PHYS 1444 Section 003. Lecture #12

Similar documents
PHYS 1441 Section 001 Lecture #10 Tuesday, June 21, 2016

PHYS 1442 Section 001. Lecture #5. Chapter 18. Wednesday, June 17, 2009 Dr. Jaehoon Yu

PHYS 1444 Section 002 Lecture #13

PHYS 1444 Section 003 Lecture #12

Chapter 25 Electric Currents and Resistance. Copyright 2009 Pearson Education, Inc.

Chapter 25 Electric Currents and Resistance. Copyright 2009 Pearson Education, Inc.

Lecture (07) Electric Current and Resistance By: Dr. Ahmed ElShafee Dr. Ahmed ElShafee, ACU : Spring 2015, Physics II

Circuits. PHY2054: Chapter 18 1

Electric Currents & Resistance

Electricity CHARGE. q = 1.6 x10-19 C

Chapter 25 Electric Currents and. Copyright 2009 Pearson Education, Inc.

ELECTRIC CURRENTS D R M A R T A S T A S I A K D E P A R T M E N T O F C Y T O B I O L O G Y A N D P R O T E O M I C S

RECALL?? Electricity concepts in Grade 9. Sources of electrical energy Current Voltage Resistance Power Circuits : Series and Parallel

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/3


Chapter 24: Electric Current

physics for you February 11 Page 68

Physics 7B-1 (A/B) Professor Cebra. Winter 2010 Lecture 2. Simple Circuits. Slide 1 of 20

Chapter 26: Direct-Current Circuits (Part 2)

ELECTRICITY. Chapter ELECTRIC CHARGE & FORCE

Electric charge is conserved the arithmetic sum of the total charge cannot change in any interaction.

Physics 102: Lecture 05 Circuits and Ohm s Law

Section 1: Electric Charge and Force

Chapter 28: DC and RC Circuits Kirchhoff s Rules

Electric Currents and Circuits

Chapter 7 Direct-Current Circuits

Electromotive Force. The electromotive force (emf), ε, of a battery is the maximum possible voltage that the battery can provide between its terminals

Electroscope Used to are transferred to the and Foil becomes and

12/2/2018. Monday 12/17. Electric Charge and Electric Field

Section 1 Electric Charge and Force

Information for Makeup exam is posted on the course website.

Physics 1302W.400 Lecture 21 Introductory Physics for Scientists and Engineering II

Lecture PowerPoints. Chapter 18 Physics: Principles with Applications, 6 th edition Giancoli

Chapter 20 Electric Circuits

Chapter 28. Direct Current Circuits

Electric Currents. Resistors (Chapters 27-28)

Physics 142 Steady Currents Page 1. Steady Currents

Note on Posted Slides. Flow of Charge. Electricity/Water Analogy: Continuing the Analogy. Electric Current

Greek Letter Omega Ω = Ohm (Volts per Ampere)

Self-Inductance. Φ i. Self-induction. = (if flux Φ 1 through 1 loop. Tm Vs A A. Lecture 11-1

Chapter 19. Electric Current, Resistance, and DC Circuit Analysis

Announcements. l LON-CAPA #7 and Mastering Physics (to be posted) due Tuesday March 11

Chapter 28. Direct Current Circuits

Physics 2102 Gabriela González. Georg Simon Ohm ( )

AP Physics Electricity and Magnetism #3 Capacitors, Resistors, Ohm s Law, Electric Power

Chapter 25: Electric Current

Please pick up your Midterm and Solutions from front of class

Chapter 25 Current, Resistance, and Electromotive Force

Read Chapter 7; pages:

What is an Electric Current?

Resistivity and Temperature Coefficients (at 20 C)

Chapter 27: Current & Resistance. HW For Chapter 27: 6, 18, 20, 30, 42, 48, 52, 56, 58, 62, 68

Chapter 24: Electric Current

University Physics (PHY 2326)

Current and Resistance

This week. 3/23/2017 Physics 214 Summer

This week. 6/2/2015 Physics 214 Summer

Electric Currents and Circuits

Chapter 17 Electric Current and Resistance Pearson Education, Inc.c

Current and Resistance. PHY2049: Chapter 26 1

Chapter 27 Current and Resistance 27.1 Electric Current

V R I = UNIT V: Electricity and Magnetism Chapters Chapter 34: Electric Current. volt ohm. voltage. current = I. The Flow of Charge (34.

2/25/2014. Circuits. Properties of a Current. Conservation of Current. Definition of a Current A. I A > I B > I C B. I B > I A C. I C D. I A E.

Capacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery

Direct Currents. We will now start to consider charges that are moving through a circuit, currents. Sunday, February 16, 2014

PHY232 Spring 2008 Jon Pumplin (Original ppt courtesy of Remco Zegers) Direct current Circuits

Current and Resistance

College Physics B - PHY2054C

Chapter 3: Current and Resistance. Direct Current Circuits

Physics for Scientists & Engineers 2

Chapter 25 Current Resistance, and Electromotive Force

Physics 214 Spring

AP Physics C - E & M

Insulators Non-metals are very good insulators; their electrons are very tightly bonded and cannot move.

General Physics (PHY 2140)

Chapter 3: Electric Current And Direct-Current Circuits

Electricity Test Review

Electric Charge. Conductors A material that transfers charge easily Metals

Chapter 3: Electric Current and Direct-Current Circuit

Note 5: Current and Resistance

Chapter 16. Current and Drift Speed. Electric Current, cont. Current and Drift Speed, cont. Current and Drift Speed, final

Name: Class: Date: 1. Friction can result in the transfer of protons from one object to another as the objects rub against each other.

DC Circuits I. Physics 2415 Lecture 12. Michael Fowler, UVa

ELECTRICITY. Prepared by: M. S. KumarSwamy, TGT(Maths) Page

PHYS 1444 Section 004 Lecture #10

ELECTRICITY UNIT REVIEW

9/22/16 ANNOUNCEMENT ANNOUNCEMENT FINAL EXAM

Chapter 17. Current and Resistance. Sections: 1, 3, 4, 6, 7, 9

3/17/2009 PHYS202 SPRING Lecture notes Electric Circuits

ELECTRICITY & CIRCUITS

Power in Resistive Electric Circuits

Physics Module Form 5 Chapter 2- Electricity GCKL 2011 CHARGE AND ELECTRIC CURRENT

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Voltage (AC) period, T

Electricity and Electromagnetism SOL review Scan for a brief video. A. Law of electric charges.

Electricity

Relating Voltage, Current and Resistance

ELECTRIC CURRENT INTRODUCTION. Introduction. Electric current

Chapters 24/25: Current, Circuits & Ohm s law Thursday September 29 th **Register your iclickers**

A free web support in Education. Internal resistance of the battery, r = 3 Ω. Maximum current drawn from the battery = I According to Ohm s law,

Transcription:

Chapter 5 Power PHYS 1444 Section 003 Alternating Current Microscopic Current Chapter 6 EMF and Terminal Voltage Lecture #1 Tuesday October 9, 01 Dr. Andrew Brandt Resistors in Series and Parallel Energy loss in Resistors Tuesday October 9, 01 PHYS 1444-003 Dr. Andrew Brandt 1

Electric Power How do we find out the power of an electric device? What is definition of the power? The rate at which work is done or the energy is transferred What energy is transferred when an infinitesimal charge dq moves through a potential difference V? du=vdq If dt is the time required for an amount of charge dq to move through the potential difference V, the power P is P du dt V dq dt What is this? V Thus, we obtain P IV. In terms of resistance P I R R What is the unit? Watts = J/s What kind of quantity is the electrical power? Scalar P=IV can apply to any device, while the formulae involving resistance only applies to Ohmic resistors. Tuesday October 9, 01 PHYS 1444-003 Dr. Andrew Brandt

Power in Household Circuits Household devices usually have small resistance But since they draw current, if they become large enough, wires can heat up (overload) and cause a fire Why is using thicker wires safer? Thicker wires has less resistance, lower heat How do we prevent this? Put in a switch that disconnects the circuit when overloaded Fuse or circuit breakers They open up the circuit when the current exceeds a certain value Overload Tuesday October 9, 01 PHYS 1444-003 Dr. Andrew Brandt 3

Example 5 10 Will a 30A fuse blow? Determine the total current drawn by all the devices in the circuit in the figure. The total current is the sum of current drawn by the individual devices. P Bulb Stereo IV IB S Total current Solve for I I 100W 10V 0.8A P V Heater I H I 135W 10V.9A Dryer I D I I I I 0.8A 15.0 A.9A 10.0 A 8.7 A IT B H S D What is the total power? T P B H S D 1800W 10V 15.0A 100W 10V 10.0A P P P P 100W 1800 W 350W 100 W 3450 W Tuesday October 9, 01 PHYS 1444-003 Dr. Andrew Brandt 4

Alternating Current Does the direction of the flow of current change when a battery is connected to a circuit? No. Why? Because its source of potential difference is constant. This kind of current is called the Direct Current (DC How would DC look as a function of time? A horizontal line Electric generators at electric power plant produce alternating current (AC) AC reverses direction many times a second AC is sinusoidal as a function of time Most currents supplied to homes and business are AC. Tuesday October 9, 01 PHYS 1444-003 Dr. Andrew Brandt 5

Alternating Current The voltage produced by an AC electric generator is sinusoidal This is why the current is sinusoidal Voltage produced can be written as V V 0 sin ft V 0 sin t What are the maximum and minimum voltages? V 0 and V 0 The potential oscillates between +V 0 and V 0, the peak voltages or amplitude What is f? The frequency, the number of complete oscillations made per second. What is the unit of f? What is the normal size of f in the US? f = 60 Hz in the US and Canada. Many European countries have f = 50Hz. f Tuesday October 9, 01 PHYS 1444-003 Dr. Andrew Brandt 6

Alternating Current Since V=IR, if a voltage V exists across a resistance R, the current I is What is this? I V R V 0 sin R What are the maximum and minimum currents? I 0 and I 0 The current oscillates between +I 0 and I 0, the peak currents or amplitude. The current is positive when electron flows in one direction and negative when they flow in the opposite direction. What is the average current? Zero. So there is no power and no heat produced in a heater? ft I 0 sin Wrong! The electrons actually flow back and forth, so power is delivered. t Tuesday October 9, 01 PHYS 1444-003 Dr. Andrew Brandt 7

Power Delivered by Alternating Current AC power delivered to a resistance is: P I R I0 Rsin t Since the current is squared, the power is always positive The average power delivered is Since the power is also P=V /R, we can obtain P V0 R sin t Average power The average of the square of current and voltage are important in calculating power: 1 1 Tuesday October 9, 01 PHYS 1444-003 Dr. Andrew Brandt 8 P I 1 P 0 I R 1 I0 V 0 R V V0

Power Delivered by Alternating Current The square root of each of these are called root-mean-square, or rms: I0 Irms I 0.707I rms values are sometimes called effective values These are useful quantities since they can substitute current and voltage directly in power equations, as if they were DC values 1 P I0 R Irms R 1 In other words, an AC of peak voltage V 0 or peak current I 0 produces as much power as DC voltage of V rms or DC current I rms. So normally, rms values in AC are specified or measured. US uses 115V rms voltage. What is the peak voltage? V0 Europe uses 40V V V 40V 340V 0 rms P V 115V 16.6V rms Tuesday October 9, 01 PHYS 1444-003 Dr. Andrew Brandt 9 0 V0 Vrms V 0.707V 0 V V rms R R P I V rms rms 0

Example 5 11 Hair Dryer. (a) Calculate the resistance and the peak current in a 1000-W hair dryer connected to a 10-V AC line. (b) What happens if it is connected to a 40-V line in Britain? The rms current is: I rms P V The peak current is: I0 (b) If connected to 40V in Britain The average power provide by the AC in UK is rms Thus the resistance is: R So? P V rms R 40V 14.4 I 1000W 10V rms P rms 8.33A I 8.33A 11.8A 4000W 1000W 8.33A Tuesday October 9, 01 PHYS 1444-003 Dr. Andrew Brandt 10 14.4 The heating coils in the dryer will melt!

Microscopic View of Electric Current When a potential difference is applied to the two ends of a wire of uniform cross-section, the direction of electric field is parallel to the walls of the wire Let s define a microscopic vector quantity, the current density, j, the electric current per unit cross-sectional area j=i/a or I = ja if the current density is uniform If not uniform I j da The direction of j is the direction the positive charge would move when placed at that position, generally the same as E The current density exists at any point in space while the current I refers to a conductor as a whole Tuesday October 9, 01 PHYS 1444-003 Dr. Andrew Brandt 11

Microscopic View of Electric Current The direction of j is the direction of a positive charge. So in a conductor, since negatively charged electrons move, their direction is j. Let s think about the current in a microscopic view again. When voltage is applied to the end of a wire: Electric field is generated by the potential difference Electrons feel force and get accelerated Electrons soon reach a steady average speed (drift velocity, v d ) due to collisions with atoms in the wire The drift velocity is normally much smaller than electrons average random speed. Tuesday October 9, 01 PHYS 1444-003 Dr. Andrew Brandt 1

Microscopic View of Electric Current How do we relate v d to the macroscopic current I? In a time interval t, the electrons travel l =v d t on average If the wire s x-sectional area is A, in time t the electrons in a volume V=l A=Av d t will pass through the area A If there are n free electrons ( of charge e) per unit volume, the total charge Q that pass through A in time t is Q The current I in the wire is total number of particles, N charge per particle nv e navd The density in vector form is For any type of charge: Tuesday October 9, 01 PHYS 1444-003 Dr. Andrew Brandt 13 I Q t I j A neav d nev d I ni qivdi A j niqivdi i i te

Microscopic View of Electric Current The drift velocity of electrons in a wire is only about 0.05 mm/s. How does a light turned on immediately then? While the electrons in a wire travel slowly, the electric field travels essentially at the speed of light. Then what is all the talk about electrons flowing through? It is just like water. When you turn on a faucet, water flows right out of the faucet despite the fact that the water travels slowly. Electricity is the same. Electrons fill the wire and when the switch is flipped on or a potential difference is applied, the electrons close to the positive terminal flow into the bulb. Tuesday October 9, 01 PHYS 1444-003 Dr. Andrew Brandt 14

Ohm s law can be written in microscopic quantities. Resistance in terms of resistivity is R A We can rewrite V and I as: I=jA, V=El. For a uniform electric field in an ohmic conductor: V El So Ohm s Law in Microscopic View I R ja j E l A E j l Since or are properties of material independent of j or electric field E, the current density j is proportional E Microscopic statement of Ohm s Law In vector form, the density can be written as Tuesday October 9, 01 PHYS 1444-003 Dr. Andrew Brandt 15 l j E E

Superconductivity At temperatures near absolute 0K, the resistivity of certain materials approaches 0. This state is called the superconducting state. Observed in 1911 by H. K. Onnes when he cooled mercury to 4.K (-69 o C). Resistance of mercury suddenly dropped to 0. In general superconducting materials become superconducting below a transition temperature. The highest temperature superconductor so far is 160K First observation above the boiling temperature of liquid nitrogen is in 1987 at 90K observed from a compound of yttrium, barium, copper and oxygen. Since a much smaller amount of material can carry just as much current more efficiently, superconductivity can make electric cars more practical, computers faster, and capacitors store higher energy (not to mention LHC magnets) Tuesday October 9, 01 PHYS 1444-003 Dr. Andrew Brandt 16

Electric Hazards: Leakage Currents How does one feel an electric shock? Electric current stimulates nerves and muscles, and we feel a shock The severity of the shock depends on the amount of current, how long it acts and through what part of the body it passes Electric current heats tissues and can cause burns Currents above 70mA on a torso for a second or more is fatal, causing heart to function irregularly, ventricular fibrillation Dry skin has a resistance of 10 4 to 10 6. When wet, it could be 10 3. A person in good contact with the ground who touches 10V DC line with wet hands can receive a fatal current Tuesday October 9, 01 PHYS 1444-003 Dr. Andrew Brandt 17 I V R 10V 1000 10mA

EMF and Terminal Voltage What do we need to have current in an electric circuit? A device that provides a potential difference, such as battery or generator typically it converts some type of energy into electric energy These devices are called sources of electromotive force (emf) This does NOT refer to a real force. The potential difference between terminals of the source, when no current flows to an external circuit, is called the emf ( ) of the source. A battery itself has some internal resistance (r ) due to the flow of charges in the electrolyte Why do headlights dim when you start the car? The starter needs a large amount of current but the battery cannot provide charge fast enough to supply current to both the starter and the headlights Wednesday October 19, 011 PHYS 1444-004 Dr. Andrew Brandt 18

EMF and Terminal Voltage Since the internal resistance is inside the battery, we cannot separate the two. So the terminal voltage difference is V ab =V a -V b. When no current is drawn from the battery, the terminal voltage equals the emf which is determined by the chemical reaction; V ab =. However when the current I flows from the battery, there is an internal drop in voltage which is equal to Ir. Thus the actual delivered terminal voltage is V Ir ab Wednesday October 19, 011 PHYS 1444-004 Dr. Andrew Brandt 19

Resistors in Series Resistors are in series when two or more of them are connected end to end These resistors represent simple electrical devices in a circuit, such as light bulbs, heaters, dryers, etc. What is common in a circuit connected in series? the current is the same through all the elements in series Potential difference across each element in the circuit is: V 1 =IR 1, V =IR and V 3 =IR 3 Since the total potential difference is V, we obtain V=IR eq =V 1 +V +V 3 =I(R 1 +R +R 3 ) eq i Thus, R eq =R 1 +R +R 3 i R R Resistors in series When Wednesday resistors October are connected 19, 011 in series, PHYS 1444-004 the total Dr. resistance Andrew Brandt increases and the current through 0 the circuit decreases compared to a single resistor.

Energy Losses in Resistors Why is it true that V=V 1 +V +V 3? What is the potential energy loss when charge q passes through the resistor R 1, R and R 3 U 1 =qv 1, U =qv, U 3 =qv 3 Since the total energy loss should be the same as the energy provided to the system by the battery, we obtain U=qV= U 1 + U + U 3 =q(v 1 +V +V 3 ) Thus, V=V 1 +V +V 3 Wednesday October 19, 011 PHYS 1444-004 Dr. Andrew Brandt 1

Example 6 1 Battery with internal resistance. A 65.0- resistor is connected to the terminals of a battery whose emf is 1.0V and whose internal resistance is 0.5-. Calculate (a) the current in the circuit, (b) the terminal voltage of the battery, V ab, and (c) the power dissipated in the resistor R and in the battery s internal resistor. (a) Since Vab Ir We obtain Vab IR 1.0V Solve for I I R r 65.0 0.5 Ir 0.183A What is this? A battery or a source of emf. (b) The terminal voltage V ab is (c) The power dissipated in R and r are P P Vab I R Ir Ir 1.0V 0.183 A 0.5 11.9V 0.183 A 65.0.18W 0.183 A 0.5 0.0W Wednesday October 19, 011 PHYS 1444-004 Dr. Andrew Brandt

Resisters are in parallel when two or more resistors are connected in separate branches Most house and building wirings are arranged this way. Resistors in Parallel What is common in a circuit connected in parallel? The voltage is the same across all the resistors. The total current that leaves the battery, is however, split. The current that passes through every element is I 1 =V/R 1, I =V/R, I 3 =V/R 3 Since the total current is I, we obtain I=V/R eq =I 1 +I +I 3 =V(1/R 1 +1/R +1/R 3 ) 1 1 Thus, 1/R eq =1/R 1 +1/R +1/R Req i Ri 3 Resisters in parallel When Wednesday resistors October are connected 19, 011 in parallel, PHYS 1444-004 the total Dr. resistance Andrew Brandt decreases and the current through 3 the circuit increases compared to a single resistor.

Resistor and Capacitor Arrangements Parallel Capacitor arrangements C eq i C i Series Resistor arrangements R eq i R i Series Capacitor arrangements 1 1 C C eq i i Parallel Resistor arrangements 1 1 R R eq i i Wednesday October 19, 011 PHYS 1444-004 Dr. Andrew Brandt 4