A COMPARISON OF SPECTRAL MIXTURE ANALYSIS METHODS FOR URBAN LANDSCAPE USING LANDSAT ETM+ DATA: LOS ANGELES, CA

Similar documents
A GLOBAL ANALYSIS OF URBAN REFLECTANCE. Christopher SMALL

Improvement of Urban Impervious Surface Estimation in Shanghai Using Landsat7 ETM+ Data

Hyperspectral Data as a Tool for Mineral Exploration

Mapping and Assessing Urban Impervious Areas Using Multiple Endmember Spectral Mixture Analysis: A Case Study in the City of Tampa, Florida

Analysis of Urban Surface Biophysical Descriptors and Land Surface Temperature Variations in Jimeta City, Nigeria

Spatiotemporal Monitoring of Urban Vegetation

Characterizing fractional vegetation cover and land surface temperature based on sub- pixel fractional impervious surfaces from Landsat TM/ETM+

Raton, FL, USA b Department of Geography and Anthropology, Louisiana State

Overview of Remote Sensing in Natural Resources Mapping

URBAN heating and the formation of urban heat islands

Remote sensing Based Assessment of Urban Heat Island Phenomenon in Nagpur Metropolitan Area

QUANTIFYING THE ECOLOGICAL PATTERNS OF URBAN DENSIFICATION THROUGH MULTIPLE ENDMEMBER SPECTRAL MIXTURE ANALYSIS, LANDSCAPE METRICS, AND FUZZY LOGIC

Applications of GIS and Remote Sensing for Analysis of Urban Heat Island

Research Article A Quantitative Assessment of Surface Urban Heat Islands Using Satellite Multitemporal Data over Abeokuta, Nigeria

VISUALIZATION URBAN SPATIAL GROWTH OF DESERT CITIES FROM SATELLITE IMAGERY: A PRELIMINARY STUDY

1. Introduction. Chaithanya, V.V. 1, Binoy, B.V. 2, Vinod, T.R. 2. Publication Date: 8 April DOI: /cloud.ijarsg.

Remote sensing of sealed surfaces and its potential for monitoring and modeling of urban dynamics

DEPENDENCE OF URBAN TEMPERATURE ELEVATION ON LAND COVER TYPES. Ping CHEN, Soo Chin LIEW and Leong Keong KWOH

Remote Sensing of Environment

Multiresolution Analysis of Urban Reflectance

Urban Mapping & Change Detection. Sebastian van der Linden Humboldt-Universität zu Berlin, Germany

Comparison between Land Surface Temperature Retrieval Using Classification Based Emissivity and NDVI Based Emissivity

Monitoring Vegetation Growth of Spectrally Landsat Satellite Imagery ETM+ 7 & TM 5 for Western Region of Iraq by Using Remote Sensing Techniques.

ESM 186 Environmental Remote Sensing and ESM 186 Lab Syllabus Winter 2012

Lênio Soares Galvão Raimundo Almeida Filho Ícaro Vitorello

Vegetation Change Detection of Central part of Nepal using Landsat TM

Landuse and Landcover change analysis in Selaiyur village, Tambaram taluk, Chennai

Comparison of Spectral Analysis Techniques for Impervious Surface Estimation Using Landsat Imagery

ASSESSMENT OF NDVI FOR DIFFERENT LAND COVERS BEFORE AND AFTER ATMOSPHERIC CORRECTIONS

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

MAPPING LAND USE/ LAND COVER OF WEST GODAVARI DISTRICT USING NDVI TECHNIQUES AND GIS Anusha. B 1, Sridhar. P 2

APPENDIX. Normalized Difference Vegetation Index (NDVI) from MODIS data

o 3000 Hannover, Fed. Rep. of Germany

Mineral Mapping with AVIRIS and EO-1 Hyperion **

Progress Report Year 2, NAG5-6003: The Dynamics of a Semi-Arid Region in Response to Climate and Water-Use Policy

Urban Growth Analysis: Calculating Metrics to Quantify Urban Sprawl

This is trial version

IMPROVING REMOTE SENSING-DERIVED LAND USE/LAND COVER CLASSIFICATION WITH THE AID OF SPATIAL INFORMATION

HYPERSPECTRAL IMAGING

MONITORING THE SURFACE HEAT ISLAND (SHI) EFFECTS OF INDUSTRIAL ENTERPRISES

USING GIS CARTOGRAPHIC MODELING TO ANALYSIS SPATIAL DISTRIBUTION OF LANDSLIDE SENSITIVE AREAS IN YANGMINGSHAN NATIONAL PARK, TAIWAN

SPECTROMETRY AND HYPERSPECTRAL REMOTE SENSING OF URBAN ROAD INFRASTRUCTURE. Martin Herold, Margaret E. Gardner, Val Noronha and. Dar A.

Use of impervious surface in urban land-use classification

CURRICULUM VITAE (As of June 03, 2014) Xuefei Hu, Ph.D.

Urban Surface Biophysical Descriptors and Land Surface Temperature Variations

Change Detection Techniques using Optical Remote Sensing: A Survey

Assessment of spatial analysis techniques for estimating impervious cover

Super-resolution of MTSAT Land Surface Temperature by Blending MODIS and AVNIR2

Evaluation of SEBAL Model for Evapotranspiration Mapping in Iraq Using Remote Sensing and GIS

Improving urban classification through fuzzy supervised classification and spectral mixture analysis

A COMPARISON BETWEEN DIFFERENT PIXEL-BASED CLASSIFICATION METHODS OVER URBAN AREA USING VERY HIGH RESOLUTION DATA INTRODUCTION

Comparison of MLC and FCM Techniques with Satellite Imagery in A Part of Narmada River Basin of Madhya Pradesh, India

Drought Estimation Maps by Means of Multidate Landsat Fused Images

KNOWLEDGE-BASED CLASSIFICATION OF LAND COVER FOR THE QUALITY ASSESSEMENT OF GIS DATABASE. Israel -

Abstract: Introduction: 10 th ESRI India User Conference 2009 Geography in Action

Urban Tree Canopy Assessment Purcellville, Virginia

DIGITAL EARTH: QUANTIFYING URBAN LANDSCAPE CHANGES FOR IMPACT ANALYSIS

AN INTEGRATED METHOD FOR FOREST CANOPY COVER MAPPING USING LANDSAT ETM+ IMAGERY INTRODUCTION

Geospatial technology for land cover analysis

DETECTING HUMAN ACTIVITIES IN THE ARCTIC OCEAN BY CONSTRUCTING AND ANALYZING SUPER-RESOLUTION IMAGES FROM MODIS DATA INTRODUCTION

URBAN MAPPING AND CHANGE DETECTION

Evaluation of Land Surface Temperature and Vegetation Relation Based on Landsat TM5 Data

Patterns of Urban Land Use as Assessed by Satellite Imagery: An Application to Cairo, Egypt

Fundamentals of Remote Sensing

Fractional Vegetation Cover Estimation from PROBA/CHRIS Data: Methods, Analysis of Angular Effects and Application to the Land Surface Emissivity

DETECTING AIR POLLUTION FROM SPACE USING IMAGE-BASED METHOD

A Method to Improve the Accuracy of Remote Sensing Data Classification by Exploiting the Multi-Scale Properties in the Scene

Delineating Climate Relevant Structures for the Beijing Metropolitan Area

Urban remote sensing: from local to global and back

GEOG 4110/5100 Advanced Remote Sensing Lecture 12. Classification (Supervised and Unsupervised) Richards: 6.1, ,

SPATIAL CHANGE ANALISYS BASED ON NDVI VALUES USING LANDSAT DATA: CASE STUDY IN TETOVO, MACEDONIA

Learning Objectives. Thermal Remote Sensing. Thermal = Emitted Infrared

Journal of Terrestrial Observation

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 12, NO. 5, MAY Yanhua Xie, Anthea Weng, and Qihao Weng, Member, IEEE

Mapping impervious urban surfaces using regression analysis on

DETECTION OF CHANGES IN FOREST LANDCOVER TYPE AFTER FIRES IN PORTUGAL

Dynamic Expansion and Urbanization of Greater Cairo Metropolis, Egypt Ahmed Abdelhalim M. Hassan

URBAN EXPANSION AND ITS ENVIRONMENTAL IMPACT ANALYSIS USING HIGH RESOLUTION REMOTE SENSING DATA: A CASE STUDY IN THE GREATER MANKATO AREA INTRODUCTION

ANALYSIS OF VEGETATION DISTRIBUTION IN URBAN AREAS: SPATIAL ANALYSIS APPROACH ON A REGIONAL SCALE

Module 2.1 Monitoring activity data for forests using remote sensing

M.C.PALIWAL. Department of Civil Engineering NATIONAL INSTITUTE OF TECHNICAL TEACHERS TRAINING & RESEARCH, BHOPAL (M.P.), INDIA

EXPLORING THE DEMANDS ON HYPERSPECTRAL DATA PRODUCTS FOR URBAN PLANNING: A CASE STUDY IN THE MUNICH REGION

EMPIRICAL ESTIMATION OF VEGETATION PARAMETERS USING MULTISENSOR DATA FUSION

The Wide Dynamic Range Vegetation Index and its Potential Utility for Gap Analysis

A Quantitative and Comparative Analysis of Linear and Nonlinear Spectral Mixture Models Using Radial Basis Function Neural Networks

Remote Sensing Based Inversion of Gap Fraction for Determination of Leaf Area Index. Alemu Gonsamo 1 and Petri Pellikka 1

LAND SURFACE TEMPERATURE CHANGE AFTER CONSTRUCTION OF THE KOZJAK DAM BASED ON REMOTE SENSING DATA

Using MERIS and MODIS for Land Cover Mapping in the Netherlands

Page 1 of 8 of Pontius and Li

USING LANDSAT IN A GIS WORLD

Spatial Geotechnologies and GIS tools for urban planners applied to the analysis of urban heat island. Case Caracas city, Venezuela Contribution 115.

METRIC tm. Mapping Evapotranspiration at high Resolution with Internalized Calibration. Shifa Dinesh

Land cover/land use mapping and cha Mongolian plateau using remote sens. Title. Author(s) Bagan, Hasi; Yamagata, Yoshiki. Citation Japan.

An Automated Object-Oriented Satellite Image Classification Method Integrating the FAO Land Cover Classification System (LCCS).

Hyperspectral image classification using Support Vector Machine

Mapping Coastal Change Using LiDAR and Multispectral Imagery

AGRICULTURE DROUGHT AND FOREST FIRE MONITORING IN CHONGQING CITY WITH MODIS AND METEOROLOGICAL OBSERVATIONS *

COMPARISON OF PIXEL-BASED AND OBJECT-BASED CLASSIFICATION METHODS FOR SEPARATION OF CROP PATTERNS

Urban Mapping. Sebastian van der Linden, Akpona Okujeni, Franz Schug 11/09/2018

Evaluating performances of spectral indices for burned area mapping using object-based image analysis

Transcription:

A COMPARISO OF SPECTRAL MIXTURE AALYSIS METHODS FOR URBA LADSCAPE USIG LADSAT ETM+ DATA: LOS AGELES, CA Xianfeng Chen a and Lin Li b a Slippery Rock University of Pennsylvania, Slippery Rock, PA 657, USA xianfeng.chen@sru.edu b Indiana University-Purdue University, Indianapolis, I 4622, USA ll3@iupui.edu KEY WORDS: linear spectral mixture analysis, multiple endmember spectral mixture analysis, urban landscape, spectral normalization, Landsat ETM+, RMSE. ABSTRACT: Although spectral mixture analysis has been widely used for mapping the abundances of physical components of urban surface with moderate spatial resolution satellite imagery recently, the spectral heterogeneity of urban land surface has still posed a great challenge to accurately estimate fractions of surface materials within a pixel. How to dealing with the highly spectral heterogeneous nature of urban land surface remains a scientific question. In this study, a comparison of different spectral mixture models was carried out to examine the performance of each model in dealing with spectral variability of urban surface. The comparison is focused on spectral normalized models and multiple endmember spectral mixture analysis (MESMA). Two spectral normalization algorithms, mean normalization and hyperspheric direction cosine (HSDC) normalization, were applied to Landsat ETM+ data acquired over Los Angeles, CA. A total of 7 spectral mixture models of two, three, and four endmembers were employed with MESMA. The reference data digitized from Arc2Earth was used to evaluated the mapping results. The results showed that MESMA is a promising tool to map abundances of urban surface components. Relative high mapping accuracies were achieved for vegetations and impervious surfaces. R2 and Root mean square error (RMSE) of vegetation fraction are.79 and 7.%, respectively. The estimation of impervious surfaces obtained similar accuracy, with R2.72 and RMSE.7%. Both mean and HSDC normalized models made a notable improvement in mapping vegetation fraction and slight improvement in mapping impervious surface fractions, comparing with the standard SMA. Both two normalizations can only suppress spectral variation with similar spectral shape. HSDC is slightly better than mean normalization in reducing the effects of illumination and spectral variability of urban land surface.. ITRODUCTIO With the rapid population growth, urbanization has become a common trend all over the world since the 2 th century. Urban land use and land cover (LULC) change has caused major concerns due to relevant environmental issues such as deforestation, air and water pollution, and urban heat islands. Therefore, monitoring the dynamic change of urban LULC has been imperative for understanding and managing urban environment, and remote sensing can provide effective means for such efforts. Moderate spatial resolution multispectral satellite remotely sensed data (e.g. Landsat MSS, TM, and ETM, SPOT HRV and HRVIR), in particular, have been widely used for this purpose due to their worldwide availability. A variety of algorithms have been applied to extract feature and property information of urban land surfaces, including the conventional statistic-based, neural network, rule-based, and object-based methods. However, the presence of spectrally mixed pixels has been a consistent challenge facing pixel-based approaches since mixed pixels tend to be misclassified. For instance, a 3-m pixel in residential areas may contain lawn, roof, and drive way elements at the same time. Spectral mixture analysis (SMA), based on a physical mixture model, has ability to extract sub-pixel information such as the abundances of each endmember presented in the pixel (Adams, 986; Adams et al., 993). For LULC types, the SMA models can be regarded as a linear combination of fractions of all endmembers (Adams et al., 995; Robert, et al., 998). umerous studies have demonstrated that linear spectral mixture analysis (LSMA) is a promising technique for the extraction of fractions of LULC types (Adams et al., 995; Small, 2, 23, 24; Wu and Murray, 23; Wu, 24; Powell et al., 27). Small (2) estimated urban vegetation abundance based on a LSMA with three endmembers, vegetation, high albedo, and low albedo surfaces. Wu and Murray (23) focused on computing urban impervious surface using a conceptual model: vegetation, impervious surface, and soil component (VIS see Ridd, 995). The high spectral variability of urban surface materials impedes the efforts of accurately extracting the abundances of land cover components (Small 25). To suppress spectral variability of impervious surfaces, Wu (24) first normalized pixel reflectance of each band with mean reflectance, and then applied LSMA to a normalized image. An alternative approach to address the high spectral heterogeneity of urban surface is the multiple end member spectral mixture analysis (MESMA see Roberts et al., 998). Compared to traditional LSMA using a fixed number of endmembers for the entire scene, MESMA allows the number and types of endmembers to vary from pixel to pixel. Rashed et al. (23) and Powell et al. (27) demonstrated the potential of using MESMA to extract the abundances of urban surface components. The above studies have gained success to a certain degree in estimating abundances of urban surface materials. However, different approaches vary in dealing with spectral variation of urban surface types. There are two questions remaining unaddressed. First, how well does normalized LSMA reduce the effects of spectral variability and shade? Second, which approach has the best performance of handling spectral variability? In this study, several LSMA algorithms applied to Landsat ETM+ data of Los Angles, CA were examined for extracting the information of abundance of urban surface types: high albedo, low albedo, soil, and vegetation. These algorithms include standard LSMA, normalized LSMA, and MESMA. Two algorithms, normalized with mean reflectance (Wu, 24) 635

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B7. Beijing 28 and hyperspherical direction cosine transformation (HSDC: see Pouch and Campagna, 99) were used for reflectance normalization. 2. STUAY SITE The study site (Figure ) is located in Los Angeles, CA. There are over eight million people in Los Angeles, the second largest city in the United States. Los Angeles is also famous with the most diverse culture in USA. The climate in Los Angeles belongs to a typical Mediterranean climate with hot, dry summer and wet, cool winter. The natural vegetation includes grass, scrub, and chaparral. The study area includes Western Hollywood, South Pasadena, and Downtown Los Angeles. A wide variety of urban land use and land cover types present in the study area. It is an ideal test site for urban landscape analysis. meter. The digital numbers of image pixels were converted to radiance following a routine procedure proposed by Markham et al. (997). A reflectance retrieval algorithm modified from the routine procedure developed by Markham et al. (997) was used to retrieve surface reflectance in which the atmospheric effect was taken into consideration (Chuvieco et al. 22). For atmospheric correction, the atmospheric path radiance was estimated from dark object (deep water) whereas the atmospheric transimissivity was simply regarded as function of the cosine of the zenith angle (Chavez, 996). 3.3 Endmember collection For all LSMA, endmembers were selected following the routine procedures: ) minimum noise fraction (MF) transformation (Green et al., 988) was 3. DATA AD METHODS 3. Data Landsat ETM+ data was acquired over the study site on May, 2, under a cloud free weather condition. A black and white digital orthphoto quadrant (DOQQ) with -meter spatial resolution acquired in 996 was Figure 2. Scatter plots of three MF components upper: regular ETM+ data; middle: mean normalized data; lower: HSDC normalized data Figure. Study site of Los Angeles (Landsat ETM+ false Color composite) used for image rectification. A -foot spatial resolution true color aerial imagery data from Arc2Earth, a new product that allows users to visualize spatial data from Google Earth within ESRI s ArcGIS, was used for extraction of reference data. The true color aerial imagery was acquired in 24. 3.2 Data preprocessing The image rectification, conversion of digital number to radiance, and the conversion of radiance to surface reflectance, were performed to ETM+ data. 96 ground control points from the whole scene were collected for image rectification. A second order of polynomial transformation was applied to ETM+ data resulting the root mean square error around 2 applied to ETM+ reflectance data in order to reduce data dimensionality and suppress the noise in the data; 2) pixel purity index (PPI, see Boardman et al., 995) was calculate; 3) the relative pure pixels whose PPI are greater than threshold defined by users were plotted on n-dimensional feature spaces and the extreme pixels on scatter plot were selected as endmembers. For standard LSMA, four endmembers such as high albedo surface, low albedo surface, vegetation, and soil, were chosen (Figure 2). There were only three endmembers chosen for normalized LSMA impervious surface, vegetation, and soil. The endmember selection of MESMA was based on the results of standard LSMA. Pixels with high residue were checked using Arc2Earth with assumption that inappropriate endmembers may result in high residues. There were a total of nine endmembers collected for MESMA, including white roof, red roof, concrete surface, asphalt surface, fresh asphalt surface, grass, wood, soil, and deep shade/water. 3.4 SMA Models 3.3. Standard LSMA The standard LSMA is expressed as Equation in which the reflectance of each pixel 636

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B7. Beijing 28 can be decomposed into linear composition of endmembers weighed with their fractions and the residue assuming multiple back scatter effects are negligible (Adams, 986; Adams et al., 993). Where R λ = f i= i Ri, λ + eλ () R λ = the reflectance at band λ f i = the fraction of endmember i R iλ = the reflectance of endmember i at λ = the number of endmembers e λ = the residue at λ. 3.3.2 MESMA MESMA is a specific type of LSMA. Unlike standard LSMA, MESMA applies different sets of endmembers to LSMA model instead of a complete set of endmembers (Roberts et al., 998). MESMA models vary from pixel to pixel. In this study, there were total 7 twoendmembers, three-endmembers, and four-endmembers models applied. The best model was determined based on its RMSE. 3.5 Spectral normalization 3.3.2 Mean normalization Mean normalization is proposed by Wu (24) to reduce the effects of spectral variation for LSMA. It is expressed as following equation 2 and 3: Where μ = R i i= Ri Ri = (3) μ (2) m = the mean of reflectance in all bands R i = reflectance at band i = the number of bands R i =normalized reflectance at band i 3.3.2 HSDC normalization HSDC is developed by Pouch and Campagna (996) to suppress illumination effects and albedo variations. It is assumed that the radiance of pixel contains two components: illumination/albedo and spectral. R i = reflectance at band i = the number of bands R i =normalized reflectance at band i The illumination/albedo component is calculated based on equation 4. Equation 5 was used to normalize the reflectance at each band. 3.6 Models assessment The model accuracies were assessed by referring to ground samples. 2 samples were selected randomly from the entire study area. Each sample covers 5 5 meter of surface in order to reduce the effects of geometric error, which is about 2 meter. The reference data of each sample were collected from - foot spatial resolution natural color aerial image using Arc2Earth. Four surface types such as high albedo, vegetation, soil, low albedo surface were digitized using ESRI s ArcGIS. Each category of urban land surface was summarized through ArcGIS geodatabase. The model predicted surfaces of each sample were compared with the reference information through a correlation analysis. y =.3323x +.682.9 R 2 =.562.8.7.6.5.4.3.2...2.3.4.5.6.7.8.9 Figure 3. Impervious surface scatter plot of LSMA modeled fraction.9.8.7.6.5.4.3.2. y =.3352x +.3 R 2 =.6864..2.3.4.5.6.7.8.9 Figure 4. Vegetation scatter plot of LSMA R = R 2 R i i= Ri R i = (5) (4).9.8.7.6.5.4.3.2. y =.686x +.292 R 2 =.7229..2.3.4.5.6.7.8.9 Where R = illumination/albedo component Figure 5. Impervious surface scatter plot of MESMA 637

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B7. Beijing 28.9.8.7.6.5.4.3.2. y =.758x +.68 R 2 =.7923..2.3.4.5.6.7.8.9.9.8.7.6.5.4.3.2. y =.546x +.55 R² =.799..2.3.4.5.6.7.8.9 Figure 6. Vegetation scatter plot of LSMA Figure. vegetation scatter plot of Mean normalized LSMA.9.8.7.6.5.4.3.2. y =.7855x -.337 R 2 =.5679..2.3.4.5.6.7.8.9 Figure 7. Impervious surface scatter plot of Mean normalized LSMA.9.8.7.6.5.4.3.2. y =.688x +.879 R 2 =.7887..2.3.4.5.6.7.8.9 Figure 8. Vegetation scatter plot of Mean normalized LSMA.9.8.7.6.5.4.3.2. y =.7949x -.457 R 2 =.5942..2.3.4.5.6.7.8.9 Figure 9. Impervious surface scatter plot of Mean normalized LSMA 4. RESULTS AD COCLUSIOS The results of assessment showed that MESMA achieved the highest overall accuracy among all methods. It is not surprising that the spectral variations in high and low albedo surfaces can be captured with MESMA models.. Relative high mapping accuracies were achieved for vegetations and impervious surfaces. R 2 and RMSE of vegetation fraction are.79 and 7.%, respectively (Figure 3, 4, 5, 6). The estimation of impervious surfaces obtained similar accuracy, with R 2.72 and RMSE.7%. Both mean and HSDC normalized models made a notable improvement in mapping vegetation fraction and slight improvement in mapping impervious surface fractions, comparing with the standard SMA (Figure 7, 8, 9, ). Both two normalizations can only suppress spectral variation with similar spectral shape. HSDC is slightly better than mean normalization in reducing the effects of illumination and spectral variability of urban land surface. REFERECES Adams, J. B.,986. Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander site. Journal of Geophysical Research, 9, 889-822. Adams, J. B., Sabol, D. E., Kapos, V., Filho, R. A., Robert, D. A., Smith, M. O., and Gillespie, A. R.,995. Classification of multispectral images based on fractions of endmembers: Application to land-cover change in the Brazilian Amazon. Remote Sensing of Environment, 52, 37-54. Adams, J. B., Smith, M. O., and Gillespie, A. R.,993. Imaging spectroscopy: Interpretation based on spectral mixture analysis. In remote Geochemical Analysis: Elemental and Mineralogical composition 7, (C. M. Pieters and P. Englerty, Eds.), Cambridge University Press, ew York, pp. 45-66. Boardman, J. W., Kruse, F. A., and Green, R. O.,995, Mapping target signatures via partial unmixing of AVIRIS data: in Summaries, Fifth JPL Airborne Earth Science Workshop, JPL Publication 95-, v., p. 23-26. Chavez, P. S.,996. Image-based atmospheric correction: Revisited and improved. Photogrammetric Engineering and Remote Sensing, 62, 25-36. Chuvieco, E., Riaňo, D., Aguado, I., and Cocero, D.,22. Estimation of fuel moisture content from multitemporal analysis of Landsat Thematic Mapper reflectance data: applications in 638

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B7. Beijing 28 fire danger assessment. International Journal of Remote Sensing, 23 (), 245-262. Green, A. A., Berman, M., Switzer, P., and Craig, M. D.,988. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing, 26, 65-74. Markham, B. L., Boncyk, W. C., Helder, D. L., and Barker, J. L.,997. Landsat-7 enhanced thematic mapper plus radiometric calibration. Canadian Journal of Remote Sensing, 23 (4), 38-332. Pouch, G. W., & Campagna, D. J.,99. Hyperspherical direction cosine transformation for separation of spectral and illumination information in digital scanner data. Photogrammetric Engineering and Remote Sensing, 56, 475-479. Powell, R. L., Robert, D. A., Dennsion, P. E., and Hess, L. L.,27. Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil. Remote Sensing of Environment, 6, 253-267. Rashed, T., Weeks, J. R., Roberts, D., Rogan, J., and Powell, R.,23. Measuring the physical composition of urban morphology using multiple endmember spectral mixture models. Photogrammetric Engineering and Remote Sensing, 69, - 2. Ridd, M. K.,995. Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: comparatice anatomy for cities. International Journal of Remote Sensing, 6, 265-85. Robert, D. A., Gardner, M., Church, R., Ustin, S., Scheer, G. and Green, R. O.,998. Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models. Remote Sensing of Environment 65: 257-279. Small, C.,2. Estimation of urban vegetation abundance by spectral mixture analysis. International Journal of Remote Sensing, 22, 35-334. Small,C.,23. High spatial resolution spectral mixture analysis of urban reflectance. Remote Sensing of Environment, 88, 7-86. Small, C.,25. Global analysis of urban reflectance. International Journal of Remote Sensing, 26(4), 66-68. Wu, C.,24. ormalized spectral mixture analysis for monitoring urban composition using ETM+ imagery. Remote Sensing of Environment, 93, 48-492. Wu, C., and Murray, A. T.,23. Estimating impervious surface distribution by spectral mixture analysis, Remote Sensing of Environment, 84, 493-55. 639

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B7. Beijing 28 64