Supporting Information. for. Silylation of Iron-Bound Carbon Monoxide. Affords a Terminal Fe Carbyne

Similar documents
3,4-Ethylenedioxythiophene (EDOT) and 3,4- Ethylenedioxyselenophene (EDOS): Synthesis and Reactivity of

A dominant homolytic O-Cl bond cleavage with low-spin triplet-state Fe(IV)=O formed is revealed in the mechanism of heme-dependent chlorite dismutase

Supplementary information

Decomposition!of!Malonic!Anhydrides. Charles L. Perrin,* Agnes Flach, and Marlon N. Manalo SUPPORTING INFORMATION

Planar Pentacoordinate Carbon in CAl 5 + : A Global Minimum

SUPPORTING INFORMATION

Aluminum Siting in the ZSM-5 Framework by Combination of

Spin contamination as a major problem in the calculation of spin-spin coupling in triplet biradicals

Supporting Information

Synergistic Effects of Water and SO 2 on Degradation of MIL-125 in the Presence of Acid Gases

Methionine Ligand selectively promotes monofunctional adducts between Trans-EE platinum anticancer drug and Guanine DNA base

Truong Ba Tai, Long Van Duong, Hung Tan Pham, Dang Thi Tuyet Mai and Minh Tho Nguyen*

Electronic Supplementary information

Supporting Information

Supplemental Material

Group 13 BN dehydrocoupling reagents, similar to transition metal catalysts but with unique reactivity. Part A: NMR Studies

Effect of Ionic Size on Solvate Stability of Glyme- Based Solvate Ionic Liquids

Electronic Supplementary Information (ESI) for Chem. Commun.

Supporting Information

Supporting Information. spectroscopy and ab initio calculations of a large. amplitude intramolecular motion

Electronic supplementary information (ESI) Infrared spectroscopy of nucleotides in the gas phase 2. The protonated cyclic 3,5 -adenosine monophosphate

University of Groningen

Metal Enhanced Interactions of Graphene with Monosaccharides. A Manuscript Submitted for publication to. Chemical Physics Letters.

Photoinduced intramolecular charge transfer in trans-2-[4 -(N,Ndimethylamino)styryl]imidazo[4,5-b]pyridine:

Supporting Information

A theoretical study on the thermodynamic parameters for some imidazolium crystals

A Computational Model for the Dimerization of Allene: Supporting Information

A Redox-Fluorescent Molecular Switch Based on a. Heterobimetallic Ir(III) Complex with a Ferrocenyl. Azaheterocycle as Ancillary Ligand.

Supporting Information. Synthesis, Molecular Structure, and Facile Ring Flipping of a Bicyclo[1.1.0]tetrasilane

Phosphine Oxide Jointed Electron Transporters for Reducing Interfacial

Supporting Information. 4-Pyridylnitrene and 2-pyrazinylcarbene

Supporting Information

Ali Rostami, Alexis Colin, Xiao Yu Li, Michael G. Chudzinski, Alan J. Lough and Mark S. Taylor*

China; University of Science and Technology, Nanjing , P R China.

Supporting information on. Singlet Diradical Character from Experiment

STRUCTURAL DETERMINATION OF A SYNTHETIC POLYMER BY GAUSSIAN COMPUTATIONAL MODELING SOFTWARE

Supporting Information

Supporting Information For. metal-free methods for preparation of 2-acylbenzothiazoles and. dialkyl benzothiazole-2-yl phosphonates

Calculating Accurate Proton Chemical Shifts of Organic Molecules with Density Functional Methods and Modest Basis Sets

Supporting Information

Supporting Information

SUPPLEMENTARY INFORMATION

Supplementary Material

Supporting Information. {RuNO} 6 vs. Co-Ligand Oxidation: Two Non-Innocent Groups in One Ruthenium Nitrosyl Complex

Superacid promoted reactions of N-acyliminium salts and evidence for the involvement of superelectrophiles

Ferromagnetic Coupling of [Ni(dmit) 2 ] - Anions in. (m-fluoroanilinium)(dicyclohexano[18]crown-6)[ni(dmit) 2 ]

Electronic Supplementary Information for:

Concerted halogen and hydrogen bonding in RuI 2 (H 2 dcbpy)(co) 2 ] I 2 (CH 3 OH) I 2 [RuI 2 (H 2 dcbpy)(co) 2 ]

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Supporting Information. O-Acetyl Side-chains in Saccharides: NMR J-Couplings and Statistical Models for Acetate Ester Conformational Analysis

Molecular Engineering towards Safer Lithium-Ion Batteries: A. Highly Stable and Compatible Redox Shuttle for Overcharge.

Computational Material Science Part II

Supporting Information

Supporting Information

Ligand-to-Metal Ratio Controlled Assembly of Nanoporous Metal-Organic Frameworks

Experimental Evidence for Non-Canonical Thymine Cation Radicals in the Gas Phase

SUPPORTING INFORMATION. Ammonia-Borane Dehydrogenation Promoted by a Pincer-Square- Planar Rhodium(I)-Monohydride: A Stepwise Hydrogen Transfer

CICECO, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal

Supporting Information

(1) 2. Thermochemical calculations [2,3]

Supplementary Information

Supporting Information. A rare three-coordinated zinc cluster-organic framework

The Activation of Carboxylic Acids via Self Assembly Asymmetric Organocatalysis: A Combined Experimental and Computational Investigation

SUPPLEMENTARY INFORMATION

1,5,2,4,6,8-dithiatetrazocine. Synthesis, computation, crystallography and voltammetry of the parent heterocycle. Supplemental Information

The Chemist Journal of the American Institute of Chemists

Supporting Information For

Molecular Modeling of Photoluminescent Copper(I) Cyanide Materials. Jasprina L Ming Advisor: Craig A Bayse

Preprint. This is the submitted version of a paper published in Journal of Computational Chemistry.

A phenylbenzoxazole-amide-azacrown linkage as a selective fluorescent receptor for ratiometric sening of Pb(II) in aqueous media

ЖУРНАЛ СТРУКТУРНОЙ ХИМИИ Том 51, 2 Март апрель С

Supporting Information

Supporting Information

Supporting information

Supporting Information

Two-Dimensional Carbon Compounds Derived from Graphyne with Chemical Properties Superior to Those of Graphene

Reversible intercyclobutadiene haptotropism in cyclopentadienylcobalt linear [4]phenylene

Which NICS Aromaticity Index for Planar π Rings is Best?

Concerted Attack of Frustrated Lewis Acid Base Pairs on Olefinic Double Bonds: A Theoretical Study

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Non-Radiative Decay Paths in Rhodamines: New. Theoretical Insights

» ß π«õß 1 H-NMR 13 C-NMR ª ªï Õß

Electronic Supplementary Information. Electron Mobility for All-Polymer Solar Cells

DFT STUDY OF THE ADDITION CYCLIZATION ISOMERIZATION REACTION BETWEEN PROPARGYL CYANAMIDES AND THIOL OR ALCOHOL: THE ROLE OF CATALYST

Diphosphene Photobehaviour

Supplementary Information:

Pyrogallol[4]arenes as frustrated organic solids

Ab Initio and Density Functional Study

Analysis of Permanent Electric Dipole Moments of Aliphatic Amines.

Dynamics of H-atom loss in adenine: Supplementary information

Highly sensitive cyanide anion detection with a coumarin-spiropyran conjugate as a fluorescent receptor. Electronic Supplementary Information (ESI )

Cationic Polycyclization of Ynamides: Building up Molecular Complexity

Supporting Information

Supporting Information

Theoretical studies of the mechanism of catalytic hydrogen production by a cobaloxime

Supporting Information

1,4-Benzene-Bridged Covalent Hybrid of Triarylamine and Cyclometalated Ruthenium: A New Type of Organic-Inorganic Mixed-Valent System

A mechanistic study supports a two-step mechanism for peptide bond formation on the ribosome

BINOPtimal: A Web Tool for Optimal Chiral Phosphoric Acid Catalyst Selection

Quantum Chemical DFT study of the fulvene halides molecules (Fluoro, Chloro, Bromo, Iodo, and stato fulvenes)

Transcription:

Supporting Information for Silylation of Iron-Bound Carbon Monoxide Affords a Terminal Fe Carbyne Yunho Lee and Jonas C. Peters* Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 (USA), and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (USA) Contents Figure S1. 1 H-NMR spectrum of (SiP ipr 3)Fe(CO) (1). Figure S2. Cyclic voltammogram of (SiP ipr 3)Fe(CO) (1). Figure S3. 1 H-NMR spectrum of (SiP ipr 3)Fe{CONa(THF) 3 } (2). Figure S4. 31 P-NMR spectrum of (SiP ipr 3)Fe{CONa(THF) 3 } (2). Figure S5. 13 C-NMR spectrum of (SiP ipr 3)Fe{ 13 CONa(THF) 3 } (2-13 CO). Figure S6. 1 H-NMR spectrum of (SiP ipr 3)Fe(COSiMe 3 ) (4). Figure S7. 31 P-NMR spectrum of (SiP ipr 3)Fe( 12 COSiMe 3 ) (4-12 CO). Figure S8. 31 P-NMR spectrum of (SiP ipr 3)Fe( 13 COSiMe 3 ) (4-13 CO). Figure S9. 13 C-NMR spectrum of (SiP ipr 3)Fe( 13 COSiMe 3 ) (4-13 CO). Figure S10. 29 Si-NMR spectra of (SiP ipr 3)Fe(COSiMe 3 ) (4) and 4-13 CO. Figure S11. 1 H-NMR spectrum of (SiP ipr 3)Fe(COSi i Pr 3 ). Figure S12. 31 P-NMR spectrum of (SiP ipr 3)Fe(COSi i Pr 3 ). Figure S13. 29 Si-NMR spectra of (SiP ipr 3)Fe(COSi i Pr 3 ) and i Pr 3 SiOTf. Figure S14. X-ray structure for (SiP ipr 3)Fe(CO) (1). Figure S15. X-ray structure for (SiP ipr 3)Fe{CONa(THF) 3 } (2). Figure S16. X-ray structure for (SiP ipr 3)Fe(COSiMe 3 ) (4). Figure S17. X-ray structure for {(SiP ipr 3)Fe(CO)}{B(3,5-(CF 3 ) 2 -C 6 H 3 ) 4 } (5). Table S1. Selected bond distances and angles for 1, 2, 4 and 5. Figure S18. X-band EPR spectrum of 1-12 CO, 1-13 CO and simulation. Figure S19. Electronic structures for 2 and 4 from the single point DFT calculations. Table S2. Selected bond indexes and bond orbital occupancies for 2 and 4 from NBO analysis. Table S3. Mulliken atomic spin densities in the virtual cationic species of 2 and 4. Table S4. Mulliken atomic spin densities of the multi-cationic virtual species of 4 from {4} + to {4} 9+. Figure S20. X-ray structure for {(SiP ipr 3)Fe(Cl)}{B(3,5-(CF 3 ) 2 -C 6 H 3 ) 4 }. Figure S21. Zero field Mössbauer spectra of (SiP ipr 3)Fe(Cl) and {(SiP ipr 3)Fe(C1)} +. Figure S22. Mössbauer spectra of (SiP ipr 3)Fe(CO) (1) with 45 mt. S1

Figure S1. 1 H-NMR spectrum (C 6 D 6, ppm) of (SiP ipr 3)Fe(CO) (1) measured at room temperature. Figure S2. Cyclic voltammogram of (SiP ipr 3)Fe(CO) (1) with scan rates: 100, 300, and 500 mv/s. Fe II/I couple at 0.68 V and Fe I/0 couple at 1.93 V vs. Fc/Fc + were observed in THF with 0.3 M tetra-n-butylammonium hexafluorophosphate as an electrolyte. S2

Figure S3. 1 H-NMR spectrum (THF-d 8, ppm) of (SiP ipr 3)Fe{CONa(THF) 3 } (2) measured at room temperature. Figure S4. 31 P-NMR spectrum (THF-d 8, ppm) of (SiP ipr 3)Fe{CONa(THF) 3 } (2) measured at 70 C. Figure S5. 13 C-NMR spectrum (THF-d 8, ppm) of (SiP ipr 3)Fe{ 13 CONa(THF) 3 } (2-13 CO) measured at 70 C. S3

Figure S6. 1 H-NMR spectrum (C 6 D 6, ppm) of (SiP ipr 3)Fe(COSiMe 3 ) (4) measured at room temperature. Figure S7. 31 P-NMR spectrum (C 6 D 6, ppm) of (SiP ipr 3)Fe( 12 COSiMe 3 ) (4-12 CO) measured at room temperature. Figure S8. 31 P-NMR spectrum (C 6 D 6, ppm) of (SiP ipr 3)Fe( 13 COSiMe 3 ) (4-13 CO) measured at room temperature. S4

Figure S9. 13 C-NMR spectrum (C 6 D 6, ppm) of (SiP ipr 3)Fe( 13 COSiMe 3 ) (4-13 CO) measured at room temperature. Figure S10. 29 Si-NMR spectra (C 6 D 6, ppm) of (SiP ipr 3)Fe(COSiMe 3 ) (4, top) and (SiP ipr 3)Fe( 13 COSiMe 3 ) (4-13 CO, bottom) measured at room temperature. S5

Figure S11. 1 H-NMR spectrum (C 6 D 6, ppm) of (SiP ipr 3)Fe(COSi i Pr 3 ) measured at room temperature. Figure S12. 31 P-NMR spectrum (C 6 D 6, ppm) of (SiP ipr 3)Fe(COSi i Pr 3 ) measured at room temperature. Figure S13. 29 Si-NMR spectra (C 6 D 6, ppm) of (SiP ipr 3)Fe(COSi i Pr 3 ) (top) and i Pr 3 SiOTf (bottom) measured at room temperature. S6

Figure S14. X-ray structure for (SiP ipr 3)Fe(CO) (1). Hydrogen atoms, and one benzene co-solvent molecule are omitted for clarity. S7

Figure S15. X-ray structure for (SiP ipr 3)Fe{CONa(THF) 3 } (2). Hydrogen atoms are omitted for clarity. S8

Figure S16. X-ray structure for (SiP ipr 3)Fe(COSiMe 3 ) (4). Hydrogen atoms are omitted for clarity. S9

Figure S17. X-ray structure for {(SiP ipr 3)Fe(CO)}{B(3,5-(CF 3 ) 2 -C 6 H 3 ) 4 } (5). Hydrogen atoms are omitted for clarity. S10

Table S1. Selected bond distances and angles for 1, 2, 4 and 5 (Å and ). FeCO + 5 FeCO 1 FeCO 2 FeCOSiMe 3 4 d CO 1.102(4) 1.169(2) 1.188(3) 1.278(3) d FeC 1.842(3) 1.769(2) 1.732(3) 1.671(2) d FeSi 2.3245(7) 2.2942(4) 2.2586(8) 2.2973(6) d FeP 2.3815(8) 2.3894(7) 2.4004(8) 2.2620(4) 2.2752(4) 2.2909(4) 2.1864(4) 2.2182(6) 2.2246(6) 2.2288(6) COX 180.000(1) 155.0(2) FeCO 178.1(3) 179.7(2) 180.000(1) 173.8(2) SiFeC 178.69(9) 178.04(5) 180.000(1) 177.90(7) PFeP 117.26(3) 119.08(3) 116.94(3) 117.63(2) 114.88(2) 120.91(2) 118.168(6) 118.168(6) 118.169(6) 119.26(2) 115.91(2) 116.76(2) τ 0.99 0.95 1 0.98 S11

Figure S18. X-band EPR spectrum of 1-12 CO (blue), 1-13 CO (red) and simulation (black) in 2-MeTHF at 77 K. S12

Figure S19. Electronic structures for 2 and 4 from the single point DFT calculations. * Lobal representations correspond to the orbitals indicated by the number with 0.07 isocontours. S13

Table S2. Selected bond indices and bond orbital occupancies for 2 and 4 from NBO analysis. Wiberg Bond Index Fe{CONa(THF) 3 } (2) FeCOTMS (4) Fe-C 1.4845 1.8569 C-O 1.6177 0.6766* O-Na or Si 0.0384 0.5236 Fe-Si 0.7115 0.7808 Bond Orbital Occupancy Fe-C 1.85804 (34.37 % Fe, 65.63 % C) 1.88259 (35.86 % Fe, 64.14 % C) 1.73379 (67.84 % Fe, 32.16 % C) 1.73122 (69.19 % Fe, 30.81 % C) C-O 1.99089 (27.53 % C, 72.47 % O) 1.98781 (22.88 % C, 77.12 % O) Fe-Si 1.61800 (55.48 % Fe, 44.52 % Si) 1.64338 (59.08 % Fe, 40.92 % Si) Fe-P 1.80671 (30.59 % Fe, 69.41 % P) 1.80666 (30.59 % Fe, 69.41 % P) 1.80667 (30.59 % Fe, 69.41 % P) Fe (LP) 1.84666 1.84652 1.67127 1.67118 1.84533 (35.09 % Fe, 64.91 % P) 1.84533 (35.15 % Fe, 64.85 % P) 1.84533 (35.35 % Fe, 64.65 % P) 1.88179 1.88382 * Wiberg Bond Indices of free CO and N 2 reveal 2.1834 and 3.0493, respectively. The bond indices for C C and C-O bonds in propynyl tosylate 1 are 2.6761 and 1.0649, respectively. Geometry optimization and natural bond orbital (NBO) analysis for propynyl tosylate were run on the Gaussian03 suite of programs 2 with the B3LYP level of theory with the 6-311G** basis set for all atoms. 1 Stang, P. J.; Crittell, C. M.; Arif, A. M.; Karni, M.; Apeloig, Y. J. Am. Chem. Soc. 1991, 113, 7461-7470. 2 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi,M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin,A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. S14

D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.;M. A. Al-Laham, Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision C. 02;Gaussian, Inc.: Wallingford, CT, 2004. S15

Table S3. Mulliken atomic spin densities in the virtual cationic species of 2 and 4. Cationic Fe{CONa(THF) 3 } (2)* Cationic FeCOTMS (4)* Fe 47.09 % 46.58 % C 11.69 % 16.75 % O 2.03 % 1.31 % Si TMS -1.51 % P 11.62 %, 3.84 %, -2.72 % 10.31 %, 3.51 %, -5.59 % Si 18.86 % 13.75 % * To attempt to crudely assign the relative contribution of atomic orbitals to the HOMO we calculated the Mulliken atomic spin density of a hypothetical {4} +. Mulliken atomic spin densities of corresponding virtual cationic species of 2 and 4 were derived from the original single point calculations of each singlet species by assigning 2 and 4 as doublet species without further optimizations. Table S4. Mulliken atomic spin densities of the multi-cationic virtual species of 4 from {4} + to {4} 9+. {4} + {4} 3+ {4} 5+ {4} 7+ {4} 9+ # a 1 3 5 7 9 Fe 0.465835 0.481468 0.380404 0.621371 0.618963 Si 0.137474 0.151904 0.282746 0.025216 0.022492 P 0.103100-0.040430 0.008950-0.001927 0.012401 P 0.035122 0.021843 0.019856-0.009516 0.007213 P -0.055930 0.151920 0.032625-0.006322 0.007288 Si TMS -0.015148-0.003280-0.054115-0.013744-0.010513 C 0.167536 0.127118 0.087370 0.194103 0.168105 O 0.013079 0.014192-0.001821 0.062248 0.068138 a: number of electrons taken out from the original calculation of 4. S16

Figure S20. X-ray structure for {(SiP ipr 3)Fe(Cl)}{B(3,5-(CF 3 ) 2 -C 6 H 3 ) 4 }. Hydrogen atoms, and one pentane co-solvent molecule are omitted for clarity. Figure S21. Zero field Mössbauer spectra of (SiP ipr 3)Fe(C1) 3 (a) and {(SiP ipr 3)Fe(C1)} {B(3,5-(CF 3 ) 2 -C 6 H 3 ) 4 } (b) at 77 K. 3 Lee, Y., N. P. Mankad, J. C. Peters, Nature Chem. 2010, 2, 558-565. S17

Figure S22. Mössbauer spectra of (SiP ipr 3)Fe(CO) (1) in zero field (a), parallel (b) and perpendicular (c) magnetic field, 45 mt at 77 K. S18