Piezoresistive effect in p-type 3C-SiC at high temperatures characterized using Joule heating

Similar documents
A. Optimizing the growth conditions of large-scale graphene films

Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown. on Copper and Its Application to Renewable Transfer Process

Supporting Information. Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition

Outline. 4 Mechanical Sensors Introduction General Mechanical properties Piezoresistivity Piezoresistive Sensors Capacitive sensors Applications

EE C247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2016 C. NGUYEN PROBLEM SET #4

NiCl2 Solution concentration. Etching Duration. Aspect ratio. Experiment Atmosphere Temperature. Length(µm) Width (nm) Ar:H2=9:1, 150Pa

Supplementary Figure 3. Transmission spectrum of Glass/ITO substrate.

SENSOR DEVICES MECHANICAL SENSORS

Resistance Thermometry based Picowatt-Resolution Heat-Flow Calorimeter

Supplementary Information for. Effect of Ag nanoparticle concentration on the electrical and

Supplementary Information Interfacial Engineering of Semiconductor Superconductor Junctions for High Performance Micro-Coolers

Temperature Dependent Current-voltage Characteristics of P- type Crystalline Silicon Solar Cells Fabricated Using Screenprinting

Investigating extremely low resistance ohmic contacts to silicon carbide using a novel test structure

A constant potential of 0.4 V was maintained between electrodes 5 and 6 (the electrode

2D Simulations and Electro-Thermal Analysis of Micro-Heater Designs Using COMSOL TM for Gas Sensor Applications

A Nanoscale Shape Memory Oxide

SUPPLEMENTARY INFORMATION

Nanoelectronic Thermoelectric Energy Generation

SUPPLEMENTARY INFORMATION

Multicolor Graphene Nanoribbon/Semiconductor Nanowire. Heterojunction Light-Emitting Diodes

Self-consistent analysis of the IV characteristics of resonant tunnelling diodes

Homework Week 3: Nanoscale and macroscale characterization Thermoelectricity: From Atoms to Systems

Piezoresistive Sensors

1. Depleted heterojunction solar cells. 2. Deposition of semiconductor layers with solution process. June 7, Yonghui Lee

Bandgap engineering through nanocrystalline magnetic alloy grafting on. graphene

AP5301/ Name the major parts of an optical microscope and state their functions.

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes

EE C247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2014 C. Nguyen PROBLEM SET #4

E SC 412 Nanotechnology: Materials, Infrastructure, and Safety Wook Jun Nam

Transient Harman Measurement of the Cross-plane ZT of InGaAs/InGaAlAs Superlattices with Embedded ErAs Nanoparticles

Supporting Information

Large scale growth and characterization of atomic hexagonal boron. nitride layers

What are Carbon Nanotubes? What are they good for? Why are we interested in them?

Supporting Information for. Photoactive PANI/TiO 2 /Si Composite Coatings With 3D Bio-inspired. Structures

SUPPLEMENTARY INFORMATION

Supplementary Figure 1 XRD pattern of a defective TiO 2 thin film deposited on an FTO/glass substrate, along with an XRD pattern of bare FTO/glass

Boron-based semiconductor solids as thermal neutron detectors

Chapter 3 The InAs-Based nbn Photodetector and Dark Current

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped

b. The displacement of the mass due to a constant acceleration a is x=

Continuous, Highly Flexible and Transparent. Graphene Films by Chemical Vapor Deposition for. Organic Photovoltaics

EECS C245 ME C218 Midterm Exam

GRAPHENE ON THE Si-FACE OF SILICON CARBIDE USER MANUAL

Infrastructure of Thin Films Laboratory in Institute of Molecular Physics Polish Academy of Sciences

Supporting Online Material for

EE 527 MICROFABRICATION. Lecture 5 Tai-Chang Chen University of Washington

Biosensors and Instrumentation: Tutorial 2

Single ion implantation for nanoelectronics and the application to biological systems. Iwao Ohdomari Waseda University Tokyo, Japan

Ch/ChE 140a Problem Set #3 2007/2008 SHOW ALL OF YOUR WORK! (190 Points Total) Due Thursday, February 28 th, 2008

SUPPORTING INFORMATION. Promoting Dual Electronic and Ionic Transport in PEDOT by Embedding Carbon Nanotubes for Large Thermoelectric Responses

Prototype 16: 3-omega thermal characterization chip (Device C )

MODELING OF T-SHAPED MICROCANTILEVER RESONATORS. Margarita Narducci, Eduard Figueras, Isabel Gràcia, Luis Fonseca, Joaquin Santander, Carles Cané

Free-standing Organic Transistors and Circuits. with Sub-micron thickness

SUPPLEMENTARY MATERIALS FOR PHONON TRANSMISSION COEFFICIENTS AT SOLID INTERFACES

Electronic Supplementary Information for

Supporting Information for. Co-crystal Engineering: A Novel Method to Get One-dimensional (1D) Carbon

CVD-3 LFSIN SiN x Process

Mechanical characterization of single crystal BaTiO 3 film and insitu. XRD observation of microstructure change due to

Supporting Information: Poly(dimethylsiloxane) Stamp Coated with a. Low-Surface-Energy, Diffusion-Blocking,

1. Experimental section

SUPPLEMENTARY INFORMATION

Omnidirectionally Stretchable and Transparent Graphene Electrodes

Schottky Rectifiers Zheng Yang (ERF 3017,

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2009 PROBLEM SET #7. Due (at 7 p.m.): Thursday, Dec. 10, 2009, in the EE C245 HW box in 240 Cory.

The Role of Hydrogen in Defining the n-type Character of BiVO 4 Photoanodes

ANTIMONY ENHANCED HOMOGENEOUS NITROGEN INCORPORATION INTO GaInNAs FILMS GROWN BY ATOMIC HYDROGEN-ASSISTED MOLECULAR BEAM EPITAXY

Imaging Methods: Scanning Force Microscopy (SFM / AFM)

CVD-3 SIO-HU SiO 2 Process

SCANNING THERMAL MICROSCOPY OF THERMOELECTRIC PULSED LASER DEPOSITED NANOSTRUCTURES

Proposal of A New Structure Thermal Vacuum Sensor with Diode-Thermistors Combined with a Micro-Air-Bridge Heater

SUPPLEMENTARY INFORMATION

Comparison of Mechanical Deflection and Maximum Stress of 3C SiC- and Si-Based Pressure Sensor Diaphragms for Extreme Environment

Wafer-scale fabrication of graphene

Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e)

Quiz #1 Practice Problem Set

A Novel Approach to the Layer Number-Controlled and Grain Size- Controlled Growth of High Quality Graphene for Nanoelectronics

Development of Deposition and Etching Technologies for Piezoelectric Elements for Ferroelectric MEMS

Extended short wavelength infrared nbn photodetectors based on type II InAs/AlSb/GaSb superlattices with an AlAsSb/GaSb superlattice barrier

Development of a nanostructural microwave probe based on GaAs

Optical Spectroscopies of Thin Films and Interfaces. Dietrich R. T. Zahn Institut für Physik, Technische Universität Chemnitz, Germany

Supplementary Information. Characterization of nanoscale temperature fields during electromigration of nanowires

Supplementary Figures

Metal Deposition. Filament Evaporation E-beam Evaporation Sputter Deposition

SiC Graphene Suitable For Quantum Hall Resistance Metrology.

Supplementary Figure 1 Characterization of the synthesized BP crystal (a) Optical microscopic image of bulk BP (scale bar: 100 μm).

Graphene photodetectors with ultra-broadband and high responsivity at room temperature

Supplementary information

2D-2D tunneling field effect transistors using

Fermi Level Pinning at Electrical Metal Contacts. of Monolayer Molybdenum Dichalcogenides

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS

Electronic Supplementary Information

Sensors, Signals and Noise 1 COURSE OUTLINE. Introduction Signals and Noise Filtering Sensors: Strain Gauges. Signal Recovery, 2017/2018 Strain Gauges

Self-study problems and questions Processing and Device Technology, FFF110/FYSD13

SUPPLEMENTARY INFORMATION

A new approach to AFM investigation of buried Al/In x Ga 1-x As/GaAs interfaces and quantum dots

Electronic Supplementary Information: Synthesis and Characterization of Photoelectrochemical and Photovoltaic Cu2BaSnS4 Thin Films and Solar Cells

Resonator Fabrication for Cavity Enhanced, Tunable Si/Ge Quantum Cascade Detectors

A flexoelectric microelectromechanical system on silicon

Steep-slope WSe 2 Negative Capacitance Field-effect Transistor

Transcription:

Electronic Supplementary Information Piezoresistive effect in p-type 3C-SiC at high temperatures characterized using Joule heating Hoang-Phuong Phan, 1 Toan Dinh, 1 Takahiro Kozeki, 2 Afzaal Qamar, 1 Takahiro Namazu, 2 Sima Dimitrijev, 1 Nam-Trung Nguyen, 1 and Dzung Viet Dao 1,3 1 Queensland Micro-Nanotechnology Centre, Griffith University, Queensland, Australia. 2 Department of Mechanical Engineering, Hyogo University, Hyogo, Japan. 3 School of Engineering, Griffith University, Queensland, Australia. Email of corresponding author: hoangphuong.phan@griffithuni.edu.au 1. Fabrication process (1) (2) (3) FIB (4) (5) (6) Cut lines 3C-SiC Si Al Glass Tungsten Figure 1: The fabrication process of the SiC bridges and the transferred SiC on glass substrates. The fabrication of SiC bridges was carried out using a conventional MEMS process, Figure S1. After SiC was grown on a Si substrate (step 1), SiC resistors were patterned using ICP etching where SF 6 and O 2 were deployed as the etching gases (step 2). Next, aluminum was deposited and then etched to form the electrodes of SiC resistors (step 3). Subsequently, the SiC bridges were released using isotropic etching of the Si substrate where XeF 2 was used as the etching gas (step 4). To transfer SiC from the Si substrate to a glass substrate, Focused 1

Ion Beam was utilized to cut the SiC bridges (step 5). Finally, tungsten and silver epoxy were employed to make the contact between the Al electrodes and SiC resistors of the transferred samples. 2. Measurement of current leak at SiC/Si when using Joule heating effect (a) 200 160 120 80 40 Current [μa] Current flowing in SiC resistor Leakage current (b) Current [na] 16 12 8 4 Leakage current 0 0 0.4 0.8 1.2 1.6 Applied Voltage [V] 0 0 0.4 0.8 1.2 1.6 Applied Voltage [V] Figure 2: (a) Comparison of the current flowing in SiC resistors and the leakage current through the SiC/Si heterojunction when using the Joule heating effect. (b) The leakage current plotted in na scale. When increasing the temperature of SiC resistors using the Joule effect, the temperature of SiC resistor located at the center of the released bridge raised significantly, while the temperature at the vicinity of the SiC/Si junction remained at approximately at room temperature. We measured the current leak at the SiC/Si junction when increasing the electrical power applied to the SiC resistors. Evidently, at an applied voltage of 1.7 V, which corresponds to the temperature at SiC resistor of approximately 300 C, the current leak through the SiC/Si heterojunction was below 20 na, Figure S2. Note that, as the current through SiC resistor is about 200 µa, the leakage current is negligible. 3. Approximation of the linear relationship between the applied power and resistance change in small interval (i) In Figure 5(b) of the main article, the heating power was applied using two modes: current mode, and voltage mode, which was measured at the steady state. Initially, the heating power of the voltage mode was measured when the temperature reaching the steady state. Subsequently, the supplied current was estimated so that the same heating power could be obtained using the current mode. The results showed that with the same heating power at the steady state, both the current mode and voltage mode lead to the same resistance change. In the other words, regardless of the current or voltage modes, the same applied powers at the steady state resulted in the same temperatures (red dots coincide with the blue triangles in Figure 5(b) in the main article). Therefore, for heating powers ranging from 0 to 340 µw, the constant current and voltage modes have the same power-resistance (P R) curve. 2

(ii) The piezoresistive effect at the current mode. When applying a tensile strain, the SiC resistance increased from R 0 to R due to the piezoresistive effect. Subsequently, the heating power also increased from P = R 0 I 2 to R I 2, leading to a decrease in the SiC resistance due to the thermoresistive effect. Consequently, at the steady state, the resistance of SiC reached R I, corresponding to a heating power of P I = R I I 2, as shown in Figure S3(a). Assuming that, at the point R 0 increased to R, if the applied current was modified to be I = P /R, the heating power will remain at P. Thus, R will be the resistance at the steady state, since the heating power is maintained. (P,R ) and (P I, R I ) are sketched in Figure S3(b), illustrating the relationship between heating powers and resistances using the current mode. (iii) The piezoresistive effect at the voltage mode. Similarly, under a tensile strain, the SiC resistance increased from R 0 to R due to the piezoresistive effect. Subsequently, the heating power decreased from P = V 2 /R 0 to V 2 /R, leading to an increase in the SiC resistance due to the thermoresistive effect. Consequently, at the steady state, the resistance of SiC reached R V, corresponding to a heating power of P V = V 2 /R V, as shown in Figure S3(c). Assuming that, at the point R 0 increased to R, if the applied voltage was modified to be V = P R, the heating power will remain at P. Thus, R will be the resistance at the steady state, since the heating power is maintained. (P, R ) and (P V, R V ) are plotted in Figure S3(d), illustrating the relationship between heating powers and resistances using the voltage mode. From conclusion (i), the current and voltage modes showed the same (a) R I R 0 TMR PZR Strain off If applied current = I *, then =R Strain on Current mode Power [W] (b) P I (R I, P I ) P * at a applied current of I * linear appoximation at a vicinity of P * (c) time Voltage mode (d) R I Resistance R V TMR R 0 PZR Strain off If applied voltage = V *, then =R Strain on Power [W] P * P V at a applied voltage of V * (R V, P V ) linear appoximation at a vicinity of P * time R V Resistance Figure 3: The interaction of the piezoresistive effect and thermoresistive effect; (a)(b) The change of resistance under current mode; (c)(d) The change of resistance under voltage mode. (The abbreviation TMR stands for the thermoresistive effect, and PZR stands for the piezoresistive effect.) 3

P R curve; therefore (P I,R I ), (P,R ) and (P V,R V ) line in this P R curve which was illustrated in Fig. 7(b) in the main article. (iv) The approximation of the linear relationship between the heating power and resistance change are presented as follows. At the steady state (T ), the heating power is balanced by the heat loss due to heat conductance, heat convection to air, and heat radiation [Ref. 44,46]. P = A(T T 0 ) + B(T 4 T 0 4 ) (1) Where A and B are constants, in which A is dominated by the heat conductance and heat convection, while B is dominated by heat radiation. Additionally, the resistance of SiC is a function of temperature, following the Arrhenius law [Ref. 43]: R = Ce E a/kt (2) where C is a constant, E a is the activation energy, and k is the Boltzmann constant. The polynomial function T 4 and the exponential function exp(e a /kt ) are non-linear functions of temperature (T). Therefore, the non-linear behavior of the P-R curve can be clearly observed in a large range of temperature. However, in a sufficiently small range of the applied power (or small range of temperature), the P R curve can be linearly approximated as follows. Let P = f (T ) and R = g(t ) be functions of temperature (T). In a sufficiently small interval of temperature around T, it is possible to linearly approximate the heating power P and resistance R as linear functions of T using Taylor s series approximation: { P = f (T ) = f (T ) + (T T ) f (T ) 1! + 0(T T ) 2 R = g(t ) = g(t ) + (T T ) g (T ) 1! + 0(T T ) 2 (3) Where 0(R R ) 2 is the second order of Taylor s series, and in a small interval of temperature around T (or of the applied power), this factor is negligible. In fact, this method has been widely adopted in the calculation of the temperature coefficient of resistance [Ref. 43]. In addition, from Figure 5(c) in the main article, when the heating power change is less than 1%, the temperature change is smaller than 10 K. Therefore, the polynomial function T 4 can be linearly approximated in this smaller range of temperature with a linear regression of 99.5%, as shown in Figure S4(a). Similarly, the exponential function exp(e a /kt ) can also be linearly (a) 1.12 10 11 Polynomial function (b) Exponential function T 4 [K 4 ] 1.1 1.08 1.06 Exp(E a /kt) 1.082 1.081 1.04 568 570 572 574 576 578 Temperature [K] 1.08 568 570 572 574 576 578 Temperature [K] Figure 4: The polynomial and exponential functions show a good linear behavior in a small range of temperature. 4

approximated. As such, from the relationship between the resistance change and temperature shown in Figure 2 of the main article, the activation energy was estimated to be 38.4 mev at 573 K. Figure S4(b) shows that the linear regression of exp(e a /kt ) in a temperature range of 573 ± 5 K is 99.6%. Therefore, P and R can be considered as linear functions of temperature (T) in a small interval. Thus P can be considered as a linear function of R in a small interval of the heating power. Furthermore, our empirical results also indicated that in a sufficiently small interval of resistance change, the heating power at both current mode and voltage mode have a linear relationship with the resistances, as shown in Figure S5. This linear property has also been confirmed at the applied powers used to characterize the interaction phenomenon in the main manuscript. 1.66 104 10 4 1.52 1.64 1.62 1.6 Data 1.58 30 35 40 45 10 4 10 1.4 1.28 4 1.38 1.36 1.34 Data 1.32 90 100 110 120 1.5 1.48 1.46 Data 1.44 55 60 65 70 75 1.26 1.24 Data 1.22 140 150 160 170 180 Figure 5: Experimental data showing the linear relationship between the applied power and resistance in a sufficiently small interval of resistance change (or of the applied power). 4. The properties of the p-type 3C-SiC film grown on a Si substrate Figure S6(a) shows the photograph of a SiC on Si wafer with a diameter of 150 mm. The thickness of the wafer was measured at 300 nm, using a spectrophotometer Nanospec AFT 210 TM. The full-range 2θ ω scan from x-ray diffraction (XRD) measurement indicated that the SiC film is epitaxially grown on Si(100) substrate, as shown in Fig. S6(b). Figure S6(c) 5

Figure 6: (a) Photograph of a 150 mm 3C-SiC on Si wafer; (b) XRD of the grown film; (c) AFM photograph of the 3C-SiC film shows the atomic force microscopy (AFM) image of the SiC film. The roughness of the 5 µm 5 µm area was 20 nm. The semiconductor type and carrier concentration of the 3C-SiC films were investigated using a hot probe. The polarity of the hot probe voltage indicated that SiC was p-type conductivity and the carrier concentration of p-type SiC was found to be 5 10 18 cm 3 at room temperature. The Young s modulus of the 3C-SiC was found to be 330 GPa. 6