Real Business Cycle Model (RBC)

Similar documents
4- Current Method of Explaining Business Cycles: DSGE Models. Basic Economic Models

Neoclassical Business Cycle Model

Advanced Macroeconomics II The RBC model with Capital

Macroeconomics Theory II

1 The Basic RBC Model

Macroeconomics Theory II

MA Advanced Macroeconomics: 7. The Real Business Cycle Model

Public Economics The Macroeconomic Perspective Chapter 2: The Ramsey Model. Burkhard Heer University of Augsburg, Germany

RBC Model with Indivisible Labor. Advanced Macroeconomic Theory

Foundation of (virtually) all DSGE models (e.g., RBC model) is Solow growth model

Small Open Economy RBC Model Uribe, Chapter 4

PANEL DISCUSSION: THE ROLE OF POTENTIAL OUTPUT IN POLICYMAKING

The Real Business Cycle Model

Lecture 15. Dynamic Stochastic General Equilibrium Model. Randall Romero Aguilar, PhD I Semestre 2017 Last updated: July 3, 2017

What are we going to do?

Lecture 15 Real Business Cycle Model. Noah Williams

(a) Write down the Hamilton-Jacobi-Bellman (HJB) Equation in the dynamic programming

Solving a Dynamic (Stochastic) General Equilibrium Model under the Discrete Time Framework

1. Using the model and notations covered in class, the expected returns are:

A simple macro dynamic model with endogenous saving rate: the representative agent model

DSGE-Models. Calibration and Introduction to Dynare. Institute of Econometrics and Economic Statistics

Advanced Macroeconomics II. Real Business Cycle Models. Jordi Galí. Universitat Pompeu Fabra Spring 2018

The Ramsey Model. (Lecture Note, Advanced Macroeconomics, Thomas Steger, SS 2013)

Modelling Czech and Slovak labour markets: A DSGE model with labour frictions

Graduate Macroeconomics - Econ 551

Chapter 11 The Stochastic Growth Model and Aggregate Fluctuations

Graduate Macro Theory II: Business Cycle Accounting and Wedges

problem. max Both k (0) and h (0) are given at time 0. (a) Write down the Hamilton-Jacobi-Bellman (HJB) Equation in the dynamic programming

Advanced Macroeconomics

The full RBC model. Empirical evaluation

Lecture 4 The Centralized Economy: Extensions

Indivisible Labor and the Business Cycle

Assessing Structural VAR s

1 Bewley Economies with Aggregate Uncertainty

The welfare cost of energy insecurity

Optimal Inflation Stabilization in a Medium-Scale Macroeconomic Model

1 The social planner problem

Practice Questions for Mid-Term I. Question 1: Consider the Cobb-Douglas production function in intensive form:

Topic 3. RBCs

Dynamics and Monetary Policy in a Fair Wage Model of the Business Cycle

Lecture 2 Real Business Cycle Models

Introduction to Macroeconomics

Suggested Solutions to Homework #6 Econ 511b (Part I), Spring 2004

Advanced Macroeconomics

Assessing Structural VAR s

General motivation behind the augmented Solow model

Business Cycles: The Classical Approach

STATE UNIVERSITY OF NEW YORK AT ALBANY Department of Economics

Population growth and technological progress in the optimal growth model

Part A: Answer question A1 (required), plus either question A2 or A3.

Graduate Macro Theory II: Notes on Quantitative Analysis in DSGE Models

Dynamic Optimization: An Introduction

FEDERAL RESERVE BANK of ATLANTA

Econ 5110 Solutions to the Practice Questions for the Midterm Exam

Toulouse School of Economics, M2 Macroeconomics 1 Professor Franck Portier. Exam Solution

Lecture 2 The Centralized Economy

Macroeconomic Theory and Analysis V Suggested Solutions for the First Midterm. max

Advanced Macroeconomics

Problem 1 (30 points)

Assessing Structural VAR s

Stochastic simulations with DYNARE. A practical guide.

There are two basic questions that gave birth to this area of macroeconomics:

Permanent Income Hypothesis Intro to the Ramsey Model

Economics 701 Advanced Macroeconomics I Project 1 Professor Sanjay Chugh Fall 2011

Business Failure and Labour Market Fluctuations

Uncertainty Per Krusell & D. Krueger Lecture Notes Chapter 6

Economic Growth: Lecture 13, Stochastic Growth

Government The government faces an exogenous sequence {g t } t=0

Economic Growth: Lecture 9, Neoclassical Endogenous Growth

Lecture 5: The neoclassical growth model

ADVANCED MACROECONOMICS I

Neoclassical Growth Model / Cake Eating Problem

The New Keynesian Model: Introduction

Lecture 2: Firms, Jobs and Policy

Dynamic stochastic general equilibrium models. December 4, 2007

Advanced Economic Growth: Lecture 8, Technology Di usion, Trade and Interdependencies: Di usion of Technology

Simple New Keynesian Model without Capital

Equilibrium Conditions (symmetric across all differentiated goods)

Lecture 7: Linear-Quadratic Dynamic Programming Real Business Cycle Models

Money in the utility model

Lecture 7. The Dynamics of Market Equilibrium. ECON 5118 Macroeconomic Theory Winter Kam Yu Department of Economics Lakehead University

Shiftwork in the Real Business Cycle

Macroeconomics Qualifying Examination

Competitive Equilibrium and the Welfare Theorems

HOMEWORK #3 This homework assignment is due at NOON on Friday, November 17 in Marnix Amand s mailbox.

New Notes on the Solow Growth Model

Macroeconomics Theory II

Macroeconomics II Dynamic macroeconomics Class 1: Introduction and rst models

ECON607 Fall 2010 University of Hawaii Professor Hui He TA: Xiaodong Sun Assignment 2

Macroeconomics Field Exam. August 2007

Growth Theory: Review

Linearized Euler Equation Methods

Optimal Simple And Implementable Monetary and Fiscal Rules

Assessing Structural VAR s

Mortenson Pissarides Model

Equilibrium in a Production Economy

General Examination in Macroeconomic Theory SPRING 2013

Diamond-Mortensen-Pissarides Model

Gold Rush Fever in Business Cycles

Financial Factors in Economic Fluctuations. Lawrence Christiano Roberto Motto Massimo Rostagno

Transcription:

Real Business Cycle Model (RBC) Seyed Ali Madanizadeh November 2013

RBC Model Lucas 1980: One of the functions of theoretical economics is to provide fully articulated, artificial economic systems that can serve as laboratories in which policies that would be prohibitively expensive to experiment with in actual economies can be tested out at much lower cost. [...] Our task as I see it [...] is to write a FORTRAN program that will accept specific economic policy rules as input and will generate as output statistics describing the operating characteristics of time series we care about, which are predicted to result from these policies.

RBC Model A Microfounded general equilibrium macroeconomic model (Proposed by Kydland and Prescott (1982)) Explains the short run effects (Business cycles) Consistent with long run facts A Stochastic dynamic general equilibrium model (DSGE) with rational expectations Fully rational household with capital and labor Firms with stochastic productivity

RBC Model THE PLANNER PROBLEM RBC models do not consider any distortion or market imperfection, therefore the welfare theorems apply to these models: 1) the competitive equilibrium is pareto-optimal 2) a pareto-optimal allocation can be decentralized as a competitive equilibrium The social planner equilibrium and the competitive equilibrium are identical and admit a unique solution

RBC Model Main policy conclusion: uctuations of all variable (output, consumption, employment, investment...) are the optimal responses to technology shocks exogenous changes in the economic environment. Shocks are not always desirable. But once they occur, this is the best possible outcome: business cycle uctuations are the optimal response to technology shocks => no need for government interventions: it can be only deleterious

RBC Model Furious response from the "people from the Oceans" => Rogoff: "brilliant theories... rst look ridiculous then they become obvious". From mid 80s to mid 90s: ten years lost in useless ideological debates between the Oceans and the Lakes From mid 90s: convergence on methodology: "the RBC approach as the new orthodoxy in macroeconomics"

Measuring the Business Cycles Hodrick-Prescott (H-P) Filter min {y g t } 0 { (y t yt g ) 2 + λ [ (y t+1 yt g ) ( y t y g )] } 2 t 1 t=0 H-P filter suppresses the really low frequency fluctuations 8 years quarterly data λ = 1600

Measuring the Business Cycles

Measuring the Business Cycles

RBC Model Households: max E 0 c t,k t,b t,x t,h t u (c t, 1 h t ) t=0 subject to c t + x t + b t+1 w t h t + r t k t + R t b t + π t k t+1 < (1 δ) k t + x t k t 0 k 0 : Given We assume that the consumer is making all time-t choices (x t, c t, k t+1, b t+1, h t ) conditional on time t information (all variables subscripted t and below, plus the interest rate on bonds R t+1 ).

RBC Model Firms z t follows an AR(1) process: where ε t is white noise. max K t,h t e z t F (K t, H t ) w t H t r t K t z t = ρz t 1 + ε t

RBC Model Equilibrium: An equilibrium in this economy is a joint distribution of prices and allocations Y t = C t + X t B t = 0

Solving the Model FOC [c t ] : [h t ] : [ E t β t ] u c (c t, 1 h t ) λ t = 0 [ E t β t ] u l (c t, 1 h t ) + w t λ t = 0 [k t+1 ] : E t [λ t (1 δ + r t+1 ) λ t ] = 0 [b t+1 ] : E t [λ t+1 R t+1 λ t ] = 0

Solving the Model: Household Consumption Leisure decision (Interpretation!) u l (c t, 1 h t ) = u c (c t, 1 h t )w t Euler Equation u c (c t, 1 h t ) = βe t [u c (c t+1, 1 h t+1 )(r t+1 + 1 δ)] Bond Price R t+1 = E t [r t+1 ] + 1 δ

Solving the Model: Firms FOC w t = e z t F H (K t, H t ) r t = e z t F K (K t, H t )

Solving the Model Relative labour supply responds to relative wages between two different periods => households substitute labour intertemporally Also the interest rate matters for labour supply => r => h s today, because MPK is high => crucial channel for employment fluctuations What is the effect of w or r?

Solving the Model temporary w substitution effect prevails h s ( ct w t ) (given the intratemporal trade-off between consumption and u labour: l (c t,1 h t ) u c (c t,1 h t ) = w t permanent w => income ( and substitution effects cancel out, no change in ht s and ct w t ) Temporary increase in both w and r => intertemporal substitution both in labour and consumption => h s t

Solving the Model The standard neoclassical intratemporal trade-off between consumption and labour u l (c t, 1 h t ) u c (c t, 1 h t ) = w t hence, for a given wage, C and H tend to move in the opposite direction How one can get both C and H highly pro-cyclical? Highly procyclical real wage (=> productivity shocks!!)

Solving the Model Example U = log c t h1+φ t 1 + φ becomes h t = ( ) 1 wt φ So the elasticity of labor supply w.r.t. real wages = 1 φ :Frisch elsticity c t

Steps to solve the Model 1 FOCs 2 Steady States 3 Calibration and Estimation 4 Solve for the recursive law of motion 5 Calculate the moments: correlations, and standard deviations for the different variables both for the artificial economy and for the actual economy 6 Compare how well the model economy matches the actual economy s characteristics 7 Calculate the IRFs in response to different shocks

Calibration Use microeconomic studies or theory to find values for all of the parameters Utility Function U (c t, 1 h t ) = ( c 1 α t (1 h t ) a) 1 χ 1 1 χ Production function F (K, H) = K θ H 1 θ

Calibration β :At the non-stochastic steady state, we have R = 1 β. The average real interest rate in the U.S. is usually around 4% annually which is about 1% quarterly β = 0.99 θ : 1 θ will be labor s share of output, a quantity that can be estimated from the national income accounts θ = 0.4 χ :Estimates from micro studies of the typical worker s intertemporal elasticity of substitution are in the range of χ 1 χ = 1 u (c, 1 h) = (1 α) ln c + α ln (1 h)

Calibration α : By solving for the steady states we find that: α 1 h = (1 α) (1 θ) y ch From long run data, 31% of available time is spent working h = 0.31 The ( steady state output to consumption ratio is about 1.33 y ) c α = 0.64 Cooley and Prescott estimate that depreciation is 4.8% annually, so 1.2% quarterly (δ = 0.012). ν : Use quarterly population growth rate ν = 0.012

Calibration ρ and σ ε :This model has perfect competition and constant returns to scale. So z t z t 1 is the Solow residual. The average value of the Solow residual gives us our estimate for γ. Cooley and Prescott set γ = 0.0156, giving about 1.6% annual TFP growth. Once we subtract out this average, we can estimate an AR(1) model ρ = 0.95 and σ ε = 0.007

Numerical Solution Once we have set up the model, and calibrated parameters, we next need to find a numerical solution to the model Bellman s equation, and apply numerical dynamic programming methods. Linear-quadratic approximation around the steady states Log-linearize the model around the steady state

Log Linearization For x 0 : e x 1 + x For x t, let ˆx t = log ( x t x ) be the log-deviation of xt from its steady state. Thus, 100 ˆx t is (approximately) the percent deviation of x t from x. Then, x t = xe ˆx t x (1 + ˆx t ) Formally: first order Taylor expansion, g t = g (x t ) = xe ˆx t ( g ( x) (1 + ĝ t ) g t = g ( x) 1 + g ) ( x) x g ( x) ˆx t ĝ t g ( x) x g ( x) ˆx t = g x g ˆx t

Recursive law of motion: An example As an exmaple, consider the log linearization method. ˆb is log linearized version of b. We guess a decision rule ˆk t+1 = γ 1 ˆk t + γ 2 z t ĉ t = η 1 ˆk t + η 2 z t Then verify by substituting into the FOCs.

Simulation, Estimation and Test Simulation: Under those assumptions we can simulate the model on a computer and we get time series for output, employment, productivity, investment, consumption, and capital. Estimation Test If we have not yet calibrated some of the parameters, we need to estimate them. Matching moments is a very common approach here. We look at the moments of real and simulated data: likee correlation between any of these variables and the relative variance of different variables.

Evaluation To an RBC theorist, these numbers represent success. We ve managed to write down a very simple model that duplicates many of the properties (moments) of the actual data. There are a few failures though. This model seems to understate the variability of both consumption and hours. The RBC approach to this failing is to investigate why the model doesn t match, and adjust the model so that it does match.

Issues Understate the variability of both consumption and hours The consumption variability is simple. Even with careful measurement, a lot of consumption is actually purchase of consumer durables, which really belongs in investment In order to generate higher variation in hours worked for each individual worker, we need to make them more willing to substitute intertemporally - work less when wages are low and more when they are high. micro studies show a low IES, so we can t justify simply lowering χ Introduce Unemployment (Gary Hansen 1985)

Issues Persistence of fluctuations However, their persistence really isn t much more than that of the Solow residual, which is the exogenous source of shocks. The problem is that new investment is very small relative to the capital stock, so the capital stock itself varies little. So new mechanisms for propagation: Financial markets frictions Labor market search

Critics Why matching moments is a desire property? There could be many other alternative If solow residual are the sources of shocks, so recessions are results of technical regress. It is not clear what particular technological advances or disasters can be associated with any of the major short-term swings in the Solow residual. RBS should be uncorrelated with political party, military purchases or oil prices. But in reality it is.

A resolution Capital utilization is procyclical

An Example RBC with no labor, log utility, δ = 1 Solve analytically RBC with no capital: log linearization, Intuition of how the EE is working

An Example max t=0 β t ln (c t ) FOC: s.t. c t + k t+1 = e z t k α t + (1 δ) k t where R t = αe z t k α 1 t + (1 δ) z t = ρz t 1 + ε t [ ] 1 1 = βe t R t+1 c t c t+1

An Example Show how persistence of a shock can affect R t and then consumer s decision Show graphically how a shock affect the capital market and rate of return. No persistence Full persistence Mild persistence

An Example If δ = 1 : Guess: k t+1 = Πe z t k α t c t = Γe z t k α t Then: Π = αβ Γ = 1 αβ Intuitions!

An Example Solve using log-linearization ˆk t+1 = α ˆk t + Intuition for the role of ρ Find unconditional variances ( ) 1 ραβ 1 z t ĉ t = α ˆk t + 1 + αβ 1 ρ 1 αβ z t

An Example

An Example Hansen RBC model

More Examples See Sargent paper DSGE user guide Uhlig s lectures

Revisiting Calibration and Estimation Parameters estimation Matching with the moments of data Matching with the data Testing the implications Identification issues