Chapter 7: From theory to observations

Similar documents
From theory to observations

From theory to observations

Chapter 8: Simple Stellar Populations

Simple Stellar Populations

Chapter 10: Unresolved Stellar Populations

Lab Exercises for Low Mass Stars

The magnitude system. ASTR320 Wednesday January 30, 2019

Lab Exercises for Low Mass Stars

Stellar Structure and Evolution

Characterization of the exoplanet host stars. Exoplanets Properties of the host stars. Characterization of the exoplanet host stars

Lecture Three: Stellar Populations. Stellar Properties: Stellar Populations = Stars in Galaxies. What defines luminous properties of galaxies

Techniques for measuring astronomical distances generally come in two variates, absolute and relative.

Classical Methods for Determining Stellar Masses, Temperatures, and Radii

University of Naples Federico II, Academic Year Istituzioni di Astrofisica, read by prof. Massimo Capaccioli. Lecture 16

Review of stellar evolution and color-magnitude diagrams

Hertzprung-Russel and colormagnitude. ASTR320 Wednesday January 31, 2018

Observed Properties of Stars - 2 ASTR 2120 Sarazin

12. Physical Parameters from Stellar Spectra. Fundamental effective temperature calibrations Surface gravity indicators Chemical abundances

Dust [12.1] Star clusters. Absorb and scatter light Effect strongest in blue, less in red, zero in radio.

Lecture 12. November 20, 2018 Lab 6

Fundamental stellar parameters

Determination of [α/fe] and its Application to SEGUE F/G Stars. Young Sun Lee

The structure and evolution of stars

How to Understand Stars Chapter 17 How do stars differ? Is the Sun typical? Location in space. Gaia. How parallax relates to distance

6. Interstellar Medium. Emission nebulae are diffuse patches of emission surrounding hot O and

Astr 323: Extragalactic Astronomy and Cosmology. Spring Quarter 2014, University of Washington, Željko Ivezić. Lecture 1:

H-R Diagram evol tracks CMD.notebook. October 28, H-R Diagrams & Stellar Evolution:

Light and Stars ASTR 2110 Sarazin

ASTR-1020: Astronomy II Course Lecture Notes Section III

The Giant Branches of Open and Globular Clusters in the Infrared as Metallicity Indicators: A Comparison with Theory

The Stellar Populations of Galaxies H. W. Rix IMPRS Galaxies Course March 11, 2011

Stellar Populations: Resolved vs. unresolved

Observed Properties of Stars - 2 ASTR 2110 Sarazin

GALAXIES 626. The Milky Way II. Chemical evolution:

Observed Properties of Stars ASTR 2120 Sarazin

Our Galaxy. Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust. Held together by gravity! The Milky Way with the Naked Eye

Using the HR Diagram to Measure the Star Formation Histories of Galaxies. Tammy Smecker-Hane University of California, Irvine

MSci Astrophysics 210PHY412

A stellar parameter calibration of IUE data for the determination of the present day mass function of high mass stars

On the Red Edge of the δ Scuti Instability Strip

OPEN CLUSTERS LAB. I. Introduction: II. HR Diagram NAME:

7. Dust Grains & Interstellar Extinction. James R. Graham University of California, Berkeley

Galaxy formation and evolution. Astro 850

arxiv: v1 [astro-ph.co] 2 Dec 2011

The cosmic distance scale

Zoccali et al. 2003, A&A, 399, 931. Overview of (old) Galactic components. bulge, thick disk, metal-weak halo. metallicity & age distribution

Stellar Formation and Evolution

Astronomy 242: Review Questions #3 Distributed: April 29, 2016

Other stellar types. Open and globular clusters: chemical compositions

Age Dating A SSP. Quick quiz: please write down a 3 sentence explanation of why these plots look like they do.

11 days exposure time. 10,000 galaxies. 3 arcminutes size (0.1 x diameter of moon) Estimated number of galaxies in observable universe: ~200 billion

The Milky Way. Overview: Number of Stars Mass Shape Size Age Sun s location. First ideas about MW structure. Wide-angle photo of the Milky Way

Lecture 11: Ages and Metalicities from Observations A Quick Review

Stars, Galaxies & the Universe Lecture Outline

arxiv: v1 [astro-ph.sr] 1 Jul 2012

OPEN CLUSTER PRELAB The first place to look for answers is in the lab script!

Star clusters laboratories of stellar structure theory. Achim Weiss Max-Planck-Institute for Astrophysics (Garching, Germany)

5.6 Spectrophotometry and Magnitudes

Problem Score Worth

Spatial distribution of stars in the Milky Way

Determining the Properties of the Stars

Project for Observational Astronomy 2017/2018: Colour-magnitude diagram of an open cluster

The Ṁass- loss of Red Supergiants

The Hertzsprung-Russell Diagram

of more complex systems like galaxies. A simple stellar population is dened as an assembly

Oxygen in red giants from near-infrared OH lines: 3D effects and first results from. Puerto de la Cruz, May 14, 2012! Carlos Allende Prieto!

Stellar distances and velocities. ASTR320 Wednesday January 24, 2018

Stellar Evolution & issues related to the post Turn-Off evolution

Deriving stellar masses from SDSS

The Distances and Ages of Star Clusters

Building the cosmic distance scale: from Hipparcos to Gaia

THE GALAXY. Spitzer Space Telescope Images & Spectra: 3µm - 170µm

M31 Color Mag Diagram Brown et al 592:L17-L20!

ASTRONOMY AND ASTROPHYSICS. Synthetic photometry from ATLAS9 models in the UBV Johnson system. Fiorella Castelli

arxiv:astro-ph/ v1 5 May 2004

1. Basic Properties of Stars

Do the Large Magellanic Cloud and the Milky Way Globular Clusters Share a Common Origin?

A100H Exploring the Universe: Discovering Galaxies. Martin D. Weinberg UMass Astronomy

Measurement of the stellar irradiance

Review from last class:

Remember from Stefan-Boltzmann that 4 2 4

ASTR Look over Chapter 15. Good things to Know. Triangulation

Gaia Revue des Exigences préliminaires 1

Diameters and Temperatures of Main Sequence Stars

Out with magnitudes, in with monochromatic luminosities!

Extinction & Red Clump Stars

Ast 241 Stellar Atmospheres and Interiors

Astro Fall 2012 Lecture 8. T. Howard

Supernova 2005cs and the Origin of Type IIP Supernovae

Outline: Cosmological Origins. The true basics of life The age of Earth and the Universe The origin of the heavy elements Molecules in space

Astronomy 100 Spring 2006 Lecture Questions Twelve Weeks Review

Review of stellar evolution and color-magnitude diagrams

AstroBITS: Open Cluster Project

optical / IR: photon counting flux density or magnitude corresponds to number of electrons per second (mean rate)

Astronomy II (ASTR-1020) Homework 2

Erciyes University, Kayseri, Turkey

Energy. mosquito lands on your arm = 1 erg. Firecracker = 5 x 10 9 ergs. 1 stick of dynamite = 2 x ergs. 1 ton of TNT = 4 x ergs

* * The Astronomical Context. Much of astronomy is about positions so we need coordinate systems to. describe them. 2.1 Angles and Positions

Interferometric Observations of Supergiants: Direct Measures of the Very Largest Stars

summary of last lecture

Transcription:

Chapter 7: From theory to observations Given the stellar mass and chemical composition of a ZAMS, the stellar modeling can, in principle, predict the evolution of the stellar bolometric luminosity, effective temperature T eff, and possibly even the surface chemical composition. How can these parameters be linked to observables?

Outline Spectra and magnitudes The effects of interstellar extinction K-correction for high-redshift objects Spectroscopic notation of the stellar chemical composition Calibration and uncertainty Review

Spectra and magnitudes One important way is the use of the Color Magnitude Diagram (CMD), which is the observational counterpart of the HRD. HRD of selected stellar evolutionary tracks (dashed lines) with the same initial solar chemical composition. The heavy solid lines display two isochrones for the same chemical composition and ages of 600 Myr (the brighter sequence) and 10 Gyr. CMD of the globular cluster M3 using the Johnson BV filters. Remember that the magnitude scale is backward wrt intensity; a larger value of B V implies a cool object.

Magnitude definition The apparent magnitude is defined as ( ) fλ S λ dλ m A 2.5log + m f 0 A 0 λ S λ dλ where f λ is the monochromatic flux (or spectrum) of a star received at the top of the Earth s atmosphere while fλ 0 denotes the spectrum of a reference star that produces a known apparent magnitude ma 0, which is called the zero point of the band for a given photometric system. This system specifies a specific choice of the response function, S λ. Many photometric systems exist! Measured magnitudes do depend on both the f λ and the actual photometric system used (i.e., the shape of the filter). So in general, one should not compare magnitudes defined for different photometric systems.

Various photometric systems The very popular Johnson system, for example, uses the star Vega (A0V at the distance of 7.7 pc; M = 2.14M ) to fix the zero points. It assumes that m V = 0 and that the color indices are equal to zero for the star, whereas other systems may have slightly different values. The absolute magnitude is defined as the apparent magnitude a star would have at a distance of 10 pc (if the radiation travels undisturbed from the source to the observer): M A 2.5log [ ( d 10 pc ) 2 ] fλ S λ dλ + m f 0 A 0 λ S λ dλ = m A 5(log(d) 1) where d is the distance in parsec. In the cosmological context, the distance is so called luminosity distance d L. m A M A (m M) A is called the distance modulus.

Absolute bolometric magnitude The absolute magnitude of the Sun is then M A, 2.5log [ ( d 10 pc ) 2 ] fλ, S λ dλ + m f 0 A 0 λ S λ dλ. By setting S λ = 1 at all wavelengths in the above two definitions (thus the subscript change from A to bol ) and adopting the Sun as the reference star (placing it at the distance of 10 pc), we have the definition of the absolute bolometric magnitude of a star as M bol M bol, 2.5log(L/L ) where L = 3.826 10 33 ergs s 1 and M bol, = 4.75.

Absolute bolometric magnitude The absolute magnitude of the Sun is then M A, 2.5log [ ( d 10 pc ) 2 ] fλ, S λ dλ + m f 0 A 0 λ S λ dλ. By setting S λ = 1 at all wavelengths in the above two definitions (thus the subscript change from A to bol ) and adopting the Sun as the reference star (placing it at the distance of 10 pc), we have the definition of the absolute bolometric magnitude of a star as M bol M bol, 2.5log(L/L ) where L = 3.826 10 33 ergs s 1 and M bol, = 4.75. What do you think about a comparison of this M bol value with M K, = 3.4?

Absolute bolometric magnitude The absolute magnitude of the Sun is then M A, 2.5log [ ( d 10 pc ) 2 ] fλ, S λ dλ + m f 0 A 0 λ S λ dλ. By setting S λ = 1 at all wavelengths in the above two definitions (thus the subscript change from A to bol ) and adopting the Sun as the reference star (placing it at the distance of 10 pc), we have the definition of the absolute bolometric magnitude of a star as M bol M bol, 2.5log(L/L ) where L = 3.826 10 33 ergs s 1 and M bol, = 4.75. What do you think about a comparison of this M bol value with M K, = 3.4? The absolute bolometric magnitude is independent of any photometry system!

Bolometric correction The bolometric correction to a given photometric band A is defined as BC A M bol M A. If the stellar bolometric luminosity is known (from a model), one can predict the corresponding M A. In practice, tables of bolometric corrections and color indices are available, for a grid of gravities and T eff that cover all the major phases of stellar evolution, and for a number of chemical compositions. Interpolations among the grid points provide the sought BC A for the model.

Bolometric correction The bolometric correction to a given photometric band A is defined as BC A M bol M A. If the stellar bolometric luminosity is known (from a model), one can predict the corresponding M A. In practice, tables of bolometric corrections and color indices are available, for a grid of gravities and T eff that cover all the major phases of stellar evolution, and for a number of chemical compositions. Interpolations among the grid points provide the sought BC A for the model. Observationally, one needs to select proper filters that are sensitive to the desirable measurements, particular for T eff. Evolution of a 1 M star with Z = 0.001 and Y = 0.246 from the ZAMS until the tip of the RGB, displayed in the HRD and various CMDs.

Outline Spectra and magnitudes The effects of interstellar extinction K-correction for high-redshift objects Spectroscopic notation of the stellar chemical composition Calibration and uncertainty Review

The effects of interstellar extinction If the extinction (A λ ) is important, the observed flux is then Defining A A as f λ = f λ,0 e τ λ f λ,0 10 0.4A λ 10 0.4A A 10 0.4A λ f λ,0 S λ dλ, fλ,0 S λ dλ assuming certain A λ and f λ,0 (as functions of λ), we have m A = m A,0 + A A.

The effects of interstellar extinction If the extinction (A λ ) is important, the observed flux is then Defining A A as f λ = f λ,0 e τ λ f λ,0 10 0.4A λ 10 0.4A A 10 0.4A λ f λ,0 S λ dλ, fλ,0 S λ dλ assuming certain A λ and f λ,0 (as functions of λ), we have m A = m A,0 + A A. With this extinction-corrected magnitude, m A,0, together with the distance module, we can then calculate the absolute magnitude, A (= M A ).

The effects of interstellar extinction If the extinction (A λ ) is important, the observed flux is then Defining A A as f λ = f λ,0 e τ λ f λ,0 10 0.4A λ 10 0.4A A 10 0.4A λ f λ,0 S λ dλ, fλ,0 S λ dλ assuming certain A λ and f λ,0 (as functions of λ), we have m A = m A,0 + A A. With this extinction-corrected magnitude, m A,0, together with the distance module, we can then calculate the absolute magnitude, A (= M A ). The effect of extinction on a color index (A B) is (A B) = (A B) 0 + E(A B) where E(A B) = A A A B is called the color excess or reddening.

The extinction law, A λ /A V, is usually determined empirically, where A V is the extinction in the Johnson V band. Notice the 2175 Å bump. The ratio R V A V /E(B V ) is nearly a constant and equal to 3.1 for stars in the Galaxy. More accurately, A V can be determined in a color-color plot, e.g., U B vs. B V. For large reddening (e.g., toward the Galactic center), one needs to account for the non-constancy of A λ and hence the substantial spectral change in a given filter range.

Outline Spectra and magnitudes The effects of interstellar extinction K-correction for high-redshift objects Spectroscopic notation of the stellar chemical composition Calibration and uncertainty Review

K-correction for high-redshift objects When an observing object (typically a galaxy) has a non-negligible redshift, one also needs to make the so-called K-correction, converting a measurement to an equivalent measurement in the rest frame of the object.

K-correction for high-redshift objects When an observing object (typically a galaxy) has a non-negligible redshift, one also needs to make the so-called K-correction, converting a measurement to an equivalent measurement in the rest frame of the object. One claim for the origin of the term K correction is the correction as a Konstante (German for constant ) used by Carl Wirtz.

K-correction for high-redshift objects When an observing object (typically a galaxy) has a non-negligible redshift, one also needs to make the so-called K-correction, converting a measurement to an equivalent measurement in the rest frame of the object. One claim for the origin of the term K correction is the correction as a Konstante (German for constant ) used by Carl Wirtz. To determine the appropriate K-correction, one obviously needs to know the shape of the object intrinsic spectrum, or its evolution with time (e.g., related to the evolution of the stellar content, which may be modeled theoretically for a galaxy).

Outline Spectra and magnitudes The effects of interstellar extinction K-correction for high-redshift objects Spectroscopic notation of the stellar chemical composition Calibration and uncertainty Review

Spectroscopic notation of the stellar chemical composition Theoretically, it is customary and convenient to specify the composition in terms of X, Y, and Z, as we have done so far. But not all element abundances can be directly measured, even spectroscopically, for a star. Low mass stars, for example, have typically too cold atmosphere to show any helium spectral lines. The stellar metal abundances, Z, are typically traced with certain spectroscopic indicators and are usually determined differentially wrt the Sun. One needs to be careful about the specific version of the solar compositions; e.g., Z=0.0194 (Anders & Grevesse 1989) while Z=0.0122 (Asplund et al. 2005). Oxygen abundance, in particular, differs by up to about one third among various versions commonly used versions. An element number abundance is defined as [Fe/H] log[n(fe)/n(h)] log[n(fe)/n(h)] Here Fe is chosen partly because its lines are prominent and easy to measure.

If the element distribution is assumed to follow the solar mixture, the conversion from Z to [Fe/H] is then given by ( ) ( ) ( ) Z Z Z [Fe/H] = log log = log + 1.61 X X X where Z X is the metal to hydrogen mass ratio. The dominant X can typically be considered approximately a constant. The above equation can then be simplified into ( ) Z [Fe/H] = log Z Typical errors of the spectroscopic determinations of [Fe/H] are of the order of at least 0.10 dex.

If the element distribution is assumed to follow the solar mixture, the conversion from Z to [Fe/H] is then given by ( ) ( ) ( ) Z Z Z [Fe/H] = log log = log + 1.61 X X X where Z X is the metal to hydrogen mass ratio. The dominant X can typically be considered approximately a constant. The above equation can then be simplified into ( ) Z [Fe/H] = log Z Typical errors of the spectroscopic determinations of [Fe/H] are of the order of at least 0.10 dex. If the assumption of a universal scaled solar metal mixture needs to be relaxed, the above equations can still be used, but the left side now refers to the ratio of the total number abundance of metal to hydrogen, [M/H].

One can often approximately group the metals into two categories: The α-elements and Fe elements. α-elements (mainly O, Ne, Mg, Si, S, Ca, and Ti) are mostly the products of core-collapsed SNe (including Type II and Ib,c). The Fe elements are mostly from Type Ia SNe. Type Ia SNe start to explore and contribute to the chemical composition of the ISM much later ( 1 Gyr) than core-collapsed SNe do.

One can often approximately group the metals into two categories: The α-elements and Fe elements. α-elements (mainly O, Ne, Mg, Si, S, Ca, and Ti) are mostly the products of core-collapsed SNe (including Type II and Ib,c). The Fe elements are mostly from Type Ia SNe. Type Ia SNe start to explore and contribute to the chemical composition of the ISM much later ( 1 Gyr) than core-collapsed SNe do. As a result, old metal-poor stars are typically α-enhanced in the halo and bulge of our Galaxy ([Fe/H]< 0.6; [α/fe] 0.3-0.4). For these α-enhanced mixtures, the approximate relationship can be generally given by [M/H] [Fe/H] + log(0.694 10 [α/fe] + 0.306). On the other hand, younger stellar generations (like our Sun) are characterized by a metal mixture with a small α/fe ratio wrt the oldest stars.

Outline Spectra and magnitudes The effects of interstellar extinction K-correction for high-redshift objects Spectroscopic notation of the stellar chemical composition Calibration and uncertainty Review

Stellar model calibration and uncertainty In addition to the chemical compositions, we need to know T eff and gravities to predict a stellar spectrum.

Stellar model calibration and uncertainty In addition to the chemical compositions, we need to know T eff and gravities to predict a stellar spectrum. If we know the angular diameter of a nearby star, θ (via interferometric observations), we can infer T eff from the bolometric flux, F bol, and the relation where d/r = 2θ 1. T eff = ( Fbol σ ) 1/4 ( ) 1/2 d R

Stellar model calibration and uncertainty In addition to the chemical compositions, we need to know T eff and gravities to predict a stellar spectrum. If we know the angular diameter of a nearby star, θ (via interferometric observations), we can infer T eff from the bolometric flux, F bol, and the relation where d/r = 2θ 1. T eff = ( Fbol σ ) 1/4 ( ) 1/2 d R But, this expensive approach can be applied only to some of nearby stars, which cover a narrow range of the composition, but is certainly useful to test the stellar models. To determine the gravity, we need to measure the mass and radius. How could these parameters be done?

Stellar model uncertainty With the above parameters measured, one can test/calibrate the theoretical stellar evolution models against observed spectra. There are two main shortcomings of current models: Many spectral lines predicted by the models are not observed in the Sun. Or the relative strengths of many lines are not well reproduced. Existing convective model atmosphere is still treated with the MLT. More sophistical models are needed that cover all the relevant evolutionary, mass, and chemical ranges. The resultant uncertainties are typically about several % in magnitude. Another approach to judge the adequacy of the models is to compare the predictions of different models.

Outline Spectra and magnitudes The effects of interstellar extinction K-correction for high-redshift objects Spectroscopic notation of the stellar chemical composition Calibration and uncertainty Review

Review Key concepts: apparent and absolute magnitudes, photometric system, zero points, distance modulus, absolute bolometric magnitude, bolometric correction, color excess, extinction law, K-correction. 1. Please draw a CMD or HRD diagram and compare star concentrations for a flux or volume limited sample. How to construct an honest sample of stars for the study of their evolution? 2. What is the reference star used for defining an absolute bolometric magnitude? Is it the same as for a magnitude in the Johnson photometric system? 3. How can the apparent K-band magnitude of a star in the Galaxy be corrected if we know the color excess E(B V ) along the line of sight? 4. What may be the procedure to estimate the apparent magnitude of a star of a certain type in the Galactic center from a stellar model? 5. Interesting questions to muse: What are the pros and cons of the CMD and spectroscopic approaches? What about other possible approaches (e.g., SED and color-color diagrams)? 6. How may the effective surface temperature of a star, T eff, be determined from the absolute bolometric magnitude of a nearby star and its diameter?