Plastic responses in juvenile wood frog (Rana sylvatica) morphology from predation. BIOS: 569: Practicum in Field Biology. Patrick Roden-Reynolds

Similar documents
The effects of larval predation on the morphology of juvenile wood frogs (Rana sylvatica)

3/24/10. Amphibian community ecology. Lecture goal. Lecture concepts to know

Phenotypic variation 3/6/17. Phenotypic plasticity in amphibians

Survey of Invertebrate Species in Vernal Ponds at UNDERC. Joseph Lucero. 447 Knott Hall. University of Notre Dame

Effects of Predator Chemical Cues On Snail Behavior

Behavioral Resource Partitioning among Rana Species in Northern Wisconsin. BIOS : Practicum in Field Biology. Claire K.

Environmental Factors Influencing Wood Frog (Lythobates sylvaticus) Tadpole Size

The effects of predator chemical cues on the behavior of spotted salamander larvae (Ambystoma maculatum)

MORPHOLOGICAL AND BEHAVIORAL PLASTICITY OF LARVAL ANURANS IN RESPONSE TO DIFFERENT PREDATORS

2001 A.B. Biology with Specialization in Ecology and Evolution, U. of Chicago Graduated with General Honors and Special Honors in Biology

Georgia Performance Standards for Urban Watch Restoration Field Trips

Ecology and evolution. Limnology Lecture 2

BIOS 569: Practicum in Field Biology. Impact of DOC in the Zooplankton Community Composition. Amarilis Silva Rodriguez. Advisor: Patrick Kelly

TEMPERATURE, PREDATION RISK AND GRASSHOPPER BEHAVIOR. BIOS 569 Field Practicum in Environmental Biology. Molly Chambers

PREDATOR- AND COMPETITOR-INDUCED PLASTICITY: HOW CHANGES IN FORAGING MORPHOLOGY AFFECT PHENOTYPIC TRADE-OFFS

Intestinal, Body and Tail Plasticity in Rhinella. schneideri (Bufonidae) Tadpoles Induced by a. Predator Insect (Belostoma elegans)

Getting out alive: how predators avect the decision to metamorphose

Predator Survival Tactics and Use of Habitat Cover in Rana Catesbeiana.

Plastic response to pond drying in tadpoles Rana temporaria: tests of cost models

Lecture 8 Insect ecology and balance of life

Gary G. Mittelbach Michigan State University

Comparing Recognition of Predator Kairomones in Vernal Pool and Lake Tadpoles. BIOS 35502: Practicum in Environmental Field Biology.

Aquatic mesocosms. Raymond D. Semlitsch and Michelle D. Boone. 6.1 Introduction

CONTEXT DEPENDENCE OF NONLETHAL EFFECTS OF A PREDATOR ON PREY GROWTH

Phenotypically Plastic Responses of Larval Tiger Salamanders, Ambystoma tigrinum, to Different Predators

PREDATOR EFFECTS ON AN ASSEMBLAGE OF CONSUMERS THROUGH INDUCED CHANGES IN CONSUMER FORAGING BEHAVIOR

THE EFFECTS OF AMPHIBIAN PRESENCE AND PREDATION ON MOSQUITOES

Population Ecology. Study of populations in relation to the environment. Increase population size= endangered species

The effects of UV-B on the survival of North American Amphibian species

Goal of the Lecture. Lecture Structure. Tadpole Development, Ecology, and Metamorphosis

Ontogenetic Effects of Hatching Plasticity in the Spotted Salamander (Ambystoma maculatum) due to Egg and Larval Predators

Competition, predation, and the distributions of four desert anurans

The Effects of Salinity Increase on Spring Peeper Tadpole (Pseudacris crucifer) Growth and Development in the Douglas Lake Area

Educational Activities to Support Next Generation Science Standards COSTA RICA Eco Adventures

Diet comparison in three tadpole species, Rana sylvatica, Bufo americanus, and Pseudacris crucifer, in a northern temperate climate

Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution.

TRAIT-MEDIATED INDIRECT INTERACTIONS IN A SIMPLE AQUATIC FOOD WEB

MECHANISMS CREATING COMMUNITY STRUCTURE ACROSS A FRESHWATER HABITAT GRADIENT

A A A A B B1

Age (x) nx lx. Population dynamics Population size through time should be predictable N t+1 = N t + B + I - D - E

Computational Ecology Introduction to Ecological Science. Sonny Bleicher Ph.D.

Chapter 5. Evolution of Biodiversity

Effects to Communities & Ecosystems

Big Idea 1: The process of evolution drives the diversity and unity of life.

Aggregations on larger scales. Metapopulation. Definition: A group of interconnected subpopulations Sources and Sinks

BELL RINGER QUICK REVIEW. What is the difference between an autotroph and heterotroph? List 4 abiotic factors in plant growth.

AP Curriculum Framework with Learning Objectives

Mechanisms behind the successful invasion of American Bullfrogs (Rana catesbeiana) in the Northwest United States

Rocky Intertidal Ecology -- part II The development of experimental ecology. Connell and the experimental revolution

Which concept would be correctly placed in box X? A) use and disuse B) variation C) changes in nucleic acids D) transmission of acquired traits

Chapter 4 AND 5 Practice

POPULATIONS and COMMUNITIES

Using Anurans to Measure Wetland Health on a Central Florida Wellfield

Niche The sum of all interactions a species has with biotic/abiotic components of the environment N-dimensional hypervolume

Effects of competition and predation on the feeding rate of freshwater snails

ANIMAL ECOLOGY (A ECL)

Predator-Avoidance Responses in Native and Exotic Freshwater Snail Species BIOS 35502: Practicum in Field Biology Danielle Patzner Advisor: Todd

Background for Dynamic Nature of Scientific Knowledge

Marine Resources Development Foundation/MarineLab Grades: 9, 10, 11, 12 States: AP Biology Course Description Subjects: Science

Use of temporary ponds by amphibians in a wooded pasture, Romania

New effects of Roundup on amphibians: Predators reduce herbicide mortality; herbicides induce antipredator morphology

TEST SUMMARY AND FRAMEWORK TEST SUMMARY

Metacommunities Spatial Ecology of Communities

ADVANCED PLACEMENT BIOLOGY

AP Environmental Science I. Unit 1-2: Biodiversity & Evolution

Treasure Coast Science Scope and Sequence

The relationship between current speed and shell morphology in the freshwater snail, Elimia livescens, in two Northern Michigan streams

Name Hour. Section 4-1 The Role of Climate (pages 87-89) What Is Climate? (page 87) 1. How is weather different from climate?

Las Cruces REU Mentors 2019

If you Build It, They Will Come

BIO S380T Page 1 Summer 2005: Exam 2

Effects of Fragmentation on Connectivity: Implications for Pool Dependent Herpetofauna in the Northeastern United States

Adaptive Traits. Natural selection results in evolution of adaptations. Adaptation: trait that enhances an organism's survival and reproduction

DEPARTMENT OF BIOLOGICAL SCIENCES UNIVERSITY OF MEDICAL SCIENCES, ONDO CITY, ONDO STATE NIGERIA COURSE BIO 110 (GENERAL BIOLOGY) ON ECOLOGY

VI) Population and Community Stability

Lecture 2: Individual-based Modelling

Increasing conspecific density weakens the ability of intermediate predators to develop induced morphological defences to top predators

The evolution of prey body size reaction norms in diverse

Ch.5 Evolution and Community Ecology How do organisms become so well suited to their environment? Evolution and Natural Selection

PSSA Science Review. Organisms and the Environment. Organisms and the Environment

Ch20_Ecology, community & ecosystems

History and meaning of the word Ecology A. Definition 1. Oikos, ology - the study of the house - the place we live

at some point of their lives (Just et al., 1981). Such a change normally involves the

Student Name: Teacher: Date: District: London City. Assessment: 07 Science Science Test 4. Description: Life Science Final 1.

Outline. Ecology: Succession and Life Strategies. Interactions within communities of organisms. Key Concepts:

Ecosystems and Communities

Map of AP-Aligned Bio-Rad Kits with Learning Objectives

SHIFTS IN LIFE-HISTORY TRAITS AS A RESPONSE TO CANNIBALISM IN LARVAL LONG-TOED SALAMANDERS (Ambystoma macrodactylum)

AP Biology Essential Knowledge Cards BIG IDEA 1

AVOIDANCE RESPONSE OF JUVENILE PACIFIC TREEFROGS TO CHEMICAL CUES OF INTRODUCED PREDATORY BULLFROGS

Community and Population Ecology Populations & Communities Species Diversity Sustainability and Environmental Change Richness and Sustainability

Climate Change Vulnerability Assessment for Species

Vocabulary Flash Cards: Life Science 1: LS1 (1-5)

CAPTIVE REARING STUDY OF THE THERMONECTUS MARMORATUS. Tim O Sullivan. Keeper, Invertebrates, St. Louis Zoo

Chapter 4 Ecosystems and Living Organisms

Essential knowledge 1.A.2: Natural selection

AP Biology Curriculum Framework

CHAPTER. Population Ecology

AQUATIC MACROINVERTEBRATE DRIFT DYNAMICS IN A FREESTONE STREAM IN THE ADIRONDACK PARK, New York

Evaluating the effects of trophic complexity on a keystone predator by disassembling a partial intraguild predation food web

Transcription:

Plastic responses in juvenile wood frog (Rana sylvatica) morphology from predation BIOS: 569: Practicum in Field Biology Patrick Roden-Reynolds Advisor: Dr. Matthew J. Michel 2013

Roden Reynolds 2 Abstract- Phenotypic plasticity is the ability of an organism to modify behavior, morphology, and life history traits in response to various environmental cues. Plasticity influences the structure of population dynamics and also gives insight to future environmental conditions. Previous common garden experiments demonstrate that larval wood frogs (Rana sylvatica) alter morphology in response to chemical cues exuded from predators. The purpose of this field experiment is to accentuate the relationship between larval predation risk and juvenile morphology in wood frogs inhabiting heterogeneous vernal ponds. I measured five morphological characters including forelimb length, hind limb length, head width, body width, and body length and correlated each against predator densities of six study sites. Predation did not significantly affect juvenile morphology. However, an overshadowing effect from other complex interactions within the ecosystem can further explain the variance among the data. Introduction- Phenotypic plasticity is defined as the ability of a single genotype to exhibit variable phenotypes according to different environments (Whitman 2009). Plasticity can manifest as changes not only in physical appearance, but physiology, behavior, and life history traits. Both biotic and abiotic factors influence these responses, which produce phenotypic changes that can be highly adaptive by enhancing survival or maximizing fitness; furthermore, these changes can lower fitness by increasing energy allocation during developmental stages (Weider and Pijanowska 1993). The fitness of an organism depends, in part, on the interaction between the environment and phenotype. Understanding the habitat, physiological mechanisms, and fitness outcomes is imperative to grasp the effects of plasticity. Phenotypic plasticity facilitates

Roden Reynolds 3 evolution, biodiversity, structures of ecological communities, and generates novel traits (Whitman 2009). Under certain conditions plasticity is beneficial, yet many scenarios concerning the costs, benefits, and selection of plasticity remain untested. Prey alter their phenotypes as a method to reduce predation, though antipredator adaptations can sustain costs in predator free environments (Relyea 2001a, 2002a). This tradeoff has caused debate whether these plastic responses are adaptive and retained by natural selection (Relyea 2001b). Recent studies have delved into predator-prey interactions within aquatic systems revealing that prey express phenotypic responses in the presence of chemical cues exuded from predators (Weider and Pijanowska 1993). A previous study has demonstrated that selective pressures imposed by invertebrate predators are a key influence on the cladoceran life histories and resource use; as a result, influencing age and size structures of populations (Weider and Pijanowska 1993). For example, when exposed to invertebrate predator cues Daphnia allocate more energy towards growth (Spitze 1992, Weider and Pijanowska 1993). In this case the larval environment matched environmental conditions during the adult stage and the plastic responses are assumed as adaptive. For many organisms this is not true, amphibians spend the larval stage in an aquatic environment and as adults they inhabit terrestrial environments (Relyea 2001b). Biotic and abiotic factors differ widely between the environments in each development stage. So, larval plasticity could have a positive, negative, or neutral effect on adult fitness in amphibians (Relyea 2001b). Accordingly, amphibians, and more specifically [Rana (Lithobates) sylvatica], provide excellent study subjects for predator-induced plasticity. First, amphibians are known to alter morphology, life histories, and behavior in predator dense environments (Relyea 2002a). Larval

Roden Reynolds 4 development becomes extended from heightened alertness towards predation risk causing a reduction in foraging activity (Relyea 2001b). Relyea (2003a) found that eastern gray treefrog tadpoles (Hyla versicolor) responded to predators by developing deep tails, short bodies, and small mouthparts at a cost of slower development. Likewise, R. sylvatica tadpoles become less active and develop large tails with comparably small bodies-- making them better adept to escape larval predators (Relyea 2002a). Secondly, amphibians span across a wide range of habitats which exposes them to a diverse selection of aquatic and terrestrial predators (Relyea 2002a). Predator transition refers to the difference in community structure between each habitat (Welborn et al. 1996). A vernal pond with more than 40% canopy coverage is classified as closed canopy and anything less is open canopy (Garrison and Standiford 1996). Open canopy ponds tend to contain a higher assemblages of invertebrate predators because higher productivity from more sunlight (Relyea 2002a). This enables a higher density of aquatic vegetation which is critical for benthic macroinvertebrates. It provides food resources and refuges from predators (Warfe et al. 2004). Habitat structure attracts benthic macroinvertebrates, breeding amphibians, and other prey, thus increasing the presence of predatory invertebrates (Werner 1999). Additionally, closed canopy habitats have lower temperatures and dissolved oxygen levels, which suppresses larval development (Garrison and Standiford 1996, Warfe et al. 2004); creating a selective pressure for invertebrates to colonize open canopy ponds at the cost of increased predation risk. Lastly, R. sylvatica exhibit high philopatry to natal ponds which encourages reproductive isolation (Relyea 2002a, Michel 2011). Therefore, in a spatial scale, individuals remain genetically distinct from other populations when expressing plastic responses (Relyea 2002a). This genetic variation produces a wide array of tadpole phenotypes to determine the correlation between larval plasticity and juvenile morphology (Relyea 2001b).

Roden Reynolds 5 However, the effect of predators and predator density on phenotypic plasticity across heterogeneous habitats on a regional scale remains unclear (Michel 2011). Thus, I intend to study predator-induced plasticity in larval wood frogs (Rana sylvatica) among different vernal ponds using a field experiment. Based on previous studies about the lasting effects of larval predation on juvenile morphology, I hypothesize that an increase in larval period caused by predator presence will cause: (1) juveniles emerging from ponds with high predator densities to exhibit longer forelimb and hind limbs; and (2) narrower head and back widths. Methods- Data Collection A field experiment will determine the effect of predators on plasticity in R. sylvatica. I raised tadpoles using 2x2 foot enclosures made of a wood frame with fiberglass screening on all sides at 8 different vernal ponds (labeled VP-P, VP-9, VP-Q, VP-Wood Duck, VP-K, VP-J, VP- 30A, VP-27; see Fig. 1) located on the University of Notre Dame Environmental Research property. One enclosure was used at each study site and housed 10-20 juveniles (except at VP- 30A, VP-P). The enclosures keep the tadpoles isolated, but allow them to receive chemical cues from surrounding predators. The density of aquatic vegetation and canopy cover will be accounted for in each pond. This is important because an open-canopy pond has higher productivity from photosynthetic resources resulting in a higher abundance of macrophytes, predators, and competitors (Werner 1999). I selected the sites based on the amount of canopy coverage which should mimic a gradient of predator densities. These sites range in predator density, from the small, covered vernal ponds that have very little predators (VP-K, VP-J), to the larger, open ponds (VP-P, VP- Q, VP-30A) that have higher predator diversities and densities.

Roden Reynolds 6 The remaining vernal ponds (9, Wood Duck, 27) represent the middle of the gradient between predominantly open or closed. I sampled at all study sites to measure the predicted predation risks. The sampling methods for determining predator abundance included minnow traps and dipnetting. Two minnow traps were set at all study sites for six nights during three nonconsecutive weeks and checked every morning. I used dip nets as the primary sampling method. I spent a total of 80 minutes at each site sweeping for predators along the pond edges. Dytiscus adults and larvae, Odonate larvae, and Belostomatidae comprised the species of predators found. Densities were calculated by taking the total abundance among all species and dividing that by the area of the pond. Similar methods were used to capture larval R. sylvatica and emerging juveniles. I constructed single pit fall traps later in the summer at sites VP-30A and VP-P because no tadpoles were captured by dipnetting or minnow trapping. These traps were constructed out of three 1-liter buckets, two 15-foot aluminum flashing pieces, and wooden stakes for anchoring. I also used visual encounter surveys to capture recently emergent R. sylvatica along the pond edges. Morphological measurements such as forelimb length, hindlimb length, head width, back width, and body length were recorded using 0.1 mm calipers. I omitted tail length and depth because at this stage in metamorphosis some individuals had begun to absorb their tails; therefore tail fin measurements would not be a good indicator of plasticity.

Roden Reynolds 7 Statistical Analysis A single mean value for each the five different morphological features was calculated by averaging the values measured from 13 individuals at each site. To correct the data for general variability in body size I ran a regression analysis using body length as the independent variable. Only hind limb length (p=0.00363, r²= 0.9032) was significantly related with body length. I corrected this measurement for body size by taking the average of the residuals and substituting those values as the dependent variable in my regression analysis. Forelimb length (p=0.4801; r²=0.5495), body width (p=0.2569, r²=0.3039), and head width (p=0.1058, r²=0.5201) were not significantly related with body length and therefore not corrected for body size. To determine significance, I ran a simple linear regression correlating the mean measurements of juvenile morphology against predator density. Results- Predator densities calculated for each pond are listed in increasing order per square meter (see Table 1). The gradient among predator densities roughly increased as sites changed from closed to open canopies. However, sites that were neither predominantly open nor closed seemed to score lower in predator densities. These sites produced similar abundances in predators but tend to be larger in area, therefore causing a discrepancy in the density gradient. At least 15 tadpoles were captured by minnow traps and kept in the screened enclosures at sites 27, J, 9, and K. The minnow traps did not produce as many for sites Q and Wood Duck, so I caught juveniles during visual encounter surveys. Two sites (VP-30A, VP-P) were excluded from collecting morphological characteristics because only one individual was captured at each site by pit fall traps, and would not correctly represent the population.

Roden Reynolds 8 A regression analysis determined there is no significant correlation between juvenile morphology and predator density. The values produced by running five separate regressions are as follows: Forelimb length (p=.436, r²=.147, Fig. 2), hind limb length (p=.441, r²=.154, Fig. 3), head width (p=.868, r²=.008, Fig. 4), back width (p=.781, r²=.022, Fig. 5) and body length (p=.406, r²=.177, Fig. 6). Discussion- Correlations between the morphological phenotypes of tadpoles and predator density failed to uphold the original hypothesis. Predator densities did not significantly increase juvenile limb length or decrease body width. Previous laboratory experiments (Relyea 2002a) have found relationships in predator-induced responses. These significant results imply that more complex interactions affect juvenile morphology in the field. The data evidently suggests that larval predation has little to no effect on juvenile morphology. Previous studies (Lardner 1998, Relyea 2001) concluded that larval anurans did not exhibit difference in morphology when in the presence of Dytiscus larvae. However, stronger interactions within the community could overshadow predator-induced effects. Habitat heterogeneity plays a large role in the development of larval wood frogs and may explain the variation among the results (Michel 2011). Biotic and abiotic factors such as hydroperiod, canopy coverage, and food resources differ among ponds. For instance, the study system focused on vernal ponds, which in most cases are temporary. Inhabiting a non-permanent habitat presents a new array of issues to adapt to. The life history qualities of species that live in permanent habitats, such as lakes, differ from species that inhabit vernal ponds. Vernal ponds run the risk of drying up, so species are known to hasten development to counteract this issue (Relyea 2001, Relyea and Auld 2005). Habitat permanence places a limit on the time allotted to develop plastic

Roden Reynolds 9 traits (Relyea 2001, Miner 2005). The accelerated metamorphosis may have created a time lag in the appearance of plastic traits as found in Relyea and Hoverman s (2003) study. The authors found that plastic effects were not displayed until a month after metamorphosis. A study conducted by Weider and Pijanowska (1993) confirmed the occurrence of age dependence on the ability to sense predator-released chemical cues. The juvenile frogs collected for this study were in early post-metamorphic stages and beginning to emerge. It is possible that not enough time had passed for the morphological effects to appear. Future studies should focus on the relationship between development stage and the individuals affinity to detect chemical cues in wood frogs. Secondly, individual larval behavior can have similar effects on morphology as habitat heterogeneity and age class. Ephemeral species, such as R. sylvatica, may exhibit more behavioral plasticity rather than morphological plasticity. Behavioral plasticity is an effective short-term solution to predation while morphological plasticity is a long-term solution (Relyea 2001). However, wood frogs exhibit several discrete life stages, and may focus on current survival rather than allocating for future predation risk once they emerge from the vernal pond (Relyea 2002b, 2003a). It is less costly, in terms of energy allocation, to hide than to grow larger than optimal size to thwart predation risk (Relyea 2001). In this instance, R. sylvatica indirectly decreases body size to avoid predation. Furthermore, the invertebrate predators could directly cause growth suppression as found for Daphnia (Weider and Pijanowska 1993). The presence of predators and chemical cues causes increased alertness which could require greater energy costs; consequently, reducing growth and development rates. Additionally, an individual s phenotype is the combined product of plasticity, genetics, and mechanisms of natural selection. Heritable genotypes vary among local populations. Thus,

Roden Reynolds 10 genetic effects may cause significant variation in phenotypic morphology among wood frog populations (Michel 2011, Relyea 2002a). Existing results confirm that response to predatorreleased chemical cues vary according to local genetics (Weider and Pijanowska 1993, Spitze 1992). Likewise, studies conducted on Oncorhynchus mykiss morphology shows that 52.7% of variation is attributed to heredity, whereas environmental differences only explain 7.3% of variation (Keeley et al. 2007). The simultaneous use of multiple isolated genotypes over several generations in future studies would clarify the interactions between genes and plastic expression. Finally, other species of frogs, salamanders, and invertebrates inhabit vernal ponds both permanently and for reproductive purposes. Larval wood frogs must compete interspecifically and intraspecifically for food resources and cover (Relyea 2002c). From personal observations larval spring peepers (Pseudacris crucifer), larval central newts (Notophthalmus viridescens), adult green frogs (Rana clamitans) and northern leopard frogs (Rana pipiens) were among the other species present. Wood frogs inhabit a wide range of habitats encompassing high predation/ low competition to low predation/ high competition and these different environments produce different selective pressures on morphology (Relyea and Auld 2005). Important phenotypic tradeoffs arise in light of interactions between competitor-induced and predator-induced plasticity (Relyea and Auld 2005). Competitor-induced plasticity affects similar traits in larval wood frogs but in the opposite directions. For example, ponds with high tadpole densities produce more active foraging individuals to enhance growth rates, and also develop relatively smaller tails and longer bodies as opposed to less activity and smaller bodies produced by predator interactions (Relyea 2002c, Relyea and Auld 2005, Michel 2011). The interplay of these interactions can aid in explaining the lack of significance from my data. Vernal ponds 27 and K

Roden Reynolds 11 (Fig. 5 & 6) are an outlier of larger wood frogs, especially in body length and back width. Competitor-induced mechanisms could have stunted the effect of predator-induced plasticity. In this paper, I have taken into account the complex ecosystem interactions that can effect predator-prey chemical communication. These results may elucidate the role of phenotypic plasticity in the role of natural selection and evolution for wood frogs. The juveniles improve their fitness by increasing body size and chances for survival, which has large implications for future community dynamics. More work is needed to clarify the biological pathways that might trigger shifts in energy allocation when introduced to chemical cues in prey (Weider and Pijanowska 1993). It should also be considered whether age class or mutigenerational effects hinder the ability to express plastic changes. Acknowledgements- The completion of this project would not have been possible without the cooperation of many mentors and fellow students. I would particularly like to thank my mentor, Dr. Matt J Michel for his guidance and persistence in answering my relentless questions. I would also like to thank Dr. Michael Cramer, Dr. Gary Belovsky, and a special thanks to the Bernard J. Hank Endowment for giving me this opportunity to conduct my own research. Lastly I would like to thank Claire Mattison, Rob Mckee for assistance during the final stages of this project, and Nick Deason, Michael Spear, Ryan Davila, and Payton George for enduring the bugs while helping me complete field work.

Roden Reynolds 12 Works Cited- Buskirk, Josh, and Rick A. Relyea. "Selection for phenotypic plasticity in Rana sylvatica tadpoles." Biological Journal of the Linnean Society 65.3 (1998): 301-328. Garrison, B. C., and Richard B. Standiford. "A post-hoc assessment of the impacts to wildlife habitat from wood cutting in blue oak woodlands in the northern Sacramento Valley." NH Pillsbury, J. Verner, and WD Tietje, tech. coords. Proceedings of a Symposium on Oak Woodlands: Ecology, Management, and Urban Interface Issues. 1996. Keeley, E. R., E. A. Parkinson, and E. B. Taylor. "The origins of ecotypic variation of rainbow trout: a test of environmental vs. genetically based differences in morphology." Journal of evolutionary biology 20.2 (2007): 725-736. Lardner, Björn. "Morphological and life history responses to predators in larvae of seven anurans." Oikos 88.1 (2000): 169-180. Michel, Matt J. "Spatial dependence of phenotype-environment associations for tadpoles in natural ponds." Evolutionary Ecology 25.4 (2011): 915-932. Miner, Benjamin G., et al. "Ecological consequences of phenotypic plasticity."trends in Ecology & Evolution 20.12 (2005): 685-692. Relyea, Rick A. "Morphological and behavioral plasticity of larval anurans in response to different predators." Ecology 82.2 (2001a): 523-540. Relyea, Rick A. "The lasting effects of adaptive plasticity: predator-induced tadpoles become long-legged frogs." Ecology 82.7 (2001b): 1947-1955. Relyea, Rick A. "Local population differences in phenotypic plasticity: predator-induced changes in wood frog tadpoles." Ecological Monographs 72.1 (2002a): 77-93. Relyea, Rick A. "Costs of phenotypic plasticity." The American Naturalist 159.3 (2002b): 272-282 Relyea, Rick A. "Competitor-induced plasticity in tadpoles: consequences, cues, and connections to predator-induced plasticity." Ecological Monographs72.4 (2002c): 523-540. Relyea, Rick A. "How prey respond to combined predators: a review and an empirical test." Ecology 84.7 (2003a): 1827-1839. Relyea, Rick A. "Predators come and predators go: the reversibility of predator-induced traits." Ecology 84.7 (2003b): 1840-1848 Relyea, Rick A., and Josh R. Auld. "Predator-and competitor-induced plasticity: how changes in foraging morphology affect phenotypic trade-offs." Ecology 86.7 (2005): 1723-1729. Relyea, Rick A., and Jason T. Hoverman. "The impact of larval predators and competitors on the morphology and fitness of juvenile treefrogs." Oecologia134.4 (2003): 596-604.

Roden Reynolds 13 Spitze, Ken. "Predator-mediated plasticity of prey life history and morphology: Chaoborus americanus predation on Daphnia pulex." American Naturalist (1992): 229-247. Warfe, Danielle M., and Leon A. Barmuta. "Habitat structural complexity mediates the foraging success of multiple predator species." Oecologia 141.1 (2004): 171-178. Weider, Lawrence J., and Joanna Pijanowska. "Plasticity of Daphnia life histories in response to chemical cues from predators." Oikos (1993): 385-392. Welborn, Gary A., David K. Skelly, and Earl E. Werner. "Mechanisms creating community structure across a freshwater habitat gradient." Annual review of ecology and systematics (1996): 337-363. Werner, Earl E., and Karen S. Glennemeier. "Influence of forest canopy cover on the breeding pond distributions of several amphibian species." Copeia (1999): 1-12. Whitman, Douglas W., and Anurag A. Agrawal. "What is phenotypic plasticity and why is it important." Phenotypic plasticity of insects (2009): 1-63.

Roden Reynolds 14 Tables- Site Canopy Type Density per m² 9 Closed 0.074 27 Closed 0.094 J Closed 0.111 Wood Duck Closed 0.146 K Closed 0.24 P Open 0.253 Q Open 0.266 30a Open 1.06 Figures Table 1. Table of predator densities of each vernal pond per square meter and whether it is an open or closed canopy site. Figure 1. Map of vernal ponds on UNDERC property. Each of the eight sampling sights is indicated by a red dot (VP P, VP 9, VP Q, VP Wood Duck, VP J, VP K, VP 30A, VP 27).

Roden Reynolds 15 Mean Forelimb Length (mm) 12 11 10 9 8 7 6 0 0.05 0.1 0..15 0.2 Predator Density R² = 0.1471 0.25 0.3 Figure 2. The relationship between mean forelimb lengthh and predator density in juvenile wood frogs. There was no significant correlation (p=.436, r²=.147). Mean Hindlimb Length (mm) 2 1.5 1 0.5 0 0.55 11 1.55 22 0 0.05 0.1 0.15 0.2 0.25 0.3 R² = 0.1541 Predator Density Figure 3. The relationship between mean hind limb length and predator density in juvenile wood frogs. There was no significant correlation (p=.441, r²=.154).

Roden Reynolds 16 7.5 Mean Head Width (mm) 7 6.5 6 5.5 5 R² = 0.0078 4.5 0 0.05 0.1 0..15 0.2 Predator Density 0.25 0.33 Figure 4. The relationship between mean head width andd predator density in juvenile wood frogs. There was no significant correlation (p=.868, r²=.008). 8 Mean Back Width (mm) 7.5 7 6.5 6 5.5 5 4.5 4 0 0.05 R² = 0.0217 0.1 0.15 0.2 0.25 0.33 Predator Density Figure 5. The relationship between mean back width andd predator density in juvenile wood frogs. There was no significant correlation (p=.781, r²=.022).

Roden Reynolds 17 20 Mean Body Length (mm) 19 18 17 R² = 0. 1769 16 0 0.05 0.1 0. 15 0.2 Predatorr Density 0.25 0.33 Figure 6. The relationship between mean body length and predator density in juvenile wood frogs. There was no significant correlation (p=.406, r²=.177).