A through-bolt expansion wedge anchor with controlled torque, for use in cracked and non cracked concrete.

Similar documents
A through-bolt expansion wedge anchor with controlled torque, for use in non cracked concrete.

Hilti HSV-F Stud anchor

Depending on the application and the anchor type one of the following two concepts can be applied: Partial safety factor concept.

DECLARATION OF PERFORMANCE

1 Input data. Profis Anchor Company: Specifier: Address: Phone I Fax: Page: Project: Sub-Project I Pos. No.

1 Input data. Profis Anchor Company: Specifier: Address: Phone I Fax: Page: Project: Sub-Project I Pos. No.

Tension zone applications, i.e., cable trays and strut, pipe supports, fire sprinklers Seismic and wind loading

Edward C. Robison, PE, SE. 02 January Architectural Metal Works ATTN: Sean Wentworth th ST Emeryville, CA 94608

Technical information CONCRETE / SOLID STONE. Reaction resin mortar, epoxy-acrylate-based with styrene USAGE INSTRUCTIONS

Design of fastenings for use in concrete

DESIGN OF ANCHOR CHANNELS

2D - STRIP ANCHOR LIFTING SYSTEM

Hilti North America Installation Technical Manual Technical Data MI System Version

1 Input data. 2 Overall Result. 3 Geometry. PROFIS Anchor Channel Company: Specifier: Address: Phone Fax:

ETAG 001 Edition 2012

English Version. Design of fastenings for use in concrete - Part 4-2: Headed Fasteners

Application nr. 7 (Connections) Strength of bolted connections to EN (Eurocode 3, Part 1.8)

QUAKE BRAKE TM MODEL QBC-12 SEISMIC SWAY BRACING KIT FEATURING

Example 1 - Single Headed Anchor in Tension Away from Edges BORRADOR. Calculations and Discussion

IBV Series C Carbon Steel Inverted Bucket Vertical Steam Trap

IBV Series Z Alloy Steel Inverted Bucket Vertical Steam Trap

KUNSTSTOFFDÜBEL ALS MEHRFACHBEFESTIGUNG VON NICHTTRAGENDEN SYSTEMEN ZUR VERANKERUNG IM BETON UND MAUERWERK

ZF Series Force Transducers

STEEL. General Information

2D - STRIP ANCHOR LIFTING SYSTEM

Load Washers. Force. for Forces of 7, kn. F z. Type 9001A A 9081B, 9091B

Max. thick. of part to be fixed. Min. thick. of base material. anchor depth. Anchor mechanical properties

Structural Calculations for Juliet balconies using BALCONY 2 System (Aerofoil) handrail. Our ref: JULB2NB Date of issue: March 2017

INSTALLATION INSTRUCTIONS PLOW MOUNT KIT Part Number: Application: Honda Foreman 500

INSTALLATION INSTRUCTIONS ATV Plow Blade Part Number: (50 ), (54 ), or (60 ) Application: All Terrain Vehicles

Design of AAC wall panel according to EN 12602

OUTLINE DESIGN OF COLUMN BASE PLATES AND STEEL ANCHORAGE TO CONCRETE 12/21/ Introduction 2. Base plates. 3. Anchor Rods

D e s i g n o f R i v e t e d J o i n t s, C o t t e r & K n u c k l e J o i n t s

Project data Project name Project number Author Description Date 26/04/2017 Design code AISC dome anchor. Material.

Cat. Multi-Processors. Hydraulic Excavators. Multi-Processor/Hydraulic Excavator Compatibility. Features: Maximum Productivity.

my!wind Ltd 5 kw wind turbine Static Stability Specification

Precision Ball Screw/Spline

Example 4: Design of a Rigid Column Bracket (Bolted)

Design of fastenings for use in concrete

DRIFTER PLOW-IN-A-BOX ASSEMBLY / OWNER S MANUAL

PULL-OUT RESISTANCE OF SELF-TAPPING WOOD SCREWS WITH CONTINUOUS THREAD

INSTALLATION INSTRUCTIONS FRONT PLOW MOUNT KIT Part Number: Application: Polaris Sportsman 400, 500, 800

Serie B2.1. Flanged ductile iron ball valve. made in. Application fields. Shut-off valves E U R O P E. 18

Product description. Compact Modules. Characteristic features. Further highlights

3D Finite Element analysis of stud anchors with large head and embedment depth

my!wind Ltd 5 kw wind turbine Static Stability Specification

For Customer Service, Rev A - 6/ OF 6

Cam Roller Guides. The Drive and Control Company. Service Automation. Electric Drives and Controls. Linear Motion and Assembly Technologies

S E C T I O N 1 2 P R O D U C T S E L E C T I O N G U I D E - H E L I C A L S C R E W P I L E F O U N D A T I O N S

Load Washers. Force kn until kn. Type 9101A A

MODULE F: SIMPLE CONNECTIONS

INSTALLATION INSTRUCTIONS ATV SNOW PLOW Mounting Kit: PN Application: HONDA MODELS: 450S AND 450ES

S TRUCTUR A L PR E- A N A LYSIS TA B LES

Installation guide 862 MIT / MIR

Load Cells. 3/2 Introduction. 3/3 Mounting components 3/3 Introduction

Identification Number

Automatic Level Maintenance Manual SAL-XX W/ AIR DAMPENED COMPENSATOR

Nickel-Plated Brass Push-In Fittings - NPTF/INCH

SHARK Snow Plow. 52 (132 cm) / 60 (152 cm) Complete system blade INSTRUCTIONS / ESTABLISHMENT

Introduction to Geohazard Standard Specification for Simple Drapery

BLOCK SHEAR CONNECTION DESIGN CHECKS

Entrance exam Master Course

Hilti North America Installation Technical Manual Technical Data MI System Version

G-FIRE FLANGE ADAPTERS


DRIFTER PLOW-IN-A-BOX

Product Description. Further highlights. Outstanding features. 4 Bosch Rexroth Corporation Miniature Linear Modules R310A 2418 (2009.

PLOW MOUNT KIT FOR POLARIS RANGER P/N ASSEMBLY / OWNERS MANUAL

DN 1/4" to 4" Male, Female BSP - 10 C C Max Pressure : 40 Bars Specifications : Anti blow-out stem PTFE packing Full bore.

Department of Mechanics, Materials and Structures English courses Reinforced Concrete Structures Code: BMEEPSTK601. Lecture no. 6: SHEAR AND TORSION

Structural Steelwork Eurocodes Development of A Trans-national Approach

GC005 thru GC600. Wireless Load Cell. Features. Applications. General Description. Load Cell

INTRODUCTION TO STATIC ANALYSIS PDPI 2013

10012 Creviston DR NW Gig Harbor, WA fax

Our products. Page 3-4. Chemical anchor (approval ETA/08/0231) Hammer-in capsule 5-7. Chemical mortar (approval ETA-04/0071, and -0073)

The basic dynamic load rating C is a statistical number and it is based on 90% of the bearings surviving 50 km of travel carrying the full load.

FINITE ELEMENT ANALYSIS OF THE ROTATION CAPACITY OF BEAM-TO-COLUMN END-PLATE BOLTED JOINT

Anchor Bolt Design (Per ACI and "Design of Reinforcement in Concrete Pedestals" CSA Today, Vol III, No. 12)

Section Installation accessories. > UNION Series > TIES Series > FIXO Series > CABLO Series > FASTY Series > RAILDIN Series

Rodless cylinders Series 1600

8 Deflectionmax. = 5WL 3 384EI

WARNING. INJURY HAZARD Failure to observe these instructions could lead to severe injury or death.

PUSH TUBE STANDARD DUTY

DN 1/4" to 4" Male, Female BSP - 10 C C Max Pressure : 30 Bars (up to DN1") Specifications : Anti blow-out stem PTFE packing Full bore

SGF. The metric thread forming connection

SKF actuators available for quick delivery. Selection guide

Introduction...COMB-2 Design Considerations and Examples...COMB-3

Design Manual to BS8110

INSTALLING TRAK SPORT TIRE CHAINS ON 20 MODEL 3 TIRES

ALUMINUM STRUCTURAL PLATE HEADWALLS AASHTO LRFD BASIS OF DESIGN

Levers. 558 A Textbook of Machine Design

CR LAURENCE Z-SERIES GLASS CLAMPS (12/14/2012) Page 1 of Dec. 2012

APOLLO SCAFFOLDING SERVICES LTD SPIGOT CONNECTION TO EUROCODES DESIGN CHECK CALCULATIONS

PREDICTION OF OUT-OF-PLANE FAILURE MODES IN CFRP

CF (Conflat Flange) Fittings - Adapters. (505)

VELOCITY EFFECTS ON THE BEHAVIOUR OF ASYMMETRICAL FRICTION CONNECTIONS (AFC)

Tower Cranes & Foundations The Interface & CIRIA C654 Stuart Marchand C.Eng. FICE FIStructE Director Wentworth House Partnership

TABLE OF CONTENTS SECTION TITLE PAGE 2 PRINCIPLES OF SEISMIC ISOLATION OF BRIDGES 3

Observational Methods and

STRUCTURAL CALCULATIONS

Transcription:

A through-bolt expansion wedge anchor with controlled torque, for use in cracked and non cracked concrete. ETA assessed option 1 anchor. Galvanised carbon steel, with 316 (A4) stainless steel expansion clip. GENERAL INFORMATION CHARACTERISTICS AND BENEFITS Easy installation. Use in cracked and un-cracked concrete. Use for medium-heavy duty loads. Pre-installation or through the drill-hole of the fixture. Variety of lengths and diameters: flexibility in assembly. For static and quasi-static loads APPLICATIONS Anchor plates. Metallic structures. Bridges. Urban fitments. Protective fences. Catenaries. Elevators. Pipe supports. Structural fixing in cracked concrete in indoor applications. Safety fences. Sprinklers installation. Fixings of steel beams, channels, machinery, boilers, signals, etc. Fixings of wood structures to concrete. DESIGN LOAD RANGE M8 M10 M12 M16 6.1 kn 12.4 kn BASE MATERIAL 24.4 kn 28.5 kn In Tension (C30/37 un-cracked) Concrete class from C20/25 to C50/60 cracked or un-cracked. Concrete Cracked Reinforced Stone APPROVALS / CERTIFICATES European technical assessment issued by CSIC, Madrid. This is according to ETAG 001 guideline, option 1 for diameters M8 to M24. ETA 17/0486 option 1. CE-1219-CPR-0053. Declaration of Performance DoP WA-G1 Satisfies the performance requirements SA TS101:2015 as referenced by the National Construction Code XXXX The anchors are to be used only for anchorages subject to static or quasi-static loading in reinforced or unreinforced normal weight concrete of strength class C20/25 to C50/60, according to EN 206. They may be anchored in cracked and un-cracked concrete. NCC R30 - R120 Doc: tech_sheet_wa-g1_anchors_ Version Date: 10/27/17 Page 1 of 17

BASIC LOADING DATA (FOR SINGLE ANCHOR) Static and quasi-static resistance Data in this section applies to the following: 1. Correct setting (see installation parameters) 2. No edge and spacing distance influence 3. Minimum concrete base material thickness 4. C20/25, f ck,cube = 25N/mm 2, concrete C h For details see Simplified design method page 7 CHARACTERISTIC RESISTANCE Anchor size M8 M10 M12 M16 Effective anchor depth h ef [ mm ] 48 60 70 85 Un-cracked Concrete [ kn ] 9 16 30 35 [ kn ] 11 17.4 25.3 47.1 Cracked Concrete [ kn ] 6 9 16 25 [ kn ] 11 17.4 25.3 47.1 DESIGN RESISTANCE Anchor size M8 M10 M12 M16 Effective anchor depth h ef [ mm ] 48 60 70 85 Un-cracked Concrete Concrete C20/25 [ kn ] 5.0 10.7 20.0 23.3 [ kn ] 8.8 13.9 20.2 37.7 a) [ kn ] 6.1 12.4 24.4 28.5 C30/37 a) [ kn ] 10.7 16.1 24.7 46.0 Cracked Concrete Concrete C20/25 [ kn ] 3.3 6.0 10.7 16.7 [ kn ] 8.8 13.9 20.2 37.7 a) [ kn ] 4.1 7.0 13.0 20.3 C30/37 a) [ kn ] 10.7 16.1 24.7 46.0 a) Values calculated using increasing factor for concrete strength N rk,p and partial safety factor coefficient for tension γ Mp and shear γ Msp. Doc: tech_sheet_wa-g1_anchors_ Version Date: 10/27/17 Page 2 of 17

RECOMMENDED LOADS Anchor size M8 M10 M12 M16 Effective anchor depth h ef [ mm ] 48 60 70 85 Un-cracked Concrete Concrete C20/25 [ kn ] 3.6 7.6 14.3 16.7 [ kn ] 6.3 9.9 14.5 26.9 b) [ kn ] 4.4 8.8 17.4 20.3 C30/37 b) [ kn ] 7.7 11.5 17.6 32.8 Cracked Concrete Concrete C20/25 [ kn ] 2.4 4.3 7.6 11.9 [ kn ] 6.3 9.9 14.5 26.9 b) [ kn ] 2.9 5.0 9.3 14.5 C30/37 b) [ kn ] 7.7 11.5 17.6 32.8 b) Values calculated with an overall partial safety factor for action ɣ = 1,4. The partial safety factors for action depend on the type of loading and shall be taken from national regulations. MECHANICAL PROPERTIES MECHANICAL PROPERTIES Cone area section A s [ mm 2 ] Cone area section 22,9 41,8 55,4 103,9 176,7 f u,s [ N/mm 2 ] Characteristic tension resistance 790 750 730 700 660 f y,s [ N/mm 2 ] Yield strength 632 600 585 560 530 Threaded area section A s [ mm 2 ] Cone area section 36,6 58,0 84,3 157,0 245,0 f u,s [ N/mm 2 ] Characteristic tension resistance 600 600 600 600 600 f y,s [ N/mm 2 ] Yield Strength 480 480 480 480 480 MATERIAL SPECIFICATIONS WA-G1 Anchor Carbon steel, sherardized 40 μm Washer DIN 125 or DIN 9021, sherardized 40 μm Hex Nut DIN 934 class 6, sherardized 40 μm Expansion Clip Stainless steel, grade A4 Doc: tech_sheet_wa-g1_anchors_ Version Date: 10/27/17 Page 3 of 17

IDENTIFICATION Length Indicator: letter code Assembled nut and washer FIXTURE: Element on which external loads are applied Installation depth marker Metric full thread BASE MATERIAL: Element to which loads are transmitted Body: identification marker 3-segment clip. Developed with geometric characteristics preventing anchor spinning and to ensure correct expansion ANCHOR: loading element which serves as a union between the fixture and the base material Applied lubricant to reduce friction between cone and clip improving expansion Anchor tip: Thread: Anchor body: Expansion clip: overall length letter code, as per table below embedment depth blue ring marker metric x length AF (logo) + WA-G1 + metric Letter code Length [mm] C 68 76 D 76 89 E 89 102 F 102 114 G 114 127 H 127 139 Letter code Length [mm] I 140 152 J 152 165 K 165 178 L 178 191 M 191 203 N 203 216 Letter code Length [mm] O 216 229 P 229 241 Q 241 254 R 254 267 S 267 300 Doc: tech_sheet_wa-g1_anchors_ Version Date: 10/27/17 Page 4 of 17

INSTALLATION PARAMETERS C h Tinst C S h INSTALLATION DATA SIZE: Code: 1ETBG08xxx 1ETBG10xxx 1ETBG12xxx 1ETBG16xxx 1ETBG20xxx d 0 [mm] Nominal diameter of drill bit 8 10 12 16 20 T ins [Nm] Installation torque moment 15 40 60 100 200 d f [mm] Diameter of clearance hole in the fixture 9 12 14 18 22 h 1 [mm] Minimum drill hole depth 60 75 85 105 125 h nom [mm] Installation depth 55 68 80 97 114 h ef [mm] Effective embedment depth 48 60 70 85 100 h min [mm] Minimum base material thickness 100 120 140 170 200 t fix [mm] Maximum thickness of fixture L - 66 L - 80 L - 96 L - 117 L-138 s cr,n [mm] Critical spacing 144 180 210 255 300 c cr,n [mm] Critical edge distance 72 90 105 128 150 s cr,sp [mm] Critical distance (splitting) 288 300 350 510 600 c cr,sp [mm] Critical edge distance (splitting) 144 150 175 255 300 s min [mm] Minimum spacing 50 60 70 128 150 c min [mm] Minimum edge distance 50 60 70 128 150 SW Installation wrench 13 17 19 24 30 L = total anchor length Doc: tech_sheet_wa-g1_anchors_ Version Date: 10/27/17 Page 5 of 17

INSTALLATION STEPS 1. Use fixture template to plot hole positions. Select the correct drill bit (part: 8DSPE) size (d 0 ) and drill hole 90º to the concrete surface. Observe the required drill depth prior to drilling: Installation depth, h nom = anchor length (nut,washer + fixture t fix ) Drill depth, h 1 = h nom + cavity allowance 1 SEE TABLE BELOW. 2. Clear hole of concrete dust and debris using a hand blow pump (part: 12BPUMP) or compressed air. Always wear eye protection (part: 12M-EBR330). 2 3. Insert anchors through fixture into the drilled hole. 3 4. Using a mallet tap the anchor into place ensure it is seated against the fixture all the way. Avoid damage to the hex nut by only tapping the end of the anchor. 4 5. Fasten the anchor securely applying the correct minimum torque setting (T ins ) with a wrench and socket. 5 CODE: WA-G1 Socket Torque Drill Depth Max. Fixture Nut,washer Cavity allowance SW [ mm ] T ins [ Nm ] h 1,min [ mm ] t fix,max [ mm ] [ mm ] [ mm ] 1ETBG08080 M8 x 80mm 60 14 1ETBG08100 M8 x 100mm 13 15 60 34 1ETBG08120 M8 x 120mm 60 54 1ETBG10065 M10 x 65mm 60 5 1ETBG10090 M10 x 90mm 17 40 75 10 1ETBG10120 M10 x 120mm 75 40 1ETBG12080 M12 x 80mm 70 5 1ETBG12100 M12 x 100mm 19 60 85 4 1ETBG12140 M12 x 140mm 85 44 1ETBG16105 M16 x 105mm 95 5 1ETBG16125 M16 x 125mm 105 8 1ETBG16140 M16 x 140mm 24 100 105 23 1ETBG16190 M16 x 190mm 105 73 11 5 12 7 16 10 20 12 *Maximum fixture thickness are based on ETA assessed standards. Anchor embedment depths are marked by the coloured rings on anchors. The drill depth (h 1 ) is always greater then the installation depth (h nom ) of the anchor. This allows for a small cavity to ensure the effective (h ef ) ebedment depth is achieved. Doc: tech_sheet_wa-g1_anchors_ Version Date: 10/27/17 Page 6 of 17

SIMPLIFIED DESIGN METHOD Simplified version of the design method according to ETAG 001, annex C or CEN/TS 1992-4-4, design method A. Design resistance according to the data given in ETA 17/0486, issue 02/06/2017 for concrete classes C20/25 to C50/60. Influence of concrete strength Influence of edge distance Influence of spacing between anchors Influence of reinforcements Influence of base material thickness Influence of load application angle For static and quasi-static loading Valid for a group of two anchors. The design method is based on the following simplification: Different loads do not act on individual anchors (no eccentricity). The values are valid for one anchor. TENSION LOAD RESISTANCE Steel design resistance: N Rd,s Pull-out design resistance: N Rd,p = Nº Rd,p ψ c Concrete cone design resistance: N Rd,c = Nº Rd,c ψ b ψ s,n ψ c,n ψ re,n Concrete splitting design resistance: N Rd,sp = Nº Rd,c ψ b ψ s,sp ψ c,sp ψ re,n ψ h,sp N STEEL DESIGN RESISTANCE: N Rd,s N Rd [ kn ] 12.1 20.9 26.9 48.5 77.7 N PULL-OUT DESIGN RESISTANCE: N Rd,p = Nº Rd,p ψ c N Rd,p [ kn ] Un-cracked concrete 5.0 10.7 20.0 23.3 33.3 N Rd,p [ kn ] Cracked concrete 3.3 6.0 10.7 16.7 20.0 N CONCRETE CONE DESIGN RESISTANCE: N Rd,c = Nº Rd,c ψ b ψ s,n ψ c,n ψ re,n CONCRETE SPLITTING DESIGN RESISTANCE: N N Rd,sp = Nº Rd,c ψ b ψ s,sp ψ c,sp ψ re,n ψ h,sp N Rd,p [ kn ] Un-cracked concrete 5.0 10.7 20.0 23.3 33.3 N Rd,p [ kn ] Cracked concrete 3.3 6.0 10.7 16.7 20.0 Doc: tech_sheet_wa-g1_anchors_ Version Date: 10/27/17 Page 7 of 17

INFLUENCE FACTORS IN TENSION INFLUENCE OF CONCRETE STRENGTHS Concrete coefficients for pull-out resistance failure ψ c Concrete Strength ψ c C 20/25 1,00 1,00 1,00 1,00 1,00 C 30/37 1,22 1,16 1,22 1,22 1,16 C 40/50 1,41 1,31 1,41 1,41 1,31 C 50/60 1,55 1,41 1,55 1,55 1,41 = fck,cube b 25 >_ 1 Concrete coefficients for combined cone and splitting failure ψ b Concrete Strength ψ b C 20/25 1,00 C 30/37 1,22 C 40/50 1,41 C 50/60 1,55 INFLUENCE OF REINFORCED CONCRETE Influence of reinforcements ψ re,n ψ re,n 0,74 0,80 0,85 0,93 1,00 *This factor only applies for a high density of reinforcements. If in the area of the anchor there are reinforcements with a distancing of 150 mm (any diameter) or with a diameter 10 mm and a distancing of 100 mm, a f re,n = 1 factor may be applied. = 0,5 + h ef re,n 200 <_ 1 INFLUENCE OF CONCRETE THICKNESS Influence of base material thickness ψ h,sp h/hef 2,00 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,68 ψ h,sp fh 1,00 1,07 1,13 1,19 1,25 1,31 1,37 1,42 1,48 1,50 h h,sp ( ) 2/3 h = <_ 1,5 2 h ef Doc: tech_sheet_wa-g1_anchors_ Version Date: 10/27/17 Page 8 of 17

INFLUENCE OF ANCHOR SPACING Influence of anchor spacing (concrete cone failure) ψ s,n s [mm] 50 0,67 55 0,69 60 0,71 0,67 Invalid Value 65 0,73 0,68 70 0,74 0,69 0,67 85 0,80 0,74 0,70 100 0,85 0,78 0,74 105 0,86 0,79 0,75 110 0,88 0,81 0,76 120 0,92 0,83 0,79 125 0,93 0,85 0,80 126 0,94 0,85 0,80 128 0,94 0,86 0,80 0,75 130 0,95 0,86 0,81 0,75 135 0,97 0,88 0,82 0,76 144 1,00 0,90 0,84 0,78 150 0,92 0,86 0,79 0,75 165 0,96 0,89 0,82 0,78 170 0,97 0,90 0,83 0,78 180 1,00 0,93 0,85 0,80 195 0,96 0,88 0,83 200 0,98 0,89 0,83 210 1,00 0,91 0,85 220 0,93 0,87 225 0,94 0,88 252 0,99 0,92 255 1,00 0,93 260 Value without reduction = 1 0,93 300 1,00 309 310 375 S N = 0,5 + s s,n 2 S <_ 1 cr,n Doc: tech_sheet_wa-g1_anchors_ Version Date: 10/27/17 Page 9 of 17

S N = 0,5 + s s,sp 2 S <_ 1 cr,sp Influence of anchor spacing (concrete splitting failure) ψ s,sp s [mm] 50 0,59 55 0,60 60 0,60 0,60 Invalid Value 65 0,61 0,61 70 0,62 0,62 0,60 85 0,65 0,64 0,62 100 0,67 0,67 0,64 110 0,69 0,68 0,66 125 0,72 0,71 0,68 128 0,72 0,71 0,68 0,63 135 0,73 0,73 0,69 0,63 140 0,74 0,73 0,70 0,64 150 0,76 0,75 0,71 0,65 0,63 160 0,78 0,77 0,73 0,66 0,63 165 0,79 0,78 0,74 0,66 0,64 168 0,79 0,78 0,74 0,66 0,64 180 0,81 0,80 0,76 0,68 0,65 192 0,83 0,82 0,77 0,69 0,66 200 0,85 0,83 0,79 0,70 0,67 210 0,86 0,85 0,80 0,71 0,68 220 0,88 0,87 0,81 0,72 0,68 260 0,95 0,93 0,87 0,75 0,72 288 1,00 0,98 0,91 0,78 0,74 300 1,00 0,93 0,79 0,75 336 0,98 0,83 0,78 350 1,00 0,84 0,79 412 0,90 0,84 425 0,92 0,85 500 0,99 0,92 510 1,00 0,93 560 Value without reduction = 1 0,97 600 1,00 Doc: tech_sheet_wa-g1_anchors_ Version Date: 10/27/17 Page 10 of 17

INFLUENCE OF ANCHOR EDGE DISTANCE Influence of anchor edge distance (concrete splitting failure) ψ c,sp c [mm] 50 0,54 60 0,58 0,57 65 0,61 0,59 Invalid Value 70 0,63 0,62 0,57 75 0,65 0,64 0,59 80 0,67 0,66 0,61 82,5 0,69 0,67 0,62 84 0,69 0,68 0,62 85 0,70 0,68 0,63 90 0,72 0,70 0,65 96 0,75 0,73 0,67 100 0,77 0,75 0,68 105 0,79 0,77 0,70 110 0,82 0,80 0,72 125 0,90 0,87 0,78 128 0,91 0,89 0,80 0,64 130 0,92 0,90 0,80 0,64 135 0,95 0,92 0,82 0,66 144 1,00 0,97 0,86 0,68 150 1,00 0,89 0,70 0,64 168 0,97 0,74 0,68 175 1,00 0,76 0,69 206 0,85 0,76 213 0,87 0,78 250 0,98 0,87 255 Value without reduction = 1 1,00 0,88 280 0,95 300 1,00 N C = 0,35 + 0,5 c 0,15 c 2 c,sp C + <_ 1 cr,sp C cr,sp 2 Doc: tech_sheet_wa-g1_anchors_ Version Date: 10/27/17 Page 11 of 17

N C = 0,35 + 0,5 c 0,15 c 2 c,sp C + <_ 1 cr,n C cr,n 2 Influence of anchor edge distance (concrete cone failure) ψ c,n c [mm] 50 0,77 53 0,80 60 0,87 0,75 Invalid Value 63 0,90 0,77 65 0,92 0,79 70 0,98 0,83 0,75 72 1,00 0,85 0,76 75 0,87 0,78 82,5 0,93 0,84 83 0,94 0,84 85 0,96 0,85 90 1,00 0,89 98 0,95 100 0,96 105 1,00 110 113 125 126 128 1,00* 135 150 Value without reduction = 1 1,00* 155 188 *The critical concrete edge distance matches the minimum concrete edge distance Doc: tech_sheet_wa-g1_anchors_ Version Date: 10/27/17 Page 12 of 17

SHEAR LOAD RESISTANCE Steel design resistance: V Rd,s Pry-out design resistance: V Rd,cp = k Nº Rd,c Concrete edge design resistance: V Rd,c = Vº Rd,c ψ b ψ se,v ψ c,v ψ re,v ψ h,v STEEL DESIGN RESISTANCE: V V Rd,s V Rd,s [ kn ] 8.8 13.9 20.2 37.7 58.5 PRY-OUT DESIGN RESISTANCE* V V Rd,cp = k Nº Rd,c K [ kn ] 1 2 2 2 2 * Nº Rd,c Concrete cone design resistance for tension load CONCRETE EDGE RESISTANCE: V Rd,c = Vº Rd,c ψ b ψ se,v ψ c,v ψ re,v ψ h,v V V Rd,c [ kn ] Un-cracked concrete 6.2 8.9 11.5 15.9 20.8 [ kn ] Cracked concrete 4.4 6.3 8.1 11.3 14.7 Doc: tech_sheet_wa-g1_anchors_ Version Date: 10/27/17 Page 13 of 17

INFLUENCE FACTORS IN SHEAR INFLUENCE OF CONCRETE STRENGTHS Concrete coefficients for combined cone and splitting failure ψ b Concrete Strength ψ b ψ b C 20/25 1,00 C 30/37 1,22 C 40/50 1,41 C 50/60 1,55 = fck,cube b 25 >_ 1 INFLUENCE OF REINFORCED CONCRETE Influence of reinforcements ψ re,v Without perimeter reinforcements Perimeter reinforcements Ø12 mm Perimeter reinforcements with brackets 100 mm Un-cracked concrete 1 1 1 Cracked concrete 1 1,2 1,4 INFLUENCE OF LOAD ANGLE Influence of load application angle Angle, α(º) 0 10 20 30 40 50 60 70 80 90 ψ α,v 1,00 1,01 1,05 1,13 1,24 1,40 1,64 1,97 2,32 2,50 0º V c 90º = 1 >_ 1,V 2 sin v ( cos v) +( 2 2,5 ) Doc: tech_sheet_wa-g1_anchors_ Version Date: 10/27/17 Page 14 of 17

INFLUENCE OF CONCRETE THICKNESS Influence of base material thickness ψ h,v c/h 0,67 0,75 0,85 0,95 1,10 1,30 1,65 2,25 3,30 6,65 f h,v 1,00 1,06 1,13 1,19 1,28 1,40 1,57 1,84 2,22 3,16 c ( ) 1/2 = 1,5 C h,v h >_ 1 h INFLUENCE OF ANCHOR EDGE DISTANCE AND SPACING IN SHEAR Influence of edge distance and spacing ψ se,v FOR ONE ANCHOR ONLY s/c c/h ef 0,50 0,75 1,00 1,25 1,50 1,75 2,00 2,25 2,50 2,75 3,00 3,25 3,50 3,75 4,00 4,50 5,00 Isolated 0,35 0,65 1,00 1,40 1,84 2,32 2,83 3,38 3,95 4,56 5,20 5,86 6,55 7,26 8,00 9,55 11,18 FOR TWO ANCHORS c/h ef 0,50 0,75 1,00 1,25 1,50 1,75 2,00 2,25 2,50 2,75 3,00 3,25 3,50 3,75 4,00 4,50 5,00 1,0 0,24 0,43 0,67 0,93 1,22 1,54 1,89 2,25 2,64 3,04 3,46 3,91 4,37 4,84 5,33 6,36 7,45 1,5 0,27 0,49 0,75 1,05 1,38 1,74 2,12 2,53 2,96 3,42 3,90 4,39 4,91 5,45 6,00 7,16 8,39 2,0 0,29 0,54 0,83 1,16 1,53 1,93 2,36 2,81 3,29 3,80 4,33 4,88 5,46 6,05 6,67 7,95 9,32 2,5 0,32 0,60 0,92 1,28 1,68 2,12 2,59 3,09 3,62 4,18 4,76 5,37 6,00 6,66 7,33 8,75 10,25 3,0 0,35 0,65 1,00 1,40 1,84 2,32 2,83 3,38 3,95 4,56 5,20 5,86 6,55 7,26 8,00 9,55 11,18 C C S V h > 1,5 c V h > 1,5 c = () c se,v h ef 1,5 1,5 = ( c )( s ) 1+ 0,5 se,v 3 c h ef Doc: tech_sheet_wa-g1_anchors_ Version Date: 10/27/17 Page 15 of 17

INFLUENCE OF ANCHOR EDGE DISTANCE C = () d c,v c 0,20 Influence of anchor edge distance ψ c,v c [mm] 50 0,69 60 0,67 0,70 Invalid Value 65 0,66 0,69 0,71 70 0,65 0,68 0,70 80 0,63 0,66 0,68 85 0,62 0,65 0,68 0,72 90 0,62 0,64 0,67 0,71 100 0,60 0,63 0,65 0,69 0,72 110 0,62 0,64 0,68 0,71 120 0,61 0,63 0,67 0,70 125 0,60 0,63 0,66 0,69 130 0,60 0,62 0,66 0,69 140 0,59 0,61 0,65 0,68 150 0,60 0,64 0,67 160 0,60 0,63 0,66 170 0,59 0,62 0,65 175 0,59 0,62 0,65 180 0,62 0,64 190 0,61 0,64 200 0,60 0,63 210 0,60 0,62 220 0,59 0,62 230 0,59 0,61 240 0,58 0,61 250 0,58 0,60 260 0,57 0,60 270 0,59 280 0,59 290 Value without reduction = 1 0,59 300 0,58 310 0,58 320 0,57 330 0,57 340 0,57 350 0,56 Doc: tech_sheet_wa-g1_anchors_ Version Date: 10/27/17 Page 16 of 17

FIRE RESISTANCE Characteristic Resistance* TENSION SHEAR RF30 0,4 0,9 1,7 3,1 4,9 0,4 0,9 1,7 3,1 4,9 RF60 0,3 0,8 1,3 2,4 3,7 0,3 0,8 1,3 2,4 3,7 RF90 0,3 0,6 1,1 2,0 3,2 0,3 0,6 1,1 2,0 3,2 RF120 0,2 0,5 0,8 1,6 2,5 0,2 0,5 0,8 1,6 2,5 *The safety factor for design resistance under fire exposure is γ M,fi = 1 (in absence of other national regulations). As a result the Characteristic Resistance is the same as Design Resistance. Maximum Load Recommended TENSION SHEAR RF30 0,3 0,6 1,2 2,2 3,5 0,3 0,6 1,2 2,2 3,5 RF60 0,2 0,6 0,9 1,7 2,6 0,2 0,6 0,9 1,7 2,6 RF90 0,2 0,4 0,8 1,4 2,3 0,2 0,4 0,8 1,4 2,3 RF120 0,1 0,4 0,6 1,1 1,8 0,1 0,4 0,6 1,1 1,8 Allfasteners Head Office 78-84 Logistics Street Keilor Park VIC 3042 Australia +61 3 9330 0555 Allfasteners Pty Ltd. ACN 113 948 100 ABN 86 766 075 300 Whilst every care was taken in preparation of this guide, Allfasteners accepts no responsibility for the accuracy of the information supplied. Copyright 2017. The contents of this document remains the property of Allfasteners and may not be reproduced without prior written permission. Doc: tech_sheet_wa-g1_anchors_ Version Date: 10/27/17 Page 17 of 17