Research Article Multiple Positive Solutions for m-point Boundary Value Problem on Time Scales

Similar documents
Research Article On the Existence of Solutions for Dynamic Boundary Value Problems under Barrier Strips Condition

Research Article The Existence of Countably Many Positive Solutions for Nonlinear nth-order Three-Point Boundary Value Problems

EXISTENCE OF POSITIVE SOLUTIONS FOR p-laplacian THREE-POINT BOUNDARY-VALUE PROBLEMS ON TIME SCALES

Research Article Multiple Positive Symmetric Solutions to p-laplacian Dynamic Equations on Time Scales

Multiple positive solutions for a nonlinear three-point integral boundary-value problem

arxiv: v1 [math.ca] 31 Oct 2013

MULTIPLICITY OF CONCAVE AND MONOTONE POSITIVE SOLUTIONS FOR NONLINEAR FOURTH-ORDER ORDINARY DIFFERENTIAL EQUATIONS

Research Article Solvability of a Class of Integral Inclusions

Research Article New Fixed Point Theorems of Mixed Monotone Operators and Applications to Singular Boundary Value Problems on Time Scales

Multiplicity Results of Positive Solutions for Nonlinear Three-Point Boundary Value Problems on Time Scales

TRIPLE POSITIVE SOLUTIONS FOR A CLASS OF TWO-POINT BOUNDARY-VALUE PROBLEMS

MULTIPLE POSITIVE SOLUTIONS FOR FOURTH-ORDER THREE-POINT p-laplacian BOUNDARY-VALUE PROBLEMS

Positive solutions of BVPs for some second-order four-point difference systems

Research Article Nonlinear Systems of Second-Order ODEs

POSITIVE SOLUTIONS FOR A SECOND-ORDER DIFFERENCE EQUATION WITH SUMMATION BOUNDARY CONDITIONS

Research Article Existence and Uniqueness Results for Perturbed Neumann Boundary Value Problems

Research Article Existence of Periodic Positive Solutions for Abstract Difference Equations

Research Article Frequent Oscillatory Behavior of Delay Partial Difference Equations with Positive and Negative Coefficients

Positive Solution of a Nonlinear Four-Point Boundary-Value Problem

Research Article Existence and Uniqueness of Smooth Positive Solutions to a Class of Singular m-point Boundary Value Problems

Research Article Existence and Localization Results for p x -Laplacian via Topological Methods

Even Number of Positive Solutions for 3n th Order Three-Point Boundary Value Problems on Time Scales K. R. Prasad 1 and N.

Research Article Quasilinearization Technique for Φ-Laplacian Type Equations

Existence of a Positive Solution for a Right Focal Discrete Boundary Value Problem

Research Article Triple Positive Solutions of a Nonlocal Boundary Value Problem for Singular Differential Equations with p-laplacian

Research Article A New Fractional Integral Inequality with Singularity and Its Application

Multiplesolutionsofap-Laplacian model involving a fractional derivative

Research Article The Solution by Iteration of a Composed K-Positive Definite Operator Equation in a Banach Space

POSITIVE SOLUTIONS TO SINGULAR HIGHER ORDER BOUNDARY VALUE PROBLEMS ON PURELY DISCRETE TIME SCALES

Positive Solutions for p-laplacian Functional Dynamic Equations on Time Scales

Research Article Existence and Duality of Generalized ε-vector Equilibrium Problems

MULTIPLE POSITIVE SOLUTIONS OF BOUNDARY VALUE PROBLEMS FOR P-LAPLACIAN IMPULSIVE DYNAMIC EQUATIONS ON TIME SCALES

Research Article A Fixed Point Theorem for Mappings Satisfying a Contractive Condition of Rational Type on a Partially Ordered Metric Space

FUNCTIONAL COMPRESSION-EXPANSION FIXED POINT THEOREM

Positive solutions of three-point boundary value problems for systems of nonlinear second order ordinary differential equations

Research Article Variational-Like Inclusions and Resolvent Equations Involving Infinite Family of Set-Valued Mappings

Three symmetric positive solutions of fourth-order nonlocal boundary value problems

Singularities and Laplacians in Boundary Value Problems for Nonlinear Ordinary Differential Equations

Variational iteration method for q-difference equations of second order

NONLINEAR THREE POINT BOUNDARY VALUE PROBLEM

Research Article Singular Cauchy Initial Value Problem for Certain Classes of Integro-Differential Equations

Existence and multiplicity of positive solutions of a one-dimensional mean curvature equation in Minkowski space

Research Article Generalized Mann Iterations for Approximating Fixed Points of a Family of Hemicontractions

On Positive Solutions of Boundary Value Problems on the Half-Line

Research Article Advanced Discrete Halanay-Type Inequalities: Stability of Difference Equations

INTERNATIONAL PUBLICATIONS (USA)

Research Article Existence and Uniqueness of Homoclinic Solution for a Class of Nonlinear Second-Order Differential Equations

Existence Of Solution For Third-Order m-point Boundary Value Problem

Research Article Fixed Point Theorems in Cone Banach Spaces

Boundary Value Problems For A Differential Equation On A Measure Chain

Research Article Strong Convergence of Parallel Iterative Algorithm with Mean Errors for Two Finite Families of Ćirić Quasi-Contractive Operators

EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS TO HIGHER-ORDER NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL BOUNDARY CONDITIONS

Research Article Strong Convergence of a Projected Gradient Method

Existence and iteration of monotone positive solutions for third-order nonlocal BVPs involving integral conditions

Existence of Solutions for Nonlocal Boundary Value Problems of Nonlinear Fractional Differential Equations

POSITIVE SOLUTIONS OF A NONLINEAR THREE-POINT BOUNDARY-VALUE PROBLEM. Ruyun Ma

MONOTONE POSITIVE SOLUTION OF NONLINEAR THIRD-ORDER TWO-POINT BOUNDARY VALUE PROBLEM

Research Article Normal and Osculating Planes of Δ-Regular Curves

Research Article Common Fixed Points of Weakly Contractive and Strongly Expansive Mappings in Topological Spaces

On the existence of solution to a boundary value problem of fractional differential equation on the infinite interval

A NEW COMPOSITE IMPLICIT ITERATIVE PROCESS FOR A FINITE FAMILY OF NONEXPANSIVE MAPPINGS IN BANACH SPACES

Abdulmalik Al Twaty and Paul W. Eloe

Research Article The Solution Set Characterization and Error Bound for the Extended Mixed Linear Complementarity Problem

Oscillation criteria for second-order half-linear dynamic equations on time scales

Research Article Oscillation Criteria of Certain Third-Order Differential Equation with Piecewise Constant Argument

Research Article New Oscillation Criteria for Second-Order Neutral Delay Differential Equations with Positive and Negative Coefficients

Layered Compression-Expansion Fixed Point Theorem

Research Article Finding Global Minima with a Filled Function Approach for Non-Smooth Global Optimization

Research Article On the Blow-Up Set for Non-Newtonian Equation with a Nonlinear Boundary Condition

Research Article Positive Solutions for Neumann Boundary Value Problems of Second-Order Impulsive Differential Equations in Banach Spaces

Research Article Iterative Approximation of a Common Zero of a Countably Infinite Family of m-accretive Operators in Banach Spaces

Nontrivial Solutions for Singular Nonlinear Three-Point Boundary Value Problems 1

Research Article Nonlinear Boundary Value Problem of First-Order Impulsive Functional Differential Equations

Research Article A Continuation Method for Weakly Kannan Maps

Research Article Some Krasnonsel skiĭ-mann Algorithms and the Multiple-Set Split Feasibility Problem

Research Article Uniqueness of Positive Solutions for a Class of Fourth-Order Boundary Value Problems

JUNXIA MENG. 2. Preliminaries. 1/k. x = max x(t), t [0,T ] x (t), x k = x(t) dt) k

Triple positive solutions for a second order m-point boundary value problem with a delayed argument

Research Article Solvability for a Coupled System of Fractional Integrodifferential Equations with m-point Boundary Conditions on the Half-Line

Research Article Equivalent Extensions to Caristi-Kirk s Fixed Point Theorem, Ekeland s Variational Principle, and Takahashi s Minimization Theorem

Solving Third Order Three-Point Boundary Value Problem on Time Scales by Solution Matching Using Differential Inequalities

Nontrivial Solutions for Boundary Value Problems of Nonlinear Differential Equation

Research Article Constrained Solutions of a System of Matrix Equations

COMPLETENESS THEOREM FOR THE DISSIPATIVE STURM-LIOUVILLE OPERATOR ON BOUNDED TIME SCALES. Hüseyin Tuna

Periodic Solutions in Shifts δ ± for a Dynamic Equation on Time Scales

POSITIVE SOLUTIONS FOR NONLOCAL SEMIPOSITONE FIRST ORDER BOUNDARY VALUE PROBLEMS

Multiple Positive Solutions For Impulsive Singular Boundary Value Problems With Integral Boundary Conditions

Research Article On the Stability of Cubic Mappings and Quadratic Mappings in Random Normed Spaces

Research Article Some Fixed-Point Theorems for Multivalued Monotone Mappings in Ordered Uniform Space

Research Article Global Dynamics of a Competitive System of Rational Difference Equations in the Plane

Research Article A New Roper-Suffridge Extension Operator on a Reinhardt Domain

Existence, Uniqueness and Stability of Hilfer Type Neutral Pantograph Differential Equations with Nonlocal Conditions

Research Article On the Stability Property of the Infection-Free Equilibrium of a Viral Infection Model

Xiyou Cheng Zhitao Zhang. 1. Introduction

Research Article Nontrivial Solution for a Nonlocal Elliptic Transmission Problem in Variable Exponent Sobolev Spaces

NONLINEAR EIGENVALUE PROBLEMS FOR HIGHER ORDER LIDSTONE BOUNDARY VALUE PROBLEMS

Sign-changing solutions to discrete fourth-order Neumann boundary value problems

EXISTENCE OF POSITIVE SOLUTIONS OF A NONLINEAR SECOND-ORDER BOUNDARY-VALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS

BOUNDARY VALUE PROBLEMS OF A HIGHER ORDER NONLINEAR DIFFERENCE EQUATION

Transcription:

Hindawi Publishing Corporation Boundary Value Problems Volume 11, Article ID 59119, 11 pages doi:1.1155/11/59119 Research Article Multiple Positive olutions for m-point Boundary Value Problem on Time cales Jie Liu 1, and Hong-Rui un 1 Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu, 735, China chool of Mathematics and tatistics, Lanzhou University, Lanzhou, Gansu, 73, China Correspondence should be addressed to Hong-Rui un, hrsun@lzu.edu.cn Received 9 May 1; Accepted 6 August 1 Academic Editor: Feliz Manuel Minhós Copyright q 11 J. Liu and H.-R. un. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The purpose of this article is to establish the existence of multiple positive solutions of the dynamic equation on time scales φ u Δ t h t f t, u t,u Δ t, t,t T, subject to the multipoint boundary condition u Δ, u T m a iu ξ i,whereφ : R R is an increasing homeomorphism and satisfies the relation φ xy φ x φ y for x, y R, which generalizes the usually p-laplacian operator. An example applying the result is also presented. The main tool of this paper is a generalization of Leggett-Williams fixed point theorem, and the interesting points are that the nonlinearity f contains the first-order derivative explicitly and the operator φ is not necessarily odd. 1. Introduction The study of dynamic equations on time scales goes back to its founder Hilger 1, andisa new area of still fairly theoretical exploration in mathematics. On one hand, the time scales approach not only unifies calculus and difference equations, but also solves other problems that have a mix of stop-start and continuous behavior. On the other hand, the time scales calculus has tremendous potential for application in biological, phytoremediation of metals, wound healing, stock market and epidemic models 6. Let T be a time scale an arbitrary nonempty closed subset of the real numbers R. For each interval I of R, we define I T I T. For more details on time scales, one can refer to 1 3, 5. In this paper we are concerned with the existence of at least triple positive solutions to the following m-point boundary value problems on time scales φ u Δ t h t f t, u t,u Δ t, t,t T, 1.1

Boundary Value Problems u Δ, m u T a i u ξ i, 1. where φ : R R is an increasing homeomorphism and φ xy φ x φ y for x, y R. Multipoint boundary value problem BVP arise in a variety of different areas of applied mathematics and physics, such as the vibrations of a guy wire of a uniform cross section and composed of N parts of different densities can be set up as a multipoint boundary value problem 7. mall size bridges are often designed with two ported points, which leads to a standard two-point boundary value condition. And large size bridges are sometimes contrived with multipoint ports, which corresponds to a multipoint boundary value condition 8. Especially, if we let u t denotes the displacement of the bridge from the unloaded position, and we emphasize the position of the bridge at porting points near t, we can obtain the multipoint boundary condition 1.. The study of multipoint BVPs for linear second-order ordinary differential equations was initiated by Ilin and Moiseev 9, since then many authors studied more general nonlinear multipoint boundary value problems. We refer readers to 8, 1 14 and the references therein. Recently, when φ is p-laplacian operator, that is φ u u p u p > 1, andthe nonlinear term does not depend on the first-order derivative, the existence problems of positive solutions of boundary value problems have attracted much attention, see 1, 1, 15 in the continuous case, see 15, 3 5 in the discrete case and 11, 13, 14, 6, 7 in the general time scale setting. From the process of proving main results in the above references, one can notice that the oddness of the p-laplacian operator is key to the proof. However in this paper the operator φ is not necessary odd, so it improves and generalizes the p-laplacian operator. One may note this from Example 3.3 in ection 3. In addition, Bai and Ge 16 generalized the Leggett-Williams fixed point theorems by using fixed point index theory. An application of the theorem is given to prove the existence of three positive solutions to the following second-order BVP: u t f t, u t,u t, t, 1, 1.3 with Dirichlet boundary condition. They also extended the results to four-point BVP in 1. When φ u u p u and the nonlinearity f is not involved with the first-order derivative u Δ t, in 7, un and Li discussed the existence and multiplicity of positive solutions for problems 1.1 and 1.. The main tools used are fixed point theorems in cones. Thanks to the above-mentioned research articles 16, 7, in this paper we consider the existence of multiple positive solutions for the more general dynamic equation on time scales 1.1 with m-point boundary condition 1.. An example is also given to illustrate the main results. The obtained results are even new for the special cases of difference equations and differential equations, as well as in the general time scale setting. The main result extends and generalizes the corresponding results of Liu 18 and Webb 1 T R, φ u u, T 1, m 3, f t, u, v f u, un and Li 7 φ u u p u, f t, u, v f t, u. Wealso emphasize that in this paper the nonlinear term f is involved with the first-order delta derivative u Δ t, the operator φ is not necessary odd and have the more generalized form, and the tool is a generalized Leggett-Williams fixed point theorem 16. The rest of the paper is organized as follows: in ection, we give some preliminaries which are needed later. ection 3 is due to develop existence criteria for at least three and arbitrary odd number positive solution of the boundary value problem 1.1 and 1..Inthe

Boundary Value Problems 3 final part of this section, we present an example to illustrate the application of the obtained result. Throughout this paper, the following hypotheses hold: H1,T T, <ξ 1 <ξ < <ξ m <ρ T, ξ i T, a i fori 1,...,m, and d 1 m a i > ; H η max{t T :<t T/} exists and h C ld,t T,, such that < h s s < and f :,T T,,, is continuous.. Preliminaries In this section, we first present some basic definition, then we define an appropriate Banach space, cone, and integral operator, and finally we list the fixed-point theorem which is needed later. Definition.1. uppose P is a cone in a Banach space B. The map α is said to be a nonnegative continuous concave convex functional on P provided that α : P, is continuous and α λx 1 λ y λα x 1 λ α y x, y P, λ 1..1 Let the Banach space B C 1 ld,t T be endowed with the norm u max{ u, u Δ }, where u max u t, u Δ u Δ t,. and choose the cone P B as P {u B : u t fort,t T,u Δ andu is concave in,t T }..3 Now we define the operator A : P B by Au t φ t 1 m a i φ d ξ i..4 From the definition of A and the assumptions of H1, H, we can easily obtain that for each u P, Au t fort,t T and Au Δ. From the fact that φ Au Δ t h t f t, u t,u Δ t, t,t T,.5

4 Boundary Value Problems we know that Au is concave in,t T.ThusA : P P and Au is the maximum value of Au t. In addition, by direct calculation, we get that each fixed point of the operator A in P is a positive solution of 1.1 and 1.. imilar as the proof of Lemma.3 in 7, itiseasyto see that A : P P is completely continuous. uppose α and β are two nonnegative continuous convex functionals satisfying x L max { α x,β x }, x P,.6 where L is a positive constant, and Ω { x P α x <r, β x <l } /, r >, l>..7 Let r > a >, l> be given, α, β nonnegative continuous convex functionals on P satisfying the relation.6 and.7, andγ a nonnegative continuous concave functional on P. We define the following convex sets: P α, r; β, l { u P : α u <r, β u <l }, P α, r; β, l { u P : α u r, β u l }, P α, r; β, l; γ,a { u P : α u <r, β u <l, γ u >a },.8 P α, r; β, l; γ,a { u P : α u r, β u l, γ u a }. In order to prove our main results, the following fixed point theorem is important in our argument. Lemma. see 16. Let B be Banach space, P B a cone, and r d>b>r 1 >, l l 1 >. Assume that α and β are nonnegative continuous convex functionals satisfying.6 and.7, γ is a nonnegative continuous concave functional on P such that γ u α u for all u P α, r ; β, l, and A : P α, r ; β, l P α, r ; β, l is a completely continuous operator. uppose C1 {u P α, d; β, l ; γ,b : γ u >b} /, γ Au >bfor u P α, d; β, l ; γ,b ; C α Au <r 1, β Au <l 1 for u P α, r 1 ; β, l 1 ; C3 γ Au >bfor u P α, r ; β, l ; γ,b with α Au >d. Then A has at least three fixed points u 1,u,u 3 P α, r ; β, l with u 1 P α, r 1 ; β, l 1, u { P α, r ; β, l ; γ,b } γ u >b, u 3 P α, r ; β, l \ P α, r ; β, l ; γ,b P α, r 1 ; β, l 1..9 3. Main Results In this section, we impose some growth conditions on f which allow us to apply Lemma. to the operator A defined in ection to establish the existence of three positive solutions of

Boundary Value Problems 5 1.1 and 1.. We note that, from the nonnegativity of h and f, the solution of 1.1 and 1. is nonnegative and concave on,t T. First in view of Lemma.4in 7, we know that for u P, there is u t T t /T u for t,t T. o we get u t T η T u 1 u for t [,η ] T. 3.1 Let the nonnegative continuous convex functionals α, β and the nonnegative continuous concave functional γ be defined on the cone P by α u max u t, β u u Δ t, γ u min u t, u P. 3. t,η T Then, it is easy to see that u max{α u,β u } and.6,.7 hold. Now, for convenience we introduce the following notations. Let φ h τ τ, M T η η φ N φ h τ τ Δs 1 m a i φ d ξ i h τ τ, h τ τ Δs. 3.3 Theorem 3.1. Assume f t,, / for t,t T. If there are positive numbers r b >b>r 1 >,l l 1 > with b/m min{r /N, l /}, such that the following conditions are satisfied i f t, u, v min{ φ r /N, φ l / } for t, u, v,t T,r l, ; ii f t, u, v > φ b/m for t, u, v,η T b, b l, ; iii f t, u, v < min{ φ r 1 /N, φ l 1 / } for t, u, v,t T,r 1 l 1,. then the problem 1.1, 1. has at least three positive solutions u 1,u,u 3 satisfying max u 1 t <r 1, b< min t,η T u t max u t r, max u 3 t < b with min t,η T u 3 t <b, u Δ 1 t <l1, u Δ t l, u Δ 3 t l. 3.4 Proof. By the definition of operator A and its properties, it suffices to show that the conditions of Lemma. hold with respect to the operator A. We first show that if the condition i is satisfied, then A : P α, r ; β, l P α, r ; β, l. 3.5

6 Boundary Value Problems In fact, if u P α, r ; β, l, then α u max u t r, β u u Δ t l, 3.6 so assumption i implies { f t, u t,u Δ t min φ r, φ N l }, t,t T. 3.7 On the other hand, for u P, there is Au P; then Au t is concave in,t T,andAu Δ t for t,t T,so α Au max Au t Au φ 1 m a i φ d ξ i r φ h τ τ N r, β Au Au Δ t Au Δ T m Δs 1 a i φ d ξ i φ h τ f τ, u τ,u Δ τ τ l φ h τ τ l. Therefore, 3.5 holds. In the same way, if u P α, r 1 ; β, l 1, then condition iii implies { f t, u t,u Δ t < min φ r 1,φ l } 1 N h τ τ Δs for t,t T. 3.8 3.9 As in the argument above, we can get that A : P α, r 1 ; β, l 1 P α, r 1 ; β, l 1. Thus, condition C of Lemma. holds. Next we show that condition C1 in Lemma. holds. We choose u t b for t,t T. It is easy to see that u P α, b; β, l ; γ,b, γ u b >b, 3.1

Boundary Value Problems 7 and consequently { u P α, b; β, l ; γ,b } : γ u >b /. 3.11 Therefore, for u P α, b; β, l ; γ,b, there are b u t b, u Δ t l for t [,η ] T. 3.1 Hence in view of hypothesis ii, we have f t, u t,u Δ t > φ b M for t [,η ] T. 3.13 o by the definition of the functional γ, weseethat γ Au min,η T Au t Au η φ η 1 m a i φ d ξ i φ η φ η > b M η η φ η h τ τ Δs b M b. M 3.14 Therefore, we get γ Au >bfor u P α, b; β, l ; γ,b, and condition C1 in Lemma. is fulfilled. We finally prove that C3 in Lemma. holds. In fact, for u P α, r ; β, l ; γ,b with α Au > b, we have γ Au minau t Au η T η max Au t 1 α Au >b.,η T T 3.15

8 Boundary Value Problems Thus from Lemma. and the assumption that f t,, / on,t T,theBVP 1.1 and 1. has at least three positive solutions u 1,u,andu 3 in P α, r ; β, l with u 1 P α, r 1 ; β, l 1, u { P α, r ; β, l ; γ,b : γ u >b }, u 3 P α, r ; β, l \ P α, r ; β, l ; γ,b P α, r 1 ; β, l 1. 3.16 The fact that the functionals α and β on P satisfy an additional relation 1/ α u γ u for u P implies that max u 3 t < b. 3.17 The proof is complete. From Theorem 3.1, we see that, when assumptions as i, ii, and iii are imposed appropriately on f, we can establish the existence of an arbitrary odd number of positive solutions of 1.1 and 1.. Theorem 3.. uppose that there exist constants <r 1 <b 1 < b 1 r <b < b r n, <l 1 l l n, n N 3.18 with { b i M min r N, l } for 1 i n 1 3.19 such that the following conditions hold: i f t, u, v < min{ φ r i /N, φ l i / } for t, u, v,t T,r i l i,l i, 1 i n; ii f t, u, v > φ b i /M for t, u, v,η T b i, b i l,l, 1 i n. Then, BVP 1.1 and 1. has at least n 1 positive solutions. Proof. When n 1, it is immediate from condition i that A : P α, r 1 ; β, l 1 P α, r 1 ; β, l 1, which means that A has at least one fixed point u 1 P α, r 1 ; β, l 1 by the chauder fixed point theorem. When n, it is clear that the hypothesis of Theorem 3.1 holds. Then we can obtain at least three positive solutions u 1,u, and u 3. Following this way, we finish the proof by induction. The proof is complete. In the final part of this section, we give an example to illustrateour results.

Boundary Value Problems 9 Example 3.3. Let T, 1 {1 1/ N }, where N denote nonnegative integer numbers set. If we choose T, η 1, m 4, a 1 a 1/3, ξ 1 1/, ξ 3/, and h t 1and consider the following BVP on time scale T: φ u Δ t f t, u t,u Δ t, t, T, u Δ, u 1 3 u 1 1 3 3 u, 3. where 1 1 t 3 u3 f t, u, v 1 1 u, u ; φ u u, u >. v 3, t, 1 T,u, 3, v, ; v 3 t 18, t, 1 T,u 3,, v,, 3.1 obviously the hypotheses H1, H hold and f t,, / on, T. By simple calculations, we have φ 1 s 1, M φ 1 s 1, Ñ T 1 m a i T ξ i φ d h s s 4. 3. Observe that N φ h τ τ m Δs 1 a i φ d ξ i < T 1 m a i T ξ i φ h s s Ñ. d h τ τ Δs 3.3

1 Boundary Value Problems If we choose r 18, b, r 1 1/3, and l 78, l 1 1, then f t, u, v satisfies f t, u, v 45 { min φ r Ñ { < min φ r N, φ, φ l } l }, t, u, v, T, 18 78, 78 ; f t, u, v < f t, u, v > 4 b M { min φ r 1 Ñ 4 { < min φ r 1 Ñ for t, u, v, 1 T, 4 78, 78,, φ, φ l } 1 l 1 } [, t, u, v, T, 1 ], 1. 3 3.4 o all conditions of Theorem 3.1 hold. Thus by Theorem 3.1, the problem 3. has at least three positive solutions u 1,u,u 3 such that max u 1 t < 1 3 ; < min t,η T u t max u t 18; max u 3 t < 4 with min t,η T u 3 t <, u Δ 1 t < 1, u Δ t 78, u Δ 3 t 78. 3.5 Acknowledgments This work was ported by the NNF of China 18165 and NF of Gansu Province of China 83RJZA96. References 1. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus, Results in Mathematics, vol. 18, no. 1-, pp. 18 56, 199. M. Bohner and A. Peterson, Dynamic Equations on Time cales: an Introduction with Applications, Birkhäuser, Boston, Mass, UA, 1. 3 M. Bohner and A. Peterson, Advances in Dynamic Equations on Time cales, Birkhäuser, Boston, Mass, UA, 3. 4 M. A. Jones, B. ong, and D. M. Thomas, Controlling wound healing through debridement, Mathematical and Computer Modelling, vol. 4, no. 9-1, pp. 157 164, 4. 5 V. Lakshmikantham,. ivasundaram, and B. Kaymakcalan, Dynamic systems on measure chains, vol. 37 of Mathematics and Its Applications, Kluwer Academic, Boston, Mass, UA, 1996. 6 V. pedding, Taming nature s numbers, New cientist, vol. 7, no. 19, pp. 8 3, 3. 7 J. Adem and M. Moshinsky, elf-adjointness of a certain type of vectorial boundary value problems, Boletín de la ociedad Matemática Mexicana, vol. 7, pp. 1 17, 195.

Boundary Value Problems 11 8 Y. Zou, Q. Hu, and R. Zhang, On numerical studies of multi-point boundary value problem and its fold bifurcation, Applied Mathematics and Computation, vol. 185, no. 1, pp. 57 537, 7. 9 V. A. Ilin and E. I. Moiseev, Nonlocal boundary value problem of the second kind for a turm- CLiouville operator, Difference Equation, vol. 3, pp. 979 987, 1987. 1 R. P. Agarwal, D. O Regan, and P. J. Y. Wong, Positive olutions of Differential, Difference and Integral Equations, Kluwer Academic, Boston, Mass, UA, 1999. 11 D. R. Anderson, R. Avery, and J. Henderson, Existence of solutions for a one dimensional p-laplacian on time-scales, Journal of Difference Equations and Applications, vol. 1, no. 1, pp. 889 896, 4. 1 Z. Bai, W. Ge, and Y. Wang, Multiplicity results for some second-order four-point boundary-value problems, Nonlinear Analysis, vol. 6, no. 3, pp. 491 5, 5. 13 W. T. Li and H. R. un, Positive solutions for second-order m-point boundary value problems on time scales, Acta Mathematica inica, vol., no. 6, pp. 1797 184, 6. 14 Y.-H. u, W.-T. Li, and H.-R. un, Triple positive pseudo-symmetric solutions of three-point BVPs for p-laplacian dynamic equations on time scales, Nonlinear Analysis, vol. 68, no. 6, pp. 144 145, 8. 15 R. I. Avery, C. J. Chyan, and J. Henderson, Twin solutions of boundary value problems for ordinary differential equations and finite difference equations, Computers & Mathematics with Applications, vol. 4, no. 3-5, pp. 695 74, 1. 16 Z. Bai and W. Ge, Existence of three positive solutions for some second-order boundary value problems, Computers & Mathematics with Applications, vol. 48, no. 5-6, pp. 699 77, 4. 17 C. Bereanu and J. Mawhin, Existence and multiplicity results for some nonlinear problems with singular ϕ -Laplacian, Journal of Differential Equations, vol. 43, no., pp. 536 557, 7. 18 B. Liu, Positive solutions of a nonlinear three-point boundary value problem, Applied Mathematics and Computation, vol. 13, no. 1, pp. 11 8,. 19 H. Lü, D. O Regan, and C. Zhong, Multiple positive solutions for the one-dimensional singular p- Laplacian, Applied Mathematics and Computation, vol. 133, no. -3, pp. 47 4,. J. Wang, The existence of positive solutions for the one-dimensional p-laplacian, Proceedings of the American Mathematical ociety, vol. 15, no. 8, pp. 75 83, 1997. 1 J. R. L. Webb, Positive solutions of some three point boundary value problems via fixed point index theory, Nonlinear Analysis, vol. 47, no. 7, pp. 4319 433, 1. E. Zeidler, Nonlinear Analysis and Its Applications I: Fixed-Point Theorems, pringer, New York, NY, UA, 1993. 3 Z. He, Double positive solutions of three-point boundary value problems for p-laplacian difference equations, Zeitschrift für Analysis und ihre Anwendungen, vol. 4, no., pp. 35 315, 5. 4 Y. Li and L. Lu, Existence of positive solutions of p-laplacian difference equations, Applied Mathematics Letters, vol. 19, no. 1, pp. 119 13, 6. 5 Y. Liu and W. Ge, Twin positive solutions of boundary value problems for finite difference equations with p-laplacian operator, Journal of Mathematical Analysis and Applications, vol. 78, no., pp. 551 561, 3. 6 H.-R. un and W.-T. Li, Existence theory for positive solutions to one-dimensional p-laplacian boundary value problems on time scales, Journal of Differential Equations, vol. 4, no., pp. 17 48, 7. 7 H.-R. un and W.-T. Li, Positive solutions of p-laplacian m-point boundary value problems on time scales, Taiwanese Journal of Mathematics, vol. 1, no. 1, pp. 15 17, 8.