Modus ponens: If P and P ) Q are theorems, so is Q Leibniz as an axiom (3.93) Axiom, Leibniz: X = Y ) E[V := X] = E[V := Y ] (3.94) Substitution: (a) X = Y ^ E[V := X] X = Y ^ E[V := Y ] E[V := Y ] (b) X = Y ) E[V := X] X = Y ) E[V := Y ] (c) Q ^ X = Y ) E[V := X] Q ^ X = Y ) (3.95) Replace by true : (a) P ) E[V := P ] P ) E[V := true] (b) Q ^ P ) E[V := P ] Q ^ P ) E[V := true] (3.96) Replace by false : (a) E[V := P ] ) P E[V := false] ) P (b) E[V := P ] ) P _ Q E[V := false] ) P _ Q (3.97) Replace by true : P ^ E[V := P ] P ^ E[V := true] (3.98) Replace by false : P _ E[V := P ] P _ E[V := false] (3.99) Boole: E[V := P ] (P ^ E[V := true]) _ (:P ^ E[V := false]) Monotonicity theorems (4.1) Monotonic _ : (P ) Q) ) (P _ R ) Q _ R) (4.2) Monotonic ^ : (P ) Q) ) (P ^ R ) Q ^ R) (4.3) Monotonic consequent: (P ) Q) ) ((R ) P ) ) (R ) Q)) (4.4) Antimonotonic : : (P ) Q) ) (:P (:Q) (4.5) Antimonotonic antecedent: (P ) Q) ) ((P ) R) ( (Q ) R)) (4.7) Metatheorem Montonicity: Provided P ) Q is a theorem and the parity of the position of V E is even, E[V := P ] ) E[V := Q]. Provided P ) Q is a theorem and the parity of the position of V E is odd, E[V := P ] ( E[V := Q]. (4.11) (P ) P 0 ) ) ((Q ) Q 0 ) ) (P ^ Q ) P 0 ^ Q 0 )) (4.12) (P _ Q _ R) ^ (P ) S) ^ (Q ) S) ^ (R ) S) ) S Proof techniques and strategies (3.10) Basic strategies: To prove P Q, transform P to Q, transform Q to P, or transform P Q to a previous theorem. (3.26) Heuristic: Identify applicable theorems by matching the structure of subexpressions with the theorems. (3.27) Principle: Structure proofs to avoid repeating the same subexpression on many lines. in

(3.28) Heuristic Unfold-fold: To prove a theorem concerning an operator, remove it using its denition, manipulate, and reintroduce it using its denition. (3.38) Heuristic: To prove P Q, transform the expression with the most structure (either P or Q )into the other. (3.39) Principle: Structure proofs to minimize the number of rabbits. (3.61) Principle: Lemmas can provide structure, bring to light interesting facts, and ultimately shorten proofs. (3.60) Heuristic: Exploit the ability to parse theorems like the Golden rule in many dierent ways. (4.10) Deduction: To prove P ) Q, assume P and prove Q, with the variables and metavariables of P treated as constants. (4.12) Case analysis: To prove S,prove P _ Q _ R, P ) S, Q ) S, and R ) S. (4.13) Partial evaluation: To prove E[V := P ],prove E[V := true] and E[V := false]. (4.14) Mutual implication: To prove P Q,prove P ) Q and Q ) P. (4.19) Contradiction: To prove P,prove :P ) false (perhaps by assuming :P and proving false ). (4.22) Contrapositive: To prove P ) Q,prove :Q ):P. (5.2) Heuristic: To show that an English argument is sound, formalize it and prove that its formalization is a theorem. (5.3) Heuristic: To disprove an expression (prove that it is not a theorem), nd a counterexample: a state in which the expression is false. General Laws of Quantification For symmetric and associative binary operator? with identity u. (8.18) Leibniz: R ) P = Q (?x R : E[V := P ]) = (?x R : E[V := Q]) (8.19) Caveat. The axioms and theorems for all quantications hold only in cases in which all the individual quantications are dened or specied. Theorems (8.20) Axiom, Empty range: (?x false : P ) =u (8.21) Axiom, Identity accumulation: (?x R : u) =u (8.22) Axiom, One-point rule: Provided :occurs(`x' `E'), (?x x = E : P ) = P x E (8.23) Axiom, Distributivity: (?x R : P )? (?x R : Q) = (?x R : P?Q)

(8.24) Axiom, Range split: (?x R _ S : P )? (?x R ^ S : P ) = (?x R : P )? (?x S : P ) (8.25) Axiom, Interchange of dummies: Provided :occurs(`y' `R') and :occurs(`x' `Q'), (?x R :(?y Q : P )) = (?y Q :(?x R : P )) (8.26) Axiom, Nesting: Provided :occurs(`y' `R'), (?x y R ^ Q : P )=(?x R :(?y Q : P )) (8.27) Range split: Provided R ^ S false (?x R _ S : P ) = (?x R : P )? (?x S : P ) (8.28) Range split for idempotent? : (?x R _ S : P ) = (?x R : P )? (?x S : P ) (8.29) Dummy reordering: (?x y R : P )=(?y x R : P ) (8.30) Change of dummy: Provided :occurs(`y' `R P '), and f has an inverse, (?x R : P )=(?y R x f:y : P x f:y) (8.31) Dummy renaming: Provided :occurs(`y' `R P '), (?x R : P )=(?y R x y : P x y ) (8.32) Split o term (example): (?i 0 i<n+1:p ) = (?i 0 i<n: P )?P i n Theorems of the Predicate Calculus Universal quantification (9.3) Axiom, Distributivity of _ over 8 : Provided :occurs(`x' `P '), P _ (8x R : Q) (8x R : P _ Q) (9.4) Trading: (a) (8x R : P ) (8x : R ) P ) (b) (8x R : P ) (8x : R _ P P ) (c) (8x R : P ) (8x : R ^ P R) (d) (8x R : P ) (8x : :R _ P ) (9.5) Trading: (a) (8x Q ^ R : P ) (8x Q : R ) P ) (b) (8x Q ^ R : P ) (8x Q : R _ P P ) (c) (8x Q ^ R : P ) (8x Q : R ^ P R) (d) (8x Q ^ R : P ) (8x Q : :R _ P ) (9.6) 8-True body: (8x R : true) true (9.7) 8-False body: (8x : false) false (9.8) 8-Split-o-term: (8x : P ) (8x : P ) ^ P x E (9.9) Quantied freshy: Provided :occurs(`x' `P '), P ) (8x R : P ) (9.10) Provided :occurs(`x' `P '), P ^ (8x R : Q) ) (8x R : P ^ Q) (9.11) Distributivity of ^ over 8 : Provided :occurs(`x' `P '), :(8x : :R) ) ((8x R : P ^ Q) P ^ (8x R : Q)) (9.12) (8x R : P Q) ) ((8x R : P ) (8x R : Q))

(9.13) Provided :occurs(`x' `Q'), Q ) (8x R : P ) (8x R : Q ) P ) (9.14) Monotonic 8-body: (8x R : P ) Q) ) ((8x R : P ) ) (8x R : Q)) (9.15) Antimonotonic 8-range: (8x :R : P ) Q) ) ((8x P : R) ( (8x Q : R)) (9.17) Instantiation: (8x : P ) ) P x E (9.18) Provided :occurs(`x' `P '), (8x : P ) P (9.21) Metatheorem: P is a theorem i (8x : P ) is a theorem. Existential quantification (9.22) Axiom, Generalized De Morgan: (9x R : P ) :(8x R : :P ) (9.23) Generalized De Morgan: (a) :(9x R : :P ) (8x R : P ) (b) :(9x R : P ) (8x R : :P ) (c) (9x R : :P ) :(8x R : P ) (9.25) Distributivity of ^ over 9 : Provided :occurs(`x' `P '), P ^ (9x R : Q) (9x R : P ^ Q) (9.26) Trading: (9x R : P ) (9x : R ^ P ) (9.27) Trading: (9x Q ^ R : P ) (9x Q : R ^ P ) (9.28) 9-False body: (9x R : false) false (9.29) 9-True body: (9x : true) true (9.30) 9-Split-o-term: (9x : P ) (9x : P ) _ P x E (9.31) Quantied freshy: Provided :occurs(`x' `P '), (9x R : P ) ) P (9.32) Provided :occurs(`x' `P '), (9x R : P _ Q) ) P _ (9x R : Q) (9.33) Distributivity of _ over 9 : Provided :occurs(`x' `P '), (9x : R) ) ((9x R : P _ Q) P _ (9x R : Q)) (9.34) (8x R : P Q) ) ((9x R : P ) (9x R : Q)) (9.35) Provided :occurs(`x' `Q'), (9x R : P ) ) Q (8x R : P ) Q) (9.36) Monotonic 9-body: (8x R : P ) Q) ) ((9x R : P ) ) (9x R : Q)) (9.37) Monotonic 9-range: (8x R : P ) Q) ) ((9x P : R) ) (9x Q : R)) (9.38) 9-Introduction: P x E ) (9x : P ) (9.39) Provided :occurs(`x' `P '), (9x : P ) P (9.40) Interchange of quantications: Provided :occurs(`y' `R') and :occurs(`x' `Q'), (9x R :(8y Q : P )) ) (8y Q :(9x R : P ))

(9.41) Metatheorem Witness: Provided :occurs(`^x' `P Q R'), (9x R : P ) ) Q is a theorem i (R ^ P ) x^x ) Q is a theorem. Set Theory Set comprehension and enumeration (10.2) Set enumeration: fe 0 ::: E n;1g = fx x = E 0 x = E n;1 : xg (10.3) Axiom, Universe: U: set(t) =fx:t true : xg (10.4) Axiom, Set membership: Provided :occurs(`x' `F '), F 2 fx R : Eg (9x R : F = E) (10.5) Axiom, Extensionality: S = T (8x : x 2 S x 2 T ) (10.6) S = fx x 2 S : xg (10.7) Empty range: fx false : P g = fg (10.8) Empty set: (v 2 fx false : P g) = (v 2 fg) = false (10.9) Singleton membership : e 2 feg e = E (10.10) One-point rule: Provided :occurs(`x' `E'), fx x = E : P g = fp [x:= E]g (10.11) Dummy reordering: fx y R : P g = fy x R : P g (10.12) Change of dummy: Provided :occurs(`y' `R P ') and f has an inverse, fx R : P g = fy R[x:= f:y]:p [x:= f:y]g (10.13) Dummy renaming: Provided :occurs(`y' `R P '), fx R : P g = fy R[x:= y] :P [x:= y]g (10.14) Provided :occurs(`y' `R E'), fx R : Eg = fy (9x R : y = E)g (10.15) x 2 fx Rg R (10.16) Principle of comprehension. To each predicate R corresponds the set fx:t Rg, which contains the objects in t that satisfy characteristic predicate R of the set. (10.17) fx Qg = fx Rg (8x : Q R) (10.18) Metatheorem: fx Qg = fx Rg is valid i Q R is valid. Operations on sets (10.20) Axiom, Size: # S = (x x 2 S :1) (10.21) Axiom, Subset: S T (8x x 2 S : x 2 T ) (10.22) Axiom, Proper subset: S T S T ^ S 6= T (10.23) Axiom, Superset: T S S T (10.24) Axiom, Proper superset: T S S T (10.25) Axiom, Complement: x 2 S x 62 S (for x in U ) (10.26) Axiom, Union: v 2 S [ T v 2 S _ v 2 T

(10.27) Axiom, Intersection: v 2 S \ T v 2 S ^ v 2 T (10.28) Axiom, Dierence: v 2 S ; T v 2 S ^ v 62 T (10.29) Axiom, Power set: v 2 PS v S (10.31) Metatheorem: For any set expressions E s and F s, (a) E s = F s is valid i E p F p is valid, (b) E s F s is valid i E p ) F p is valid, (c) E s = U is valid i E p is valid. Properties of complement (10.32) fx:t P g = fx: t :P g (10.33) S = S (10.34) U = fg (10.35) fg= U Properties of union and intersection (10.36){(10.40): [ is symmetric, associative, idempotent, has zero U, and has identity fg. (10.41) Weakening: S S [ T (10.42) Excluded middle: S [S = U (10.43){(10.47): \ is symmetric, associative, idempotent, has zero fg, and has identity U. (10.48) Strengthening: S \ T S (10.49) Contradiction: S \S = fg (10.50) Distributivity of [ over \ : S [ (T \ V ) = (S [ T ) \ (S [ V ) (10.51) Distributivity of \ over [ : S \ (T [ V ) = (S \ T ) [ (S \ V ) (10.52) De Morgan: (a) (S [ T ) = S \T (b) (S \ T ) = S [T (10.53) S T ^ W V ) (S [ W ) (T [ V ) (10.54) S T ^ W V ) (S \ W ) (T \ V ) (10.55) S T S [ T = T (10.56) S T S \ T = S (10.57) S [ T = U (8x x 2 U : x 62 S ) x 2 T ) (10.58) S \ T = fg (8x : x 2 S ) x 62 T ) (10.59) Range split: fx P _ Q : Eg = fx P : Eg [fx Q : Eg Properties of set difference (10.60) S ; T = S \T (10.61) S ; T S (10.62) S ;fg= S

(10.63) S ; U = (10.64) fg;s = fg (10.65) U ; S = S (10.66) S \ (T ; S) = fg (10.67) S [ (T ; S) = S [ T (10.68) S ; (T [ V ) = (S ; T ) \ (S ; V ) (10.69) S ; (T \ V ) = (S ; T ) [ (S ; V ) (10.70) (S [ T ) ; V = (S ; V ) [ (T ; V ) (10.71) (S \ T ) ; V = (S ; V ) \ (T ; V ) (10.72) (S ; T ) = S [ T Properties of subset (10.73) (8x : P ) Q) fx P gfx Qg (10.74) Antisymmetry: S T ^ T S S = T (10.75) Reexivity: S S (10.76) Transitivity: S T ^ T V ) S V (10.77) fgs (10.78) S T S T ^ :(T S) (10.79) S T S T ^ (9x x 2 T : x 62 S) (10.80) S T S T _ S = T (10.81) S 6 S (10.82) S T ) S T (10.83) S T ) T 6 S (10.84) S T ) T 6 S (10.85) S T ^:(V T ) ) :(V S) (10.86) T U ^:(T S) ) :(U S) (10.87) Transitivity: (a) S T ^ T V ) S V (b) S T ^ T V ) S V (c) S T ^ T V ) S V Properties of powerset (10.88) Pf g = ff gg (10.89) S 2 PS (10.90) # (PS) =2 # S (for nite set S ) (10.91) Monotonic P : S T )PS PT (10.95) Axiom of Choice: For t a type, there exists a function f :set(t)! t such that for any nonempty set S, f:s 2 S.

Mathematical Induction (11.3) Mathematical Induction over N: For all P, P:0 ^ (8n:N :(8i 0 i n : P:i) ) P (n + 1)) ) (8n:N : P:n) (11.7) Heuristic: In proving (8i 0 i n : P:i) ) P (n +1) by assuming (8i 0 i n : P:i), manipulate or restate P (n + 1) in order to expose at least one of P:0 ::: P:n. (11.16) Mathematical Induction over hu i : For all P, (8x : P:x) (8x :(8y y x : P:y) ) P:x) (11.18) Denition of well-founded: hu i is well-founded i, for all S, S 6= fg (9x : x 2 S ^ (8y y x : y=2 S)) (11.19) Theorem: hu i is well founded i it admits induction. (11.21) Axiom, Finite chain property: (8x :(8y y x : DCF :y) ) DCF :x) (11.23) Theorem: hu i is well founded i every decreasing chain is nite.