Axis determination in flies. Sem 9.3.B.5 Animal Science

Similar documents
Drosophila Life Cycle

Axis Specification in Drosophila

Axis Specification in Drosophila

Axis Specification in Drosophila

Lecture 7. Development of the Fruit Fly Drosophila

Midterm 1. Average score: 74.4 Median score: 77

MOLECULAR CONTROL OF EMBRYONIC PATTERN FORMATION

Development of Drosophila

Biology 4361 Developmental Biology The Genetics of Axis Specification in Drosophila November 2, 2006

Morphogens in biological development: Drosophila example

Why Flies? stages of embryogenesis. The Fly in History

Development Team. Developmental Biology Axis Specification in Drosophila. Head, Department of Zoology, University of Delhi

Homeotic genes in flies. Sem 9.3.B.6 Animal Science

Drosophila Somatic Anterior-Posterior Axis (A-P Axis) Formation

Unicellular: Cells change function in response to a temporal plan, such as the cell cycle.

Segment boundary formation in Drosophila embryos

Chapter 11. Development: Differentiation and Determination

Developmental Biology 3230 Midterm Exam 1 March 2006

Chapter 18 Lecture. Concepts of Genetics. Tenth Edition. Developmental Genetics

Tissue- and stage-specific control of homeotic and segmentation gene expression in Drosophila embryos by the polyhomeotic gene

BIS &003 Answers to Assigned Problems May 23, Week /18.6 How would you distinguish between an enhancer and a promoter?

10/03/2014. Eukaryotic Development. + Differentiation vs. Development. Differentiation. Development

Two distinct mechanisms for differential positioning of gene expression borders involving the Drosophila gap protein giant

MCB 141 Midterm I Feb. 19, 2009

Developmental genetics: finding the genes that regulate development

1. What are the three general areas of the developing vertebrate limb? 2. What embryonic regions contribute to the developing limb bud?

Developmental processes Differential gene expression Introduction to determination The model organisms used to study developmental processes

Development of Developmental System System(Mathematical Topics in Biolo. Citation 数理解析研究所講究録 (1993), 827:

A pair-rule gene circuit defines segments sequentially in the short-germ insect Tribolium castaneum

Developmental Biology

Thoracic Patterning by the Drosophila Gap Gene hunchback

Cellular automata for exploring gene regulation in Drosophila segmentation

Evolutionary Developmental Biology

ULRIKE GAUL 1 * and HERBERT JACKLE 2

From Cell Shape to Body Shape: Epithelial Morphogenesis in Drosophila melanogaster

Exam 2 ID#: November 9, 2006

Interactions of the Drosophila gap gene giant with maternal and zygotic pattern-forming genes

PRACTICE EXAM. 20 pts: 1. With the aid of a diagram, indicate how initial dorsal-ventral polarity is created in fruit fly and frog embryos.

Chapter 10 Development and Differentiation

Autonomous concentration-dependent activation and repression of Krüppel by hunchback in the Drosophila embryo

Role of Organizer Chages in Late Frog Embryos

Spatio-temporal Registration of the Expression Patterns of Drosophila Segmentation Genes

18.4 Embryonic development involves cell division, cell differentiation, and morphogenesis

!!!!!!!! DB3230 Midterm 2 12/13/2013 Name:

Rui Dilão NonLinear Dynamics Group, IST

Genes, Development, and Evolution

BILD7: Problem Set. 2. What did Chargaff discover and why was this important?

How to make stripes: deciphering the transition from nonperiodic to periodic patterns in Drosophila segmentation

1(1)pole hole is required maternally for pattern formation in the terminal regions of the embryo

Chapter 18 Regulation of Gene Expression

MBios 401/501: Lecture 14.2 Cell Differentiation I. Slide #1. Cell Differentiation

Developmental Biology Lecture Outlines

MCB 141 Midterm I Feb. 14, 2012

AP Biology Gene Regulation and Development Review

SPATIAL PROGRAMMING OF GENE EXPRESSION IN EARLY DROSOPHILA EMBRYOGENESIS

Segmental patterning of heart precursors in Drosophila

Logical modelling of genetic regulatory networks Contents

Early Development in Invertebrates

178 Part 3.2 SUMMARY INTRODUCTION

REVIEW SESSION. Wednesday, September 15 5:30 PM SHANTZ 242 E

Cellular Neurobiology BIPN 140 Fall 2016 Problem Set #8

From gradients to stripes: a logical analysis of the genetic network controlling early drosophila segmentation.

Supplementary Materials for

LIST of SUPPLEMENTARY MATERIALS

Principles of Experimental Embryology

Reverse Engineering the Gap Gene Network of Drosophila melanogaster

9/4/2015 INDUCTION CHAPTER 1. Neurons are similar across phyla Thus, many different model systems are used in developmental neurobiology. Fig 1.

10/15/09. Tetrapod Limb Development & Pattern Formation. Developing limb region is an example of a morphogenetic field

The pattern of cell death in fushi tarazu, a segmentation gene of Drosophila

Caenorhabditis elegans

Principles of Experimental Embryology

Sonic hedgehog (Shh) signalling in the rabbit embryo

Studying the effect of cell division on expression patterns of the segment polarity genes

UNIVERSITY OF YORK BIOLOGY. Developmental Biology

Lesson Overview. Gene Regulation and Expression. Lesson Overview Gene Regulation and Expression

10/2/2015. Chapter 4. Determination and Differentiation. Neuroanatomical Diversity

Cell-Cell Communication in Development

Exam 3 (Final Exam) December 20, 2007

Gene Regulation and Expression

Trans-regulatory functions in the Abdominal-B gene of the bithorax complex

MCDB 4777/5777 Molecular Neurobiology Lecture 29 Neural Development- In the beginning

From DNA to Diversity

2. Fertilization activates the egg and bring together the nuclei of sperm and egg

Analysis of the Wnt gene repertoire in an onychophoran provides new insights into the evolution of segmentation

Gaining New Insights into Primitive Strategies for Embryonic Axis Specification Using the Wasp Nasonia

Biology. Biology. Slide 1 of 26. End Show. Copyright Pearson Prentice Hall

Expression of pair rule gene orthologs in the blastoderm of a myriapod: evidence for pair rule-like mechanisms?

Cell Cell Communication in Development

Drosophila melanogaster- Morphogen Gradient

Chapter 10, 11, 14: Gene Expression, Regulation, and Development Exam

Life Sciences For NET & SLET Exams Of UGC-CSIR. Section B and C. Volume-08. Contents A. BASIC CONCEPT OF DEVELOPMENT 1

2 Robustness of Embryonic Spatial Patterning in Drosophila melanogaster

3/8/ Complex adaptations. 2. often a novel trait

Exam 1 ID#: October 4, 2007

Analysis of the gooseberry locus in Drosophila embryos: gooseberry determines the cuticular pattern and activates gooseberry neuro

13.4 Gene Regulation and Expression

UNIVERSITY OF FRIBOURG DEPARTMENT OF BIOLOGY NEUROGENETICS, AUTUMN 2014

SHORT,LONG, AND BEYOND: Molecular and Embryological Approaches to Insect Segmentation

Paraxial and Intermediate Mesoderm

Gene regulation I Biochemistry 302. Bob Kelm February 25, 2005

Transcription:

Axis determination in flies Sem 9.3.B.5 Animal Science

All embryos are in lateral view (anterior to the left). Endoderm, midgut; mesoderm; central nervous system; foregut, hindgut and pole cells in yellow. (amg) (Anterior midgut rudiment; (br) brain; (cf) cephalic furrow; (cl) clypeolabrum; (df) dorsal fold; (dr) dorsal ridge; (es) esophagus; (gb) germ band; (go) gonads; (hg) hindgut; (lb) labial bud; (md) mandibular bud; (mg) midgut; (mg) Malpighian tubules; (mx) maxillary bud; (pc) pole cells; (pmg) posterior midgut rudiment; (pnb) procephalic neuroblasts; (pro) procephalon; (ps) posterior spiracle; (po) proventriculus; (sg) salivary gland; (stp) stomodeal plate; (st) stomodeum; (tp) tracheal pits; (vf) ventral furrow; (vnb) ventral neuroblasts; (vnc) ventral nerve

The segmentation genes So far I have shown you that you can change the fate of a cell by the protein gradients like bicoid, nanos, torso etc This specification of cell fate is flexible and can still be altered in response to signals from other cells. Ultimately, the cells undergo a transition from this loose type of commitment to an irreversible determination The transition from specification to determination in Drosophila is mediated by the segmentation genes

Segments and parasegments True segmentation, or metamerism, is usually considered to be the repetition along the anterior posterior axis of a structural unit that comprises a suite of characters involving the entire body Parasegments are regions of the embryo that are separated by mesodermal thickenings and ectodermal grooves. The parasegments of the embryo do not become the segments of the larva or adult; rather, they include the posterior part of an anterior segment and the anterior portion of the segment behind it.

Actually While the segments are the major anatomical divisions of the larval and adult body plan, they are built according to rules that use the parasegment as the basic unit of construction.

Segmentation genes Three classes of segmentation genes and they expressed sequentially The Gap genes: these are repressed or activated by maternal affect genes and they define broad units of embryo The Pair rule genes: the proteins of neighbouring Gap genes interact with each other to activate the transcription of these genes. These affect parasegments Genes upto this point regulate syncitial embryo The segment polarity genes: these are responsible for maintaining certain repeated structures within each segment. These are also transcription factors that with the help of main gradient factors defines each segment into repetitive parasegments After the parasegmental boundaries are set, the pair rule and gap genes interact to regulate the homeotic selector genes, which determine the identity of each segment.

In an embryo

Mutants

Gap genes These are the first sets of genes transcribed/transl ated after maternal affect genes Eg: hunchback (hb), giant (gt), Krüppel (Kr), knirps (kni), tailless (tll) mrna

How does it work? Anterior Posterior

Krüppel Very simply: Bicoid activates Krüppel Hunchback activates Krüppel at low concentrations and represses Krüppel at high concentrations Knirps represses Krüppel

A little more detailed For instance, Krüppel gene expression is negatively regulated on its anterior boundary by the Hunchback and Giant proteins and on its posterior boundary by the Knirps and Tailless proteins. If Hunchback activity is lacking, the domain of Krüppel expression extends anteriorly. If Knirps activity is lacking, Krüppel gene expression extends more posteriorly. The boundaries between the regions of gap gene transcription are probably created by mutual repression. Just as the Giant and Hunchback proteins can control the anterior boundary of Krüppel transcription, so Krüppel protein can determine the posterior boundaries of giant and hunchback transcription. If an embryo lacks the Krüppel gene, hunchback transcription continues into the area usually allotted to Krüppel. These boundary-forming inhibitions are thought to be directly mediated by the gap gene products, because all four major gap genes (hunchback, giant, Krüppel, and knirps) encode DNAbinding proteins that can activate or repress the transcription of other gap genes.

Is this simpler?

Or this?

Pair rule genes The embryo is divided into large regions by the gap genes, which activate transcription of the pair-rule genes in seven stripes of expression. The activation of the pair-rule genes in striped patterns by the maternal coordinate genes and gap genes is the first sign of segmentation in the embryo. Pair-rule gene expression patterns determine the position of the parasegments. How is this co ordinated? It turns out there is a hierarchy within the pair-rule gene class. The primary pair-rule genes (evenskipped, hairy, and runt) are activated directly by the gap genes and they regulate the expression of the secondary pair-rule genes (fushi-tarazu, odd-skipped, odd-paired, paired, and others).

How does it work?

Or How are the primary pair-rule genes regulated? It turns out that there is a separate enhancer controlling the expression of each stripe of gene expression in each of the primary pair-rule genes. The first evidence for this came from regulatory mutations that altered the transcription of specific stripes of expression. This was shown conclusively when the regulatory regions were analyzed using transgenes driving lacz expression. It was discovered that there were regulatory elements for each stripe of expression. So upstream of even-skipped there are 7 independent regulatory elements - one for each stripe. The three primary pair-rule genes are expressed in 7 stripes each for a total of 21 over-lapping domains of gene expression. In principle, the way each of these stripes of expression is established is no different from the way the gap gene expression patterns are established through a combination of positive and negative inputs.

even-skipped Let's look at for example what is happening with the expression of even-skipped in the second stripe from the anterior. Bicoid and Hunchback activate even-skipped stripe 2 expression. even-skipped stripe 2 is repressed on the anterior side by the gap gene giant and on the posterior side by Krüppel.

Still at it Upstream of the even-skipped gene is a 430 bp enhancer element that controls just the expression of even-skipped in the stripe 2 region (it is aptly named the "stripe 2 enhancer"!). This enhancer has 12 known factor binding sites, including 6 activator and 6 repressor sites. The 6 activator sites include 5 Bicoid binding sites and one Hunchback site. There are 3 binding sites for each of Giant and Krüppel.

Secondary pair-rule gene Once initiated by the gap gene proteins, the transcription pattern of the primary pair-rule genes becomes stabilized by their interactions among themselves. The primary pair-rule genes also form the context that allows or inhibits the expression of the later-acting secondary pair-rule genes. One such secondary pair-rule gene is fushi tarazu (ftz; Japanese, "too few segments; ). Early in cycle 14, ftz RNA and protein are seen throughout the segmented portion of the embryo. However, as the proteins from the primary pair-rule genes begin to interact with the ftz enhancer, the ftz gene is repressed in certain bands of nuclei to create interstripe regions. Meanwhile, the Ftz protein interacts with its own promoter to stimulate more transcription of the ftz gene.

The segment polarity genes The pair-rule genes are already expressed in a periodic pattern, so it is easy to imagine how they establish the segment polarity gene expression in every parasegment. The expression patterns of the segment polarity genes engrailed (en) and wingless (wg) are established through positive and negative transcriptional regulation by the pair-rule genes. For example, the expression of en is activated by either Ftz or Eve in each parasegment, whereas wingless is repressed by Ftz or Eve in each parasegment.

Cell to cell signaling-1 The regulation of the segment polarity genes by the pair-rule genes is only the first stage of regulation. There are two problems that must be overcome. First, the expression of the coordinate, gap and pair-rule genes fades away and new mechanisms for regulating wingless and engrailed are required. Furthermore, cellularization of the embryo has occurred by this stage and it turns out that the mechanism for maintaining wingless and engrailed expression is based on cell to cell communication. This is why not all of the segmentpolarity genes are transcription factors. So, how are the patterns of wingless and engrailed maintained?

Cell to cell signaling-2 Genetic experiments showed that en and wg are required for each other's expression: Wg disappears in en mutant embryos; En disappears in wg embryos. This suggests that Wg and En maintain each other's expression. However, they are expressed in completely different cells, so cell- cell communication must occur. engrailed encodes a homeodomain protein; wingless encodes a secreted peptide, a member of the WNT family. Wingless is secreted from the cells which make it. When the Wingless protein binds to its receptor on posterior cells, the signal is transduced to the nucleus and maintains the transcription of engrailed.

Cell to cell signaling-3 A second signal must be invoked to explain the maintenance of wingless expression by engrailed expression. Since Engrailed is a transcription factor, it cannot be directly responsible for the signal from the posterior engrailed expressing cells. wingless and engrailed expression are also lost in mutants for another segment polarity gene is called hedgehog. hedgehog is expressed in the same cells as engrailed and its expression is lost in wingless and engrailed mutants. These results imply that hedgehog is part of the genetic circuit linking wingless and engrailed expression. hedgehog encodes a secreted factor that is responsible for the signal from the engrailed expressing cells back to the wingless expressing cells. hedgehog binds to its receptor on the wingless expressing cells and this results in the maintenance of wingless transcription.

Really? YES

How do we know? This process can be seen in the dorsal epidermis, where the rows of larval cells produce different hairs depending on their position within the segment. The 1 row consists denticles. Posterior to denticles, the 2 row produces a smooth cuticle. The next two cell rows have a 3 fate, small, thick hairs, and these are followed by several rows of cells that adopt the 4 fate, producing fine hairs And you change all this by changing hedgehog and wingless expression.

Developmental biology Scott F. Gilbert